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ABSTRACT 

Fine-mapping of breast cancer GWAS regions has identified 195 high confidence signals containing 

more than 5,000 credible causal variants (CCVs). The CCVs are predominantly noncoding and 

enriched in regulatory elements and thus may confer the risk by altering gene expression in cis. We 

analyzed allelic expression imbalance (AEI) of genes surrounding known breast cancer signals, 

using normal breast and breast tumor transcriptome data and imputed genotypes. Fourteen genes, 

including NTN4, were identified whose expression was associated with CCV genotype. We showed 

that CCVs at this signal were located within an enhancer that physically interacts with the NTN4 

promoter. Furthermore, knockdown of NTN4 in breast cells increased cell proliferation in vitro and 

tumor growth in vivo. Here, we present the most comprehensive AEI analysis of breast cancer CCVs 

resulting in identification of new candidate risk genes. 

 

 

 

INTRODUCTION 

The influence of common genetic variation on gene expression underlies a considerable proportion 

of the heritability associated with complex traits. Several studies indicate that the majority of trait-

associated variants identified by Genome Wide Association Studies (GWAS) act by modulating gene 

expression in cis through altered distal and proximal regulatory elements1. Mapping of expression 

quantitative trait loci (eQTL), where genetic variants are tested for association with gene expression, 

is widely used to identify genes that are regulated by trait-associated variants. Several studies have 

shown that eQTLs are enriched in cell types relevant to the trait of interest2,3. For example, T cell-

specific eQTLs are over-represented for autoimmune risk alleles and monocyte-specific eQTLs for 

Alzheimer's and Parkinson's disease alleles3. These studies highlight the importance of using 

relevant tissue or cell types for functional studies.  

 

An alternative method, allelic expression imbalance (AEI) analyses, can identify associations 

between an imbalance of allelic expression and trait-associated variants. An advantage of AEI 

analyses is that associations between gene expression and genotype can be detected using 
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substantially fewer samples as AEI is measured within individuals, thereby controlling for cellular 

environment and trans-acting genetic factors. A handful of studies have performed AEI analyses to 

identify genes whose expression is associated with nearby GWAS variants. For example, we and 

others have identified associations between AEI and risk variants for breast cancer (ESR1, COX11 

and HELQ)4-6, follicular lymphoma (HLA-DQB1)7 and high-density lipoprotein-cholesterol levels 

(MMAB)8. 

 

GWAS, together with fine-mapping, have identified 196 genetic signals (with conditional p-

values<10-6) associated with breast cancer risk9. However, identifying the credible causal variants 

(CCVs) driving the association and the genes affected by those variants is challenging. A recent 

study by Fachal et al has defined the CCVs as those with p-values within two orders of magnitude 

of the most significant CCV within the signal9. A signal at 17q21.31 containing 2277 CCVs co-

segregates with a previously described large genomic rearrangement10. Following exclusion of the 

17q21.31 signal, Fachal et al identified 5117 CCVs across 195 breast cancer risk signals. The 

majority of the CCVs fall within noncoding sequences and, in particular, they are enriched in genomic 

regions marked for regulatory activity suggesting that many of them may act by modulating gene 

expression in cis. In this study, we performed AEI analyses of genes surrounding the 195 breast 

cancer GWAS signals and identified 14 genes whose AEI was associated with CCVs (q-value<0.01). 

For one gene, NTN4, we provide mechanistic insight into how breast cancer CCVs influence NTN4 

expression, breast cancer cell proliferation and tumor development.  

