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ABSTRACT 
 

Notwithstanding important advances in the context of single-variant pathogenicity identification, novel 

breakthroughs in discerning the origins of many rare diseases require methods able to identify more 

complex genetic models. We present here the Variant Combinations Pathogenicity Predictor (VarCoPP), a 

machine-learning approach that identifies pathogenic variant combinations in gene pairs (bi-locus variant 

combinations). We show that the results produced by this method are highly accurate and precise, an 

efficacy that is endorsed when validating the method on recently published independent disease-causing 

data. Confidence labels of 95% and 99% are identified, representing the probability of a bi-locus 

combination being a true pathogenic result, providing geneticists with rational markers to evaluate the most 

relevant pathogenic combinations and limit the search space and time. Finally, VarCoPP has been 

designed to act as an interpretable method that can provide explanations on why a bi-locus combination is 

predicted as pathogenic and which biological information is important for that prediction. This work provides 

an important new step towards the genetic understanding of rare diseases, paving the way to new clinical 

knowledge and improved patient care. 
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INTRODUCTION 

Advances in high throughput-sequencing technologies and the application of massive parallel 

sequencing have revolutionized the field of human genetics, providing a huge amount of information on 

human genetic variation(1–5). Interpreting this variation has provided important insights into the genetic 

architecture of many rare diseases, notably those inherited in a mendelian pattern(6–8), and has opened 

the path to promising preventive, diagnostic and therapeutic strategies(9). The amount of genetic data 

available also allowed for the development of successful predictive tools integrating genetic, molecular, 

evolutionary and/or structural information(10–13). Such tools are routinely applied in clinics to identify 

pathogenic variants potentially associated with a specific disease phenotype. Notwithstanding these 

advancements, the analysis of a growing number of rare human disorders has highlighted the difficulties in 

establishing a genotype-phenotype relationship due to non-mendelian patterns of inheritance, incomplete 

penetrance, phenotypic variability or locus heterogeneity(14–18). The classic concept of one gene leading 

to a particular phenotype appears to be an oversimplification, since to better explain the situation of an 

affected individual one often needs to consider more complex genetic models where mutations in multiple 

genes cause or modulate the development of one or several simultaneous disease phenotypes(15, 19–21). 

Although the terms “locus” and “gene” can refer to different types of genetic elements, in this paper they 

are used interchangeably. 

Oligogenic or multi-locus genetic patterns have already been discovered for diseases initially considered 

to be monogenic, for instance phenylketonuria(22) or hereditary non-syndromic deafness(23). These types 

of diseases may have a central primary causative gene and a network of modifier genes like in Hirschsprung 

disease(24) and cystic fibrosis(25), or present a spectrum of genetic models from monogenic to polygenic, 

as in the case of neurodevelopmental disorders(26, 27). Gene-disease network analysis studies further 

support the notion that a disease phenotype is hardly the result of a mutation in one gene alone, showing 

that the vast majority of mendelian diseases are actually modulated by multiple genes that are usually 

involved in similar pathways or cellular and biological processes (28, 29). Along with the cases where a 

phenotype or syndromic phenotypes can be modulated by several genes, a multi-locus genetic pattern can 

also be observed in an affected individual where disease-causing monogenic mutations in different genes 

segregate independently, leading to multiple independent molecular clinical diagnoses (21, 30–33). These 

multiple diagnoses cases can affect different tissues (distinct), but others can share phenotypes 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2019. ; https://doi.org/10.1101/520353doi: bioRxiv preprint 

https://doi.org/10.1101/520353
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

(overlapping), indicating a possible relationship between the involved multi-locus variations at the protein 

or cellular level. It is evident that in order for the clinical predictive tools to remain valuable for diagnostic 

purposes, they need an update towards these more elaborate biological and inheritance scenarios. For 

instance, such tools will need to consider that the nature or frequency of variants observed in oligogenic 

diseases will be different from those observed in monogenic ones (20, 34). The current work makes this 

leap, introducing and validating a novel computational approach that predicts the pathogenicity of variant 

combinations as opposed to single variants, and this within the context of gene pairs.   

