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Abstract 

Modulation of tumor microenvironment is an emerging frontier for new therapeutics. How-

ever in meningiomas, the most frequent adult brain tumor, the correlation of microenviron-

ment with tumor phenotype is scarcely studied. We applied a variety of systems biology ap-

proaches to bulk tumor transcriptomics to explore the immune environments of both skull 

base and convexity (hemispheric) meningiomas. We hypothesized that the more benign biol-

ogy of skull base meningiomas parallels the relative composition and activity of immune 

cells that oppose tumor growth and/or survival. We firstly applied gene co-expression net-

works to tumor bulk transcriptomics from 107 meningiomas (derived from 3 independent 

studies) and found immune processes to be the sole biological mechanism correlated with 

anatomical location while correcting for tumour grade. We then derived tumor immune cell 

fractions from bulk transcriptomics data and examined the immune cell-cytokine interactions 

using a network-based approach. We demonstrate that oncolytic M1 macrophages dominate 

skull base meningiomas while mast cells, known to play a role in oncogenesis, show greater 

activity in convexity tumors. Our results are the first to suggest the importance of tumor mi-

croenvironment in meningioma biology in the context of anatomic location and immune 

landscape. These findings may help better inform surgical decision making and yield loca-

tion-specific therapies through modulation of immune microenvironment. 
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Introduction 

Meningiomas are the most common adult brain tumor and constitute approximately 30% of 

all intracranial neoplasms1. Surgery remains a key part of treatment for symptomatic or grow-

ing meningiomas and outcomes are largely determined by tumor biology2,3 and extent of re-

section4. Approximately 70% of meningiomas have benign characteristics and the average 

disease-free survival is 90% over 10 years2, but lifetime recurrence can be as high as 50%5. 

The extent of surgical excision is largely determined by technical feasibility which is a func-

tion of anatomical location of the tumor, adherence to adjacent tissue and the eloquent struc-

tures limiting the extent of removal6. Achieving complete excision of skull base meningiomas 

poses a particular challenge due to the proximity of neurovascular structures as well as the 

often narrow surgical corridors. Consequently, they may require longer operative times and 

can have lower success rate of complete excision with eradication of tumor origin. Therefore, 

understanding the biology skull base meningiomas is of particular interest given these pa-

tients are more likely to be left with residual disease. 

 

Multiple studies show that skull base meningiomas are more likely to have benign biology 

whereas tumors with more aggressive behavior (atypical or malignant meningiomas) can 

constitute close to 30% of convexity/parafalcine tumors7–9. Recent studies have analyzed the 

genetic makeup of meningiomas and found recurrent mutations in the neurofibromatosis type 

2 (NF2) gene and/or loss of chromosome 22 (NF2/chr22loss) to be more prevalent in the 

cerebral and cerebellar hemisphere10. The vast majority of non-NF2/chr22loss meningiomas 

are typically benign and tend to be located medially on the skull base. Smoothened, frizzled 

family receptor (SMO) mutations are also implicated in non-NF2/chr22loss and medial men-

ingiomas through increased activation of the Hedgehog pathway10. Recurrent polymerase 

(RNA) II (DNA directed) polypeptide A (POLR2A) mutations have recently been found to 
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classify a distinct subset of benign meningiomas with meningothelial histology and a prepon-

derance to localize in the tuberculum sellae11. Analysis of methylation subtypes of men-

ingiomas showed benign subgroups with longer disease-free survival had a greater proportion 

of skull base meningiomas. On the other hand, all tumors in the malignant methylation sub-

type were located exclusively on the convexity8.  

 

Systems level analysis of gene expression data, which considers genes as units of a system 

rather than isolated entities, can identify key molecular processes which map to biologi-

cal/clinical phenotypes12,13. This approach carries the distinct advantage of being unbiased in 

deriving meaning from high dimensional, biologically-modelled data. Gene co-expression 

networks are one example of such system level analysis, wherein similar genes are grouped 

into “modules” of similar function14. This technique has been successfully applied to explore 

complex phenotypes in Huntington’s disease15, peripheral nerve regeneration16 and weight 

gain17. It has also been used to identify relevant subgroups of meningioma18. In the current 

study we apply this technique along with another network-based approach to model the im-

mune landscape of skull base and convexity meningiomas. 