 

RESULTS 

AEI analyses identified 14 candidate breast cancer risk genes 

To identify new breast cancer risk genes whose expression is associated with breast cancer CCVs 

we used GTEx and TCGA breast samples with available RNA-seq and imputation data, including 81 

GTEx normal, 46 TCGA normal, and 669 TCGA tumor samples. We were able to retrieve imputed 

genotypes for 4441 CCVs spanning over 190 signals. For each individual, from the genes within 

1Mb up- and downstream of the CCVs, we selected those with at least one heterozygote transcribed 

single nucleotide polymorphism (htSNP), including 2195 and 2068 genes in the normal and tumor 
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datasets, respectively. The major transcribed allele fraction (MTAF) representing AEI was then 

computed on each htSNP site and averaged across each gene. On average ~2 htSNPs were 

available to calculate AEI per gene (Supplementary Fig. 1a). 

 

To assess overall AEI distribution, we pooled AEI values from all genes. We observed a clear positive 

skew in normal (2.3) and tumor (1.8) samples, and a bimodal pattern with a main peak at AEI of 0.55 

and a small but distinct peak at AEI of 1, indicating the majority of gene-sample pairs show a limited 

deviation from allelic expression balance while a small proportion represent extreme AEI 

(Supplementary Figs 1b,c). The samples were then clustered into homozygous and heterozygous 

classes for each CCV to test the association between AEIs and CCV genotypes. Using data from 

the normal samples, we were able to test 705 genes for association with CCV genotypes, 

representing 820 testable signal-gene pairs. The minimum p-value from CCVs within each signal 

was used to represent association between that signal and the corresponding gene. In general, we 

observed stronger association between signals and corresponding genes when they were located 

closer in the genome (P=7.7e-03; Supplementary Fig. 1d), consistent with regulatory variants more 

commonly acting in cis. Overall, in the normal breast samples, 133 genes showed evidence of AEI 

in heterozygous individuals (P<0.05; Supplementary Table 1), of which 14 genes passed multiple 

testing correction (q-value<0.01; Fig. 1 and Table 1). Conversely, analysis of the breast tumor 

samples resulted in 753 testable signal-gene pairs (651 genes) including 84 genes with evidence of 

AEI in heterozygotes (P<0.05; Supplementary Table 2), of which two genes passed multiple testing 

correction (q-value<0.01; Fig. 1 and Table 1).  

 

Each of the 16 genes identified by the AEI analyses had multiple tested htSNPs. Therefore, we 

assessed whether their AEI measurements were consistent across intra-htSNPs. Fourteen genes 

(BARX2, CASP8, CRLF3, GATAD2A, HSPA4, KLHDC7A, LGR6, NTN4, PPFIA1, RAD23B, STK38L, 

TMEM80, ZC3H11A and ZNF500) showed consistent AEI across individual htSNPs 

(Supplementary Fig. 2a,b, Supplementary Table 3). For each gene, only a small number of 

samples (<10%) had heterogeneous AEIs across individual htSNPs (Pheterogeneity<0.05). However, for  
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Figure 1. AEI by genotypic status at breast cancer CCVs. For each gene, samples are classified 
according to the genotypes at the corresponding CCV; heterozygous (AB) versus homozygous 
(AA+BB). Blue dots indicate the average major transcribed allele fraction of htSNPs across each 
gene representing AEI for that gene in normal breast samples from TCGA or GTEx breast datasets. 
Red dots indicate corresponding measurements from TCGA breast tumor datasets. Black dots and 
whiskers represent means ± 1 SD. P-values were calculated by comparing AEIs between 
heterozygous and homozygous groups using a two-tailed t-test adjusted for variance. 
 
 
 
 
HLA-A and RPS23, the majority of samples showed heterogeneous AEIs (92% and 71%, 

respectively) and were therefore excluded from further analysis. It is possible that isoform-specific 

AEI may have contributed to the heterogeneity of AEI measurements across these two genes.   
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Breast cancer CCVs distally regulate the AEI gene, NTN4  

At six AEI-identified genes (CASP8, GATAD2A, HSPA4, KLHDC7A, LGR6 and ZC3H11A), breast 

cancer CCVs are located in the promoter regions, suggesting the CCVs may confer allelic imbalance 

through altered promoter activity. Moreover, for six genes (BARX2, GATAD2A, HSPA4, LGR6, 

NTN4 and ZC3H11A), our recent capture Hi-C data has indicated that chromatin looping occurs 

between a region containing the breast cancer CCVs and the promoter of the corresponding gene11. 