This leap is made possible by the steady increase in literature reports on disease-causing variant 

combinations in gene pairs (bi-locus variant combinations) in the last decades, which have been grouped 

and made publicly available via the online resource DIDA, the Digenic Diseases Database(35). This novel 

resource collects, organizes and annotates cases where a bi-locus genetic model helped to explain a 

patient’s phenotypic variability and reduced penetrance, including for example the well-known cases of 

Bardet-Biedl syndrome (BBS)(36, 37) and retinitis pigmentosa(38). The first version of the database (which 

will be referred henceforth as DIDAv1) contains 213 manually curated bi-locus variant combinations 

obtained from independent scientific papers, involving 136 different genes and leading to 44 diseases. 

These variant combinations can be divided into three different classes of bi-locus diseases (Fig. 1): the first 

class, referred to as “true digenic class”, requires the presence of variants in two independent genes to 

trigger the disease, with carriers of the variants found in one gene being unaffected. The second class 

covers mendelizing variants with modifiers, which is referred to as the “composite class”. In this scenario, 

the individual carrying the mendelizing variant can present symptoms of the disease, with the extra variant 

at the second gene modifying the severity of the symptoms or the age of onset. DIDAv1 also contained few 

cases of a third class, which is referred to as the “dual molecular diagnoses” class. These cases consist of 

the independent segregation of disease-causing mendelizing variants in two different genes leading to two 

independent clinical diagnoses. Given their limited number in DIDAv1, they were also grouped into the 

composite class. An initial study on DIDAv1 revealed that biological features defined at the variant, gene 

and combination-level are sufficient to differentiate composite from true bi-locus variant combinations, 

providing novel insights into the properties of disease-causing variant combinations(39).  

Based on the presence of this fully annotated bi-locus disease data in DIDAv1 and the variety of cases 

it covers, one can hypothesize that the transition from single to variant combination pathogenicity predictors 

is now possible, starting from variant combinations within gene pairs (which we will refer to in this paper as 

bi-locus variant combinations). Such a predictor should exclude the non-relevant variant combinations (true 

negatives, TN), which will be abundantly present in a patient’s exome, and accurately identify the scarce 

disease-causing ones (true positives, TP). To meet this challenge, we developed VarCoPP (Variant 

Combination Pathogenicity Predictor), the first pathogenicity predictor for combinations of variants in gene 

pairs, which is able to accurately identify disease-causing variant combinations using variant, gene and 

gene pair information. The accuracy and sensitivity of the predictor is also validated on an independent 

data set consisting of new bi-locus diseases data from novel publications that appeared after the 
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construction of DIDAv1. Moreover, by visualizing how each feature guides the pathogenicity prediction, 

VarCoPP provides an explanation on why a given bi-locus variant combination is classified as disease 

causing or not. To further support clinical geneticists in their analysis, statistical scores for each prediction, 

as well as 95%- and 99%-confidence labels for each evaluated combination, are provided. These labels 

capture the most relevant variant combinations that should be further analyzed clinically and are potential 

candidates of relevant information for patient counselling. VarCoPP is available online at: 

http://varcopp.ibsquare.be/. 

RESULTS 

  
Curation of the 1KGP data reveals the presence of known disease-causing bi-locus variant 
combinations 
  

In total, 46% of the individuals in the 1000 Genomes Project (1KGP) carry at least one variant found in 