 

We hypothesize that different meningioma locations are associated with distinct biological 

mechanisms, likely related to immune cell composition and/or activity. To capture these geo-

graphical patterns in meningioma biology we analyzed the transcriptomics profiles of 107 

meningiomas originating from either the skull base or convexity. 

 

Results 

Co-expression network and module-phenotype correlation: 
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A gene co-expression network was constructed from 19,011 gene transcripts. Using an adap-

tive hierarchical clustering model14, we discovered fourteen gene modules (Figure 1A). We 

next compared the biology of both tumor locations by correlating phenotype with meta-gene 

expression levels. Three modules were found to be significantly different between hemi-

spheric and skull base meningiomas (Mann Whitney p<0.05), only one of which annotated 

significantly (Bonferroni p<0.05) to biological processes in DAVID (Figure 1B,C). We fi-

nally confirmed module significance by regressing out WHO grade in a generalized linear 

model. 

 

 

Figure 1: Gene co-expression network reveals immune function to correlate strongly with 

meningioma location. A: Gene dendrogram illustrating modules. The grey denotes genes 

which are not implicated with any modules. B: Boxplot depicting the correlation between lo-
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cation and meta-gene expression level of the only significant module with DAVID annota-

tions (Mann Whitney p = 0.005). C: Gene ontology terms ranked by Bonferroni p-value.  

 

Immune composition of meningiomas by location: 

Using network analysis, we examined the biological activity of each immune cell type by 

correlating them with cytokine expression. On inspection of cytokine-cell networks there was 

a clear difference in the network configurations of convexity and skull base meningiomas  

(Figure 2). Notably, the convexity network yields two distinct cell-cytokine clusters (as well 

as an independent correlation between activated natural killer cells and resting mast cells). 

Monocytes are the sole cell type in one of the clusters, and are most correlated (ρ = 0.65) 

with CX3CR1, associated with leukocyte migration, cell adhesion, and monocyte differentia-

tion/survival19 and CCR1, involved in monocyte and T cell chemotaxis20. In the other cluster, 

activated mast cells are most correlated (ρ = 0.81) with IL1RN, an antagonist of the inter-

leukin-1 receptor21 and neutrophils are most correlated (ρ = 0.73) with CXCR2, a neutrophil-

specific chemokine22. Both mast cells and neutrophils are connected to the pro-inflammatory 

cytokine IL1B23. In the skull base network, M0 macrophage associations are similar to the 

monocyte associations in the convexity model. Additionally, M1 macrophages are most cor-

related with CXCL10 (ρ = 0.74), another pro-inflammatory chemokine24. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 20, 2019. ; https://doi.org/10.1101/525444doi: bioRxiv preprint 

https://doi.org/10.1101/525444


 

 

 

 

Figure 2: Network demonstrating the connectivity of immune cell fractions and cytokine 

transcriptomics in convexity (A) and skull base (B) meningiomas. Cytokines are represented 

in blue whereas immune cells are represented in red. Edge thickness is proportional to Pear-

son correlation. Neutrophils, monocytes, and mast cells are significantly correlated with cy-

tokines in the hemispheric model, while M0 and M1 macrophages are significantly correlated 

with cytokines in the skull base model. 

 

Given the relative complexity of these networks, we sought to analyze the relative “activity” 

of each immune cell by probing the distribution of their correlations with cytokine expression 

levels25. Analysis of cell “connectivity” (the area under this distribution) re-demonstrates the 

importance of mast cells and neutrophils in convexity meningiomas of and macrophages in 

skull base meningiomas (Figure 3).  

 

A B
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Figure 3: Immune cell connectivity of meningiomas by location. A-B: Histogram of Person’s 

correlations for the top 5 cell fraction, ranked by connectivity, of convexity (A) and skull 

base (B) meningiomas. C: Heatmap of cell connectivity values. White indicates high connec-

tivity and red indicates low connectivity (range 0-7.8). Note the highly connected mast cells 

in convexity meningiomas and M1 macrophages in skull base (“SB”) meningiomas. A = ac-

tivated, M = mature, N = naïve, fh = follicular helper, gd = gamma-delta, R = resting. 