Notably, for GATAD2A, HSPA4 and ZC3H11A, there are CCVs in the promoter and in distal 

interacting regions, and therefore it would be difficult to determine the CCVs responsible for the 

observed AEI. One example of a distal CCV associated with AEI is at chromosome 12q22, where 

genetic fine-mapping identified one risk signal that contains two CCVs (rs61938093 and 

rs17356097). Both CCVs fall within a putative regulatory element (PRE), marked by open chromatin, 

which frequently participates in long-range chromatin interactions with the NTN4 promoter region in 

B80T5 and MCF10A nontumorigenic breast cell lines (Fig. 2a). Silencing of the PRE by targeting a 

nuclease-defective dCas9 fused to the Kruppel-associated box (dCas9-KRAB) reduced NTN4 

expression in B80hTERT1 cells, suggesting that the PRE acts as an enhancer (Fig. 2b). Luciferase 

reporter assays further confirmed strong enhancer activity of the PRE on the NTN4 promoter. 

However, inclusion of the risk-associated CCV alleles did not alter enhancer activity (Fig. 2c). 

Notably, in T47D, a breast cancer cell line heterozygous for the CCVs, allele-specific 3C showed a 

preference for the protective allele (Figs 2d,e, Supplementary Fig. 3a,b), suggesting that risk 

alleles may abrogate looping between the enhancer and NTN4 which in turn may reduce NTN4 

expression. Using electromobility shift assays (EMSAs) we showed that rs61938093 altered protein 

binding in vitro, suggesting this is the likely functional variant at the signal (Fig. 2f). However, we 

were unable to identify the specific protein that binds the risk allele. 

 

NTN4 knockdown increases cell proliferation in vitro and tumor growth in mice 

We examined expression of NTN4 in normal and cancerous breast tissues using TCGA RNA-seq 

data. NTN4 was more highly expressed in normal tissue compared to adjacent tumor samples (Fig. 

3a) and expressed across the histological subtypes, albeit with lower expression in the basal subtype  
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Figure 2. Breast cancer CCVs distally regulate NTN4. (a) WashU genome browser showing 
topologically associating domains (TADs) as horizontal gray bars above GENCODE annotated 
coding genes (blue). The PCHi-C baits are depicted as a black boxes. The putative regulatory 
element (PRE) containing the CCVs is shown as red colored vertical lines. The ATAC-seq tracks for 
B80T5 and MCF10A breast cells are shown as blue histograms. Capture Hi-C (CHi-C) chromatin 
interactions are shown as. Red arcs depict chromatin looping between CCVs and the NTN4 promoter 
region. (b) dCAS9-KRAB was targeted to the PRE using two different sgRNAs (sgPRE1 and 
sgPRE2) in B80hTERT1 breast cells. SgCON contains a non-targeting control guide RNA. Gene 
expression was measured by qPCR and normalized to beta-glucuronidase (GUSB) expression. 
Error bars, SEM (n=3). P-values were determined by two-way ANOVA followed by Dunnett’s multiple 
comparisons test (**p<0.01). (c) Luciferase reporter assays following transient transfection of 
B80hTERT1 breast cells. The PRE containing either the protective (Prot.) or risk alleles of 
rs61938093 and rs1735097 was cloned into NTN4-promoter driven luciferase constructs. Error bars, 
SEM (n=3). P-values were determined by two-way ANOVA followed by Dunnett’s multiple 
comparisons test (****p<0.0001). (d) 3C interaction profiles between the NTN4 promoter and the 
genomic region containing the PRE in T47D 3C libraries generated with HindIII. A physical map of 
the region interrogated by 3C is shown (top panel), with the blue shading representing the position 
of the PRE and the anchor point set at the NTN4 promoter. Representative 3C profile is shown 
(bottom panel). Error bars, SD (n=3). (e) Sequencing chromatogram of T47D input versus the 3C 
PCR product that showed allele specific looping at rs61938093. One of three independent 3C 
libraries is shown. (f) EMSA for oligonucleotide duplexes containing SNPs rs61938093 or rs1735097 
with either the risk allele (R) or protective allele (P) as indicated, assayed using B80hTERT1 nuclear 
extracts. Arrowhead indicates band mobility differences between alleles. 
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(Fig. 3b). To assess the effect of reduced NTN4 on cell proliferation, we knocked down NTN4 using 