DIDAv1 (Fig. 2). The majority of the overlapping variants (86%) are involved in disease-causing variant 

combinations belonging to the true digenic class, thus explaining their monogenic presence in a control 

population. Nevertheless, more than 10% of overlapping variants are involved, in DIDAv1, in bi-locus 

combinations with a composite effect. Most of the variants found in 1KGP (69%) are located in the 

secondary (modifier) gene of the pair, possibly explaining why the control individuals carrying them could 

be asymptomatic. However, the rest of the overlapping variants are located in the primary (mendelizing) 

gene and some of them have been shown to cause disease symptoms in individuals in a dominant 

monogenic fashion, like the variants c.511C>T and c.637G>A in the WNT10A gene which are involved in 

tooth agenesis(40), the variant c.670G>A in the PDX1 gene involved in the development of maturity-onset 

diabetes of the young 4 (MODY 4)(41, 42), and the c.313G>A variant in the SLC7A9 gene involved in non-

type I cystinuria(43, 44). It should be noted that MODY could be overlooked as the c.670G>A variant can 

present incomplete penetrance(41) - also suggested by its frequency in the ExAC database (0.002113) - 

while incomplete penetrance is also well-known for non-type I cystinuria. Tooth agenesis could also be 

easily clinically overlooked. 

Intriguingly, we discovered 7 disease-causing bi-locus combinations present in DIDAv1, leading to either 

MODY(42), Kallman syndrome(45) or familial hemophagocytic lymphohistiocytosis(46) in 14 individuals of 

the 1KGP (Fig. 2 and SI Appendix, Table S1). These combinations were not supported by functional 

evidence in the original studies and had not been compared with a large control cohort to further statistically 

ensure their relevance. However, some of the involved pairs were supported by familial evidence in their 

original papers (see SI Appendix, Text S1 for detailed information). From a clinical point of view, the 

individuals could also be un-diagnosed: a mild Kallman Syndrome could be easily clinically overlooked and, 

as stated beforehand, the c.670G>A variant for MODY can present incomplete penetrance. Furthermore, 

the bi-locus combinations could be incompletely penetrant. To ensure that the data used for the construction 
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of VarCoPP does not contain contradicting instances, we removed from our analysis these 14 individuals 

from the 1KGP neutral set, as well as the 7 incriminated bi-locus combinations from DIDAv1 as a precaution. 

 

VarCoPP identifies accurately pathogenic variant combinations  
 

Using bi-locus variant combinations randomly selected from individuals of the 1KGP(5) as the neutral 

set and the bi-locus variant combinations from DIDAv1(35) as the disease causing set, we successfully 

trained a variant combination pathogenicity predictor (VarCoPP) (see Fig. 3 for a summary of the 

procedure). We limited the search space to 1KGP variants with up to 3% minor allele frequency (MAF) to 

match the frequency range observed in DIDAv1, located in or close to exons. Each gene and variant in the 

combination were ordered in the same way for both data sets, a process necessary for reliability (see Fig. 

3A and Materials and Methods). We then annotated our data with information at the variant, gene and gene-

pair level, leading to 21 molecular and bioinformatics characteristics (computationally called “features”) per 

bi-locus combination (see Fig. 3B and SI Appendix, Table S2 and S3). This annotated information is then 

used as input by the predictor to identify the class label of the tested bi-locus combination, i.e. pathogenic 

or neutral. 

Without going into the technical details (see Materials and Methods), it is important to mention that 

VarCoPP is an ensemble predictor(47), meaning that it is composed of a large number  - 500 - of individual 

predictors that each try to solve the same task. The individual decisions of the predictors are combined via 

a majority vote to define the final class: if 50% or more of the predictors agree that a bi-locus combination 

is disease-causing, then the “pathogenic” class label will be assigned to that combination (Fig. 3C). Our 

results show that VarCoPP performs very well, achieving a True Positive (TP) rate of 0.88 and False 

Positive (FP) rate of 0.11 (SI Appendix, Fig. S1), meaning that 88% of the disease-causing combinations 

of DIDAv1 are correctly identified with 11% wrongful assignments of the disease-causing label in non-

relevant combinations. The Matthews Correlation Coefficient (MCC), a more robust measure for the 

predictive quality of binary classifications that takes into account the correlation between observed and 

predicted results, achieves 74% confirming that the method is highly accurate (SI Appendix, Table S4). It 

is important to also note that these results were obtained using a stratified form of cross-validation on the 

training data (see Fig. 3C, Materials and Methods), meaning that considerable efforts were made to avoid 

bias and overfitting in the construction and evaluation of the predictor. 