 

Discussion 

We present a genetic meta-analysis correlating transcriptomics profile with meningioma loca-

tion. Using a systems biology approach, we demonstrate an upregulation of various immune 

processes in skull base meningiomas compared to convexity (hemispheric) meningiomas. We 

further investigated the immune landscape of meningiomas by combining leukocyte cell frac-

tion with cytokine expression profile in a network-based analysis. M1 macrophages, known 

B
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to have anti-tumor activity, were associated with the greatest cytokine connectivity in skull 

base meningiomas. This finding may explain their more benign biology compared to convex-

ity meningiomas. 

 

The more aggressive grade II and grade III meningiomas are less prevalent in the skull base 

compared to convexity7,26. When comparing to meningiomas of the convexity, only immune 

processes showed significant upregulation in meningiomas of the skull base which was main-

tained after correcting for histological grade. This finding parallels the concept that cellular 

environment modulates tumor biology. This process has been well demonstrated in a variety 

of pan-cancer12,27 and central nervous system tumour studies28, and has been suggested in 

meningiomas29–31. Multiparameter flow cytometry studies have demonstrated a heterogenous 

composition of immune cells in meningiomas29,31. More specifically, there was a variable de-

gree of infiltrative macrophages with high phagocytic activity and, to a lesser extent, T-cells, 

Natural Killers, and few B-cells. Analysis of fresh meningioma tissue has demonstrated a 

large fraction of leukocyte infiltration consisting of macrophages with immunosuppressive 

activity30, which are more prevalent in grade II tumors. In our study, M1 macrophages were 

the most active cell fraction based on overall cytokine correlation. This cell fraction is also 

referred to as the “kill-type” macrophages and regarded as an inhibitor of tumor growth in 

multiple tumor types32,33. In convexity meningiomas, on the other hand, we identified acti-

vated mast cells as the most connected fraction. Tumor-associated mast cells may support the 

oncogenic environment by releasing pro-tumorigenic stimulants34 triggering angiogenesis, 

tumor cell proliferation/invasion, formation of lymphatic/blood vessel and facilitate the proc-

ess of extravasation of cytokine-producing cells. Mast cells have been detected in 90% of 

meningioma tissue and has been also found to correlate with peritumoral edema35, a feature 

of aggressive biology in meningiomas.  
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Conventional analysis of transcriptomics data often relies on differential single-gene expres-

sion levels to filter out relevant patterns by comparing the “diseased” and “normal” tissue. 

These techniques may overlook relatively subtle effects across several highly-connected 

genes, which may nevertheless trigger a robust cellular mechanism. Gene expression net-

works are well suited for detecting small, additive biological signals that underlie relevant 

clinical phenotypes. In the first part of our analysis we used this well-established technique14. 

We found that immune processes correlate with location of meningiomas and investigated 

this finding further using an integrated, network-based approach. In this second technique, 

rather than using the conventional approach of considering cell fractions as a reflection of 

immune landscape we included correlations of cytokine expression patterns with cell frac-

tions. We used the sum of cell-cytokine correlations as a measure of immune cell “activity”, 

which is inspired by existing network based approaches25. Although further verification of 

this approach is needed we highlighted distinct cell fractions that have previously been shown 

pro- and antitumor activities and parallel biology of skull base meningiomas versus those of 

the convexity.  

 

Limitations of our study are that it’s based purely on computational data, though it’s never-

theless in alignment with prior knowledge on tumor immunology and the biology of convex-

ity vs skull base meningiomas. Our assessment of cytokine activity is on the transcriptomics 

level as no secretory data was available, yet this approach still provides an indirect assess-

ment of how “active” an immune cell type is in terms of cytokine synthesis. Finally, the pro-

portion of grade II meningiomas is relatively low in our study (5.3%) compared to the preva-

lence in the population (20-30%). To address this, we have corrected for grade when correlat-
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ing module gene expression with location. Importantly, we have been able to identify a ro-

bust, recurrent signal despite considerable data heterogeneity. 