siRNA and showed that reduced NTN4 significantly increased cell proliferation (Fig. 3c, 

Supplementary Fig. 3c). To assess the effect of reduced NTN4 on tumor growth, we stably depleted 

NTN4 in MCF7 cells by targeting dCAS9-KRAB to the promoter of NTN4, and injected the cells in 

the mammary fat pad of nude mice. Compared to control MCF7 cells containing non-targeting 

sgRNA, NTN4 depletion led to a marked increase in tumor growth (Figs 3d,e, Supplementary Fig. 

3d), which was reflected in increased tumor weight (Fig. 3f).  

 

DISCUSSION 

Identifying the target genes of GWAS variants is challenging and requires multiple bioinformatic and 

functional approaches. In this study, we used AEI analyses to link breast cancer CCVs to their likely 

target genes. Using RNA-seq data and imputed genotypes from two breast datasets (TCGA and 

GTEx), we identified 14 genes in which AEI was associated with breast cancer CCVs at a strict 

multiple testing threshold. Thirteen genes were identified from 127 normal breast samples and one 

gene from 669 breast tumor samples. The low number of genes identified from the tumor dataset 

likely reflects the heterogeneous nature of tumor samples and/or high levels of AEI caused by cancer 

related mechanisms such as copy number variation, aberrant DNA methylation or acquired 

regulatory mutations12. 

 

We used MTAF as a measure of AEI for each htSNP. This allowed us to average AEIs over multi-

htSNP genes (more than 50% of the tested genes) and reduced the influence of sequencing errors 

at individual htSNPs. Furthermore, we could pool two classes of homozygous genotypes, providing 

greater statistical power when comparing to heterozygotes. We also retrieved SNP genotypes from 

high-confidence SNP array calls imputed to the 1000 Genome reference panel and therefore did not 

rely on setting a minimum cut-off for MTAF when deriving genotypes from RNA-seq data. However, 

while powerful, we acknowledge this AEI-based approach has some limitations. The multi-level 

criteria we applied including the minimum expression level or stringent significance threshold may 

have compromised sensitivity when genes are lowly expressed or only weakly regulated by CCVs.  
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Figure 3. NTN4 depletion promotes cell proliferation and tumor formation. (a) NTN4 expression 
in normal breast and paired tumor tissue samples from TCGA. P-values were determined using a 
two-tailed t-test. (b) NTN4 expression in breast tumors stratified by PAM50 molecular subtypes 
(n=841). (c) Proliferation of MCF7 breast tumor cells transfected with a control (siCON) or NTN4 
(siNTN4) Smartpool siRNA. Cells were grown in 24-well plates and confluency of the wells was 
measured by the IncuCyte live-cell imaging system. Results represent relative cell growth rates. 
Error bars, SEM (n=4). (d) MCF7-control (SgCON) or MCF7-dCas9-KRAB NTN4 repressed cells 
(SgNTN4-P1/P2) were orthotopically injected into the mammary fat pads of nude mice. Tumor 
growth curves for each group are shown. Values are shown as average tumor volumes at each time 
point. Error bars, SEM (n=6-7 mice per group). (e) Tumors of individual mice were dissected at day 
38 post-injection. The scale bar represents 1 cm. (f) Plot of the individual weights of tumors with 
mean and SEM shown by cross-bar and error bars. (d, f) Mann-Whitney U test was used to compare 
differences between groups (*p<0.05, **p<0.01, ***p<0.001).  
 