For each variant combination given as input, VarCoPP generates a final majority class label 

(“pathogenic” or “neutral”) and two prediction scores: a classification score (CS), i.e. the median probability 

of the variant combination being pathogenic among all pathogenic probabilities provided by each individual 

predictor of the ensemble, as well as a support score (SS), i.e. the percentage of individual predictors in 

the ensemble agreeing about the pathogenic label (see Fig. 3C and Materials and Methods for a detailed 

explanation of those scores). The higher the CS and SS, the more confident the predictor is about the 

classification of a bi-locus combination as pathogenic. To better split the neutral and disease-causing 
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combinations, the CS threshold for pathogenic combinations was optimized to 0.489 (see Materials and 

Methods). Consequently, as the predictor is based on a majority vote, a bi-locus variant combination is 

predicted to be pathogenic when it has SS>50 and CS>0.489 (Fig. 4A). If we plot the predictions of the bi-

locus combinations of DIDAv1 based on these two evaluation scores (CS on the x-axis and SS in the y-

axis), we see that they are distributed in an S-shaped curve (Fig. 4B). The vast majority of the DIDA data 

(88%) cluster with high confidence in the right part of the S-shaped curve.  

 

Validation on independent disease-causing data confirms VarCoPP’s predictive success   
  

As the evaluation on independent data provides the best insight into the quality of a predictive method, 

we validated VarCoPP on a set of 23 new bi-locus disease-causing variant combinations, which were 

gathered from research articles published after the creation of DIDAv1 (Fig. 3D and SI Appendix, Table S5, 

and Dataset S1). These independent bi-locus variant combinations contained unexplored gene pairs 

associated with evidence for 10 diseases, which were not previously reported in DIDA, such as Alport 

syndrome(48) (OMIM: 301050, 203780, 104200), holoprosencephaly(49) (HPE, OMIM: 236100) and Leber 

Congenital Amaurosis(50) (LCA, OMIM: 204000).  

VarCoPP remains very successful on these new data (Fig. 4C): The vast majority of the new bi-locus 

combinations (20 out of 23) are correctly labelled as pathogenic, with a high confidence (SS>80). Three bi-

locus combinations, one leading to CANDLE syndrome(51), and two leading to Alport syndrome(48), were 

wrongfully predicted as neutral, with support of SS=46.2, 24 and 1.6 respectively. The gene pairs involved 

seem to be relevant for the studied disease and the genes of the pairs were closely biologically related, 

indicating that their protein products are most likely directly interacting. However, low CADD variant scores, 

a single-variant pathogenicity metric(12), as well as some missing gene recessiveness and 

haploinsufficiency values are most likely the reason why those combinations were misclassified (SI 

Appendix, Text S2). When this missing data becomes available or annotations are improved, VarCoPP 

might also classify these three cases correctly.  

 

Statistical confidence zones make it easy to detect the most relevant combinations  
 

It can be expected that even after a standard variant filtering procedure, the number of neutral variant 

combinations (i.e. True Negatives - TNs) in an individual’s exome will vastly outnumber the number of the 

real disease-causing ones (i.e. True Positives - TPs). It is therefore highly relevant to estimate how likely it 

is that a variant combination predicted as pathogenic by VarCoPP is actually a False Positive (FP).  

To examine this FP probability, we randomly collected neutral variant combinations from 1KGP 

individuals, consisting exclusively of gene pairs unknown to VarCoPP, and calculated their prediction 

scores, i.e. their CS and SS (Fig. 3D). We analyzed three different sets of such random combinations; sets 
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of either 100, 1000 (Fig. 4D) and 10000 combinations, in order to also examine whether the percentage of 

FPs changes relative to the sample size (see SI Appendix, Datasets S2, S3 and S4 respectively).  