 

Conclusions 

Our study is the first to computationally estimate immune cell fractions in location-specific 

meningioma tissue from bulk transcriptomics. We demonstrate distinct immune compositions 

between hemispheric and skull base meningiomas using a network-based approach that con-

siders cell connectivity with cytokine transcriptomics. Macrophages with cytotoxic activity 

are more dominant in skull base meningiomas, in keeping with a more benign biology. These 

findings give further insight into the immune microenvironment of meningiomas, and have 

implications on future strategies of immune modulation for this challenging disease.  

 

Methods 

Data Preparation 

All data was collected from the Gene Expression Omnibus (GEO), a public repository of 

high-throughput functional genomic data sets36. We used studies containing details on men-

ingioma location (skull base and convexity) and WHO grade with corresponding gene ex-

pression data11,37, providing us with a cumulative sample size of 107 meningiomas (Table 1). 

Summary statistics for each study are presented in Table 1. The average age of our cohort is 

54.6 (missing age values for GSE84263 were imputed for each), and percentage proportion of 

males to females is 22.4% to 77.6%, respectively. 
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GSE # # of patients Lateral Medial Hemisphere WHO Grade 1 WHO Grade 
2 

GSE8872037 12 25.0% 41.7% 33.3% 83.3% 16.7% 

GSE8426311 84 35.7% 36.9% 27.4% 100.0% 0.0% 

GSE77259* 11 18.2% 0.0% 81.8% 63.6% 36.4% 

Total 107 32.7% 33.6% 33.6% 94.4% 5.6% 

 

Table 1. Table summary of study population.*No associated publication 

 

Pre-processing of transcriptomics data 

For each study, the microarray data was backgrounded corrected, quantile normalized, and 

log-2 transformed using the Affy38 and Limma39 R packages for Affymetrix and Illumina plat-

forms, respectively. After removing genes that were not common across these studies we 

were left with 19,011 genes. The 3 studies were merged, scaled to a global mean and standard 

deviation of 0 and 1, respectively40, and batch-corrected using ComBat, a well-established 

empirical Bayes approach41. The resultant data matrix was used during all subsequent analy-

sis. 

 

Co-Expression Network Analysis: 

We performed WGCNA of gene expression data using R (version 3.5.1) to construct a co-

expression network and identify biological modules which map to meningioma location. 

Pairwise gene correlations were soft-thresholded with an exponent of 20 to approximate 

scale-free topology, which was ultimately transformed into a biologically-inspired “Topo-

logical Overlap Matrix” (TOM), which measures pairwise gene similarity in terms of shared 

topology within the full network14. Highly similar genes are then grouped into an adaptive 

hierarchical clustering tree (dendrogram), yielding “modules” with a minimum size of 30 
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genes. The gene expression profile of each module is represented by a meta-gene computed 

as its first principal component, an established method.  

 

Module-Based Qualitative Analysis: 

Genes in each of the identified modules were annotated by the Database for Annotation, 

Visualization and Integrated Discovery (DAVID version 6.8)42.  

 

Deconvolution of tumor bulk expression signal 

We used CIBERSORT, a well-established technique to estimate immune cell fractions from 

our gene expression data. Briefly, the method compares mixed-cell population transcriptom-

ics with an established signature matrix using support vector regression in order to estimate 

the relative prevalence of 22 immune cells. This technique is described in detail in ref 3243.  

 

Network analysis of immune cell fractions and expression of cytokines 

The complex relationships between immune cells and cytokine expression levels were visual-

ized using network analysis, which demonstrates associations that are otherwise difficult to 

appreciate. Such network-based approaches have revolutionized research into phenom-

genotype similarities and elucidated the genetic basis of diseases46,47, predicted pathways of 

disease progression25, and identified novel drug targets44. Nodes represent immune cells 

(CIBERSORT output) and list of 35 known cytokines derived from the literature27,48 (Sup-

plementary data). Edges represent Pearson correlations, wherein a significance cut-off of 

<0.05 and effect size cutoff of >0.6 are used. We define “connectivity” as the biological ac-

tivity of each immune cell (i.e. its overall expression of cytokines), computed as the sum of 

all significant (p<0.05) Pearson correlations between a cell type and the expression levels of 
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35 pre-determined cytokines (Supplementary data). Cell types were ranked based on this met-

ric.  
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