 

False positives may also arise from htSNP-related mapping biases, caused by repeat sequences or 

low-complexity regions. In addition, sequencing reads containing the reference allele at a htSNP site 

are more likely to be mapped, which would result in a false AEI13,14.  

 

Five of the genes we identified have previously been identified through eQTL studies using either 

breast tumor or normal breast tissue, namely GATAD2A, CASP8, NTN4, HSPA4 and RPS2315, while 

KLHDC7A was previously identified through a transcription wide association study using expression 
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data from breast tissue16. In addition, several AEI-identified genes have previously been implicated 

in cancer biology. CASP8 encodes an apoptotic enzyme that functions as an initiator caspase in the 

extrinsic apoptotic signalling pathway17. CASP8 deficiency can contribute to cancer development 

through multiple processes, including effects on cellular transformation, adhesion and migration18,19. 

BARX2 encodes a homeobox transcription factor that can function as a tumor suppressor and its 

down regulation is a predictor of poor prognosis in different cancer types20-22. BARX2 can bind the 

estrogen receptor (the target of tamoxifen) and influence estrogen-dependent growth and cellular 

invasion23. Overexpression of PPFIA1 has also been reported as a potential predictor of metastatic 

relapse and poor prognosis in estrogen receptor positive/nodal negative breast tumors24. LGR6 is 

reported to promote cancer development and, when suppressed, induces apoptosis25. Moreover, 

the protein encoded by LGR6 has been specifically detected on the surface of progenitor cells that 

likely give rise to luminal-type mammary tumors26.  

 

Of particular interest was NTN4, which encodes the Netrin-4 secreted protein, implicated in various 

developmental processes including axon guidance, angiogenesis, and mammary and lung 

morphogenesis27. Several studies have implicated NTN4 in breast cancer progression. For example, 

reduced NTN4 is reported to promote proliferation, migration and invasion of breast cancer cells by 

promoting epithelial to mesenchymal transition28. In addition, NTN4 has been shown to be an 

independent biomarker for prognosis of survival in breast cancer 29,30. We and others have 

demonstrated that SNPs can alter chromatin loop formation between promoters and enhancers31,32. 

Here, we provide evidence that the same mechanism may explain how breast cancer CCVs alter 

NTN4 expression and that suppressed NTN4 increases cancer-related processes including cell 

proliferation and tumor growth. 

 

In summary, we present the most comprehensive AEI analysis linking breast cancer CCVs to their 

target genes. Fourteen genes were identified, including some potential cancer driver genes, but 

many with no reported role in breast cancer biology. Future work will be required to confirm the role 

of these genes in breast cancer development, which could ultimately lead to new avenues for breast 

cancer prevention or therapy. 
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METHODS 

Allelic expression imbalance (AEI) analyses 

CCVs associated with breast cancer risk were tested for association with AEI of genes within 1Mb 

up- and downstream using RNA-seq data and imputed genotypes from The Cancer Genome Atlas 

(TCGA; https://portal.gdc.cancer.gov/) and The Genotype-Tissue Expression (GTEx; 

https://dbgap.ncbi.nlm.nih.gov/) breast datasets. TCGA imputation was performed for individuals 

with European ancestry (N=701) using 1000 Genomes version 5 reference panel and without pre-

phasing. From dbSNP human Build 146 we extracted SNPs located within exonic regions of the 

target genes and computed RNA-seq read counts on SNP sites for reference and alternative alleles 

using bam-readcount (https://github.com/genome/bam-readcount). Sequencing reads with base 

quality < 15 at a position were not considered for allele counting. For each individual and each gene, 

heterozygote transcribed SNPs (htSNPs) were identified using imputed genotypes and RNA-seq 

read counts (>15x RNA-seq read depth). For each gene, AEI of the htSNPs were computed and 