We observed that, on average, 93% of the combinations are correctly identified as neutral, and of which 

72% have a confirmative SS equal to 0, meaning that no predictor in the ensemble classified them as 

disease-causing (SI Appendix, Table S6). The overall fraction of FP combinations that are predicted as 

disease-causing fluctuates around 7 - 8%. This percentage remains stable even if the sample size changes. 

Therefore, in general, there is only a 7% chance that a bi-locus variant combination is wrongfully predicted 

to be disease causing.  

Using this insight, it is possible to define stringent confidence zones for the predictions, delimited by 

specific CS and SS scores, which denote the probability that a bi-locus variant combination is a TP. We 

define in this manner a 95% confidence zone, containing all predicted variant combinations that have at 

least CS≥0.55 and SS≥75. Combinations belonging to this zone have at least 95% probability to be a TP 

disease-causing variant combination. Similarly, we define a 99% confidence zone, which requires at least 

CS≥0.74 and SS=100, containing all predicted combinations that have a 99% or higher probability of being 

a TP (SI Appendix, Table S6). These confidence zones are useful as the focus can fall directly on the bi-

locus variant combinations belonging to one of these two zones and therefore have higher confidence of 

being relevant. Underlining again the quality of VarCoPP, one can observe that all 20 correctly classified 

elements in the independent validation set discussed in the previous section belong at least to the 95%-

zone, with 15 of those even present in the 99%-zone (Fig. 4C).   

Although these confidence zones provide a guarantee on the probability of a variant combination being 

a TP, the absolute number of combinations falling in those zones increases with the number of variant 

combinations to be tested. This is also the case when testing single variants with monogenic pathogenicity 

predictors. A consequence of this observation is that the precision (i.e. the fraction of real disease-causing 

combinations - TPs - detected among those that were predicted to be disease causing  - TPs and FPs) and 

recall (i.e. the fraction of the real disease-causing combinations predicted correctly as pathogenic over all 

real disease-causing combinations present in the data set) will be affected: the smaller the fraction of real 

disease-causing combinations among all tested combinations, the smaller the precision and the bigger the 

difficulty to recall them all (see SI Appendix, Text S3, Fig. S2 and Table S7). As a consequence, it is best 

to filter down the number of variants and genes as much as possible before testing them for pathogenicity 

with VarCoPP. Another possibility would be to apply post-VarCoPP FP reducing strategies, as for example, 

using trio data, to avoid considering further irrelevant combinations already present in an unaffected parent. 

   

Confidence zones are relevant for the clinical analysis of disease-specific gene panels 
  

With the previously defined 95% and 99% confidence zones and additional filtering steps we can restrict 

our analysis to the most relevant pathogenic bi-locus variant combinations within full exomes.  Yet as there 

may be still a large absolute number of combinations to consider, one can further reduce the number of 
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combinations by zooming in on those combinations that occur in a subset of genes related to the disease 

of interest, i.e. to restrict the analysis to well-defined gene panels. However, even by shifting to a gene 

panel, the current predictive quality of VarCoPP might be altered due to the specific properties of the genes 

included in that panel.     

First, we assessed the expected absolute number of FP combinations in the 95% and 99% confidence 

zones for different sizes of randomly generated gene panels (ranging from 10 to 300). This analysis 

provides insight into the number of FP combinations present in each confidence zone that we can expect 

for a random gene panel of a given size consisted only with neutral variants. That is essential as geneticists 

do not want to be confronted with a large amount of FPs in these zones given the time and costs associated 

with analyzing and/or testing them. On the other hand, knowing how many FPs to expect in the confidences 

zones relative to the size of the gene panel provides a baseline that could be used to quantify differences 

between healthy patients and those having a specific disease phenotype: if the number of predicted variant 

combinations present in the confidence zones for a gene panel of a particular size exceeds significantly 

what is expected for random neutral combinations, then there may be important genetic information in the 

predicted results that merits future exploration.  