averaged to represent AEI for that gene (ranging from 0.5 to 1). Homogeneity of AEI across individual 

htSNPs within a gene was assessed using the MBASED R package. For the analysis of tumor 

samples, those with copy number alteration for a given gene were excluded. For each CCV, samples 

were classified into homozygous and heterozygous groups. CCV-gene pairs with less than five 

samples in either the homozygous or heterozygous group as well as those with a higher AEI mean 

in the homozygous group were excluded. AEI was compared between heterozygous (AB) and 

homozygous (AA+BB) samples using a two-sided t-test adjusted for variance. P significance level 

was adjusted for multiple testing using the q-value method. 

 

Cell lines 

Breast cancer cell lines T47D and MCF7 were maintained in RPMI 1640 medium supplemented with 

10% (v/v) fetal bovine serum, 10 µg/ml insulin and 1% (v/v) antibiotic-antimycotic (Life 

Technologies). B80hTERT1 normal breast epithelial cells (Roger Reddel, Children’s Medical 

Research Institute, Sydney, Australia) were maintained in 1:1 MCDB 170 and RPMI 1640 media 

supplemented with 10% (v/v) fetal bovine serum and 1% (v/v) antibiotic-antimycotic. Cells were 
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cultured in a humidified 5% CO2 atmosphere at 37°C. Cell-line quality control included short tandem 

repeat profiling and Mycoplasma contamination screening. 

 

Chromosome conformation capture (3C)  

3C libraries were generated using HindIII from T47D cells as previously described33. 3C interactions 

were quantified by qPCR using the Rotor-Gene 6000 platform, annealing at 66°C for 30 secs in the 

presence of 25 µM Syto9 fluorescent dye (Life Technologies). BAC clones were used to create 

artificial libraries of ligation products to normalize for PCR efficiency. Data were normalized to the 

signal from the BAC clone library and between replicates by reference to a region within GAPDH. 

3C primers are listed in Supplementary Table 4. 

 

Allele specific 3C 

T47D 3C libraries or T47D genomic DNA were amplified with allele specific PCR primers 

(Supplementary Table 4). PCR products were electrophoresed through 2% (w/v) agarose and 

bands excised for DNA extraction (QIAGEN). Purified amplicons were Sanger sequenced by the 

Australian Genome Research Facility (AGRF). 

 

Luciferase reporter assays 

The NTN4 promoter-driven luciferase reporter construct was generated by inserting a PCR amplified 

genomic fragment into the KpnI/HindIII sites of the pGL3-basic vector (Promega). A 1999bp fragment 

containing the PRE, with either the risk or protective alleles, were synthesized as gBlocks (Integrated 

DNA Technologies) and then cloned into the BamHI/SalI sites of the NTN4-promoter construct 

(genomic coordinates and primers are listed in Supplementary Table 4). B80hTERT1 cells were 

transfected with the reporter constructs and a control pRL-TK Renilla plasmid using Lipofectamine 

3000 (Life Technologies). Luciferase activity was measured 24 h post-transfection using the Dual-

Glo Luciferase System (Promega). To correct for any differences in transfection efficiency, Firefly 

luciferase activity was normalized to Renilla luciferase and the results expressed relative to the 

NTN4-promoter construct, which had a defined activity of 1. P-values were determined by two-way 

ANOVA followed by Dunnett’s multiple comparisons test. 
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Electromobility shift assays 

Nuclear lysates from B80hTERT1 cells were prepared using the NE-PER nuclear and cytoplasmic 

protein extraction kit (Thermo Fisher). Biotinylated oligonucleotides representing either the risk or 

protective allele were synthesized (Integrated DNA Technologies; Supplementary Table 4) and 

annealed to form double-stranded duplexes. Nuclear lysates (5 µg) and duplexes (10 fmol) were 

combined in binding reactions containing 10% (v/v) glycerol, 1 mM DTT, 0.5 µg poly(dI:dC) (Sigma-

Aldrich), protease inhibitors (Roche), and 20 mM HEPES (pH 7.4) at 25°C for 15 min. Reactions 

were resolved by electrophoresis in 10% (w/v) Tris-borate-EDTA polyacrylamide (Lonza) and 

transferred to positively-charged nylon membranes by semi-dry transfer (Bio-Rad). Membranes were 

assayed for gel shift complexes using the LightShift Chemiluminescent EMSA kit (Thermo Fisher) 

and visualized with the XX6 gel documentation system (Syngene).  

 

CRISPR interference (CRISPRi) 

CRISPRi was performed with the lentiviral vector pHR-SFFV-dCas9-BFP-KRAB (dCas9-KRAB; a 

gift from Stanley Qi & Jonathan Weissman, Addgene plasmid #46911). Single-guide RNAs 

(sgRNAs) targeting the NTN4 promoter or PRE were designed (Supplementary Table 4) and 

synthesized (Integrated DNA Technologies) for cloning into the lentiviral vector pgRNA-humanized 

(a gift from Stanley Qi, Addgene plasmid #44248). Lentiviral particles were produced from HEK293 

cells transfected with accessory plasmids pCMV-dR8.91 and pCMV-VSV-G (gifts from David 

Harrich, QIMR Berghofer), along with either dCas9-KRAB or a pgRNA construct, using 

Lipofectamine 2000 (Life Technologies). Supernatants from dCas9-KRAB and pgRNA cultures were 

mixed and transduced into MCF7 or B80hTERT1 target cells. Transductants expressing both dCas9-

KRAB (co-expressing blue fluorescent protein) and pgRNA (co-expressing mCherry) were enriched 

by FACS on the Aria IIIu platform (Becton-Dickinson). Knockdown of NTN4 expression was 

confirmed by TaqMan qPCR gene expression assays (Life Technologies). 

 

RNA interference (RNAi) 

MCF7 cells were transfected with either ON-TARGETplus negative control or NTN4 siRNA 

Smartpools (Dharmacon; Supplementary Table 4) using RNAiMAX transfection reagent (Life 
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Technologies) at a concentration of 5 pmol per 106 cells. Knockdown of NTN4 was confirmed by 

TaqMan qPCR gene expression assay 72 h post-transfection. 

 

Cell proliferation assay 

The IncuCyte live cell imaging platform (Essen Bioscience) was used to measure cell proliferation 

by time course. Treated cells were plated at low confluency and imaged at 10× magnification every 

3 h over 7 d. The rate of change of cell confluency was determined using ZOOM 2016A (Essen 

Bioscience) and Prism (GraphPad) software and compared to control treated cells. 

 

Mouse xenografts 

Female BALB/c-Foxn1nu/Arc mice were subcutaneously implanted with 17β-estradiol (720 µg, 90 d 

release; Innovative Research of America) at 8 weeks. MCF7 control-CRISPRi or NTN4-CRISPRi 

cells were orthotopically injected into mammary fatpads 3 days later at 107 cells per mouse, 6-7 mice 

per cell line. Tumor volumes were measured every 2 days until experimental end, at which point 

mice were euthanized and their tumors excised and weighed. All animal procedures were conducted 

in accordance with Australian National Health and Medical Research regulations on the use and 

care of experimental animals, and approved by the QIMR Berghofer Medical Research Institute 

Animal Ethics Committee (P1499). 
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Table 1. Candidate breast cancer risk genes identified by AEI analyses. 

Dataset Gene name CCV rsID No. heterozygotes 
(AEI mean) 

No. homozygotes 
(AEI mean) p-value q-value 

normal LGR6 rs4245706 41 (0.64) 34 (0.57) 1.65E-06 7.06E-05 
normal ZC3H11A rs11240552 51 (0.58) 37 (0.54) 4.52E-06 1.40E-04 
normal BARX2 rs12787230 25 (0.62) 28 (0.57) 4.28E-05 9.03E-04 
normal GATAD2A rs8101499 61 (0.58) 11 (0.54) 1.11E-04 1.47E-03 
normal CASP8 rs3769821 53 (0.62) 44 (0.58) 4.27E-04 3.53E-03 
normal PPFIA1 rs78540526 5 (0.64) 63 (0.57) 6.84E-04 5.08E-03 
normal CRLF3 rs6505216 10 (0.66) 16 (0.6) 7.79E-04 5.08E-03 
normal NTN4 rs17356907 32 (0.59) 60 (0.55) 1.17E-03 7.28E-03 
normal HSPA4 rs61246276 17 (0.59) 9 (0.53) 1.37E-03 8.06E-03 
normal ZNF500 rs576214 30 (0.63) 38 (0.59) 1.84E-03 9.27E-03 
normal TMEM80 rs7942159 35 (0.67) 15 (0.58) 1.87E-03 9.27E-03 
normal RAD23B rs60037937 15 (0.57) 22 (0.52) 2.01E-03 9.30E-03 
normal STK38L rs61920241 20 (0.6) 39 (0.55) 2.03E-03 9.30E-03 
tumor KLHDC7A rs3007733 85 (0.84) 55 (0.72) 8.00E-06 8.77E-04 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 16, 2019. ; https://doi.org/10.1101/521013doi: bioRxiv preprint 

https://doi.org/10.1101/521013
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

 
 

 

 

  

Supplementary Figure 1. Quality control of the data used for allelic expression imbalance (AEI) analyses. 
(a) Violin plots showing overall distribution of heterozygote transcribed single nucleotide polymorphism (htSNP) 
counts per gene in normal breast or breast tumor samples. (b, c) Overall distribution of AEI measurements from 
genes with at least one htSNP within normal breast or breast tumor samples. (d) P-values representing the 
probability of association between each CCV and a nearby gene were sorted and the top and bottom quartiles 
compared for CCV-gene genomic distances using a two-tailed t-test. 
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Supplementary Figure 2. AEI consistency across htSNPs. (a) Each circle represents a normal breast (blue) 
or breast tumor (red) sample with at least two htSNPs for a corresponding gene. The y-axis shows Pheterogeneity 
(minus log-transformed) representing AEI variability across individual htSNPs. The black dashed horizontal line 
indicates level of statistical significance at P < 0.05. Samples above this line have a heterogeneous AEI across 
htSNPs for the corresponding gene. (b) AEI across individual NTN4 htSNPs. Each circle represents the major 
transcribed allele fraction for the corresponding htSNP in samples either heterozygous (black) or homozygous 
(red) for the CCV.
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Supplementary Figure 3. Additional in vitro data for NTN4. (a) Replicate 3C interaction profiles between the 
NTN4 promoter and the genomic region containing the PRE in T47D cells. 3C libraries were generated with 
HindIII, with the anchor point set at the NTN4 promoter. A physical map of the region interrogated by 3C is shown 
above, the blue shading represents the position of the PRE. Error bars, SD (n=3). (b) Replicate sequencing 
chromatograms of T47D input vs 3C PCR product showing allele specific looping at rs61938093. (c) NTN4 
depletion after transient transfection of a control (siCON) or NTN4 (siNTN4) siRNA smartpool. NTN4 mRNA 
levels were measured by qPCR and normalized to beta-glucuronidase (GUSB). Error bars, SEM (n=3). P-values 
were determined with a two-tailed t-test (***p<0.001). (d) NTN4 depletion in MCF7-control (PgCON) or 
MCF7-dCas9-KRAB NTN4 repressed cells (SgNTN4-P1/P2).  NTN4 mRNA expression was measured by qPCR 
and normalized to GUSB. Error bars, SEM (n=3). P-values were determined by two-way ANOVA followed by 
Dunnetts multiple comparisons test (**p<0.01). 
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