The results for random gene panels of different sizes (10, 30, 100 and 300 genes) that contain neutral 

variant combinations from 1KGP individuals (see Materials and Methods for the details), are shown in Table 

1. One can first observe that the percentage of FPs does not fluctuate significantly among the random gene 

panels, something also observed for the random neutral validation data described before (SI Appendix, 

Table S6). There is only a slight increase in the percentage of FPs in the 95%-zone for the 100 and 300 

random gene panels. The strict 99%-zone appears to be more consistent, as for all random gene panels it 

contains on average less than 1% of neutral bi-locus combinations per individual. The absolute number of 

FP combinations increases, as expected, with the size of the gene panel; out of the 1312 variant 

combinations generated on average for a panel of 300 genes per individual, approximately 12 (0.9%) may 

end up in the 99% confidence zone. Additional evaluations of those cases using knowledge about the 

disease phenotype or molecular functionalities will most likely further reduce these numbers to acceptable 

sets of combinations to evaluate clinically or test experimentally. 

Second, as known disease gene panels have more detrimental properties than randomly selected ones, 

given that they are known to be associated with a disease, it is important to see how these statistics change 

for more “pathological” gene panels. We decided here to evaluate, on one hand, a gene panel for a disease 

known to be caused by bi-locus variants, i.e. Bardet-Biedl syndrome (BBS), and, on the other hand, gene 

panels for a mono-to-polygenic disease, i.e. autism, using SFARI top gene categories, applied again on 

neutral combinations of 1KGP individuals (see Materials and Methods). Whereas the first BBS set is 

expected to generate higher percentages of FPs as most of the genes are present in DIDAv1, we expected 

to see a reduction in FPs in the latter panels. 

As can be observed in Table 1, VarCoPP appears to predict more FPs for the BBS gene panel compared 

to a gene panel of random genes with similar size. The BBS panel contains highly recessive genes with 
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low haploinsufficiency probabilities (0.19 on average) and whose neutral 1KGP variants have relatively 

higher CADD scores compared to random genes. However, the defined confidence zones are still clinically 

relevant as VarCoPP guarantees that on average less than 1 variant combination will be predicted as 

pathogenic and be present in the strict 99-zone. As a consequence, almost any bi-locus combination 

present in the 99-zone should be clinically relevant. Such assertion could be tested in the future on new 

cohorts of BBS demonstrated bi-locus patients.  

The gene panels of autism, although larger in size reveal lower FP fractions, as expected. This result is 

most likely due to the observation that genes in those panels have high haploinsufficiency probabilities 

(0.40-0.49 on average among the different panels), while the 1KGP variants present in those genes 

generally have lower CADD scores than average. Hence, the 95- and 99-zones stay quite devoid of false 

predictions. Together these results show that VarCoPP can be very precise, making it a relevant tool for 

discovery and diagnosis.   

 

The synergy of different biological features determines the pathogenicity  
 

VarCoPP combines a number of molecular characteristics at the variant, gene and gene pair level in 

order to identify which variant combinations are potentially disease-causing. By analyzing how each feature 

influences the predictions independently, we can gain an idea about their relative importance for the full 

predictor.  Through a feature selection procedure, we determined that a subset of 11 biological features out 

of the original 21 (see Fig. 3 and SI Appendix, Text S4, Fig. S3 and Table S2) is sufficient for making high 

quality predictions, while at the same time reducing the chance of overfitting.  

For each of these 11 features we calculated a Gini importance score(52), which quantifies the 

importance of a feature proportionally to the number of samples it can successfully differentiate. Figure 5 

shows that the CADD score of the first variant allele of gene A (CADD1) and that of the first variant allele 

of gene B (CADD3), along with the gene recessiveness probabilities (RecA, RecB) are the most important 

features for separating the two bi-locus combination classes. Their capacity to differentiate between 

pathogenic and neutral combinations becomes clear by comparing their value distributions between the 

two sets (SI Appendix, Fig. S4).  

 Although the CADD pathogenicity of variants is important for VarCoPP to classify a variant combination, 

using CADD1 and CADD3 alone (the CADD scores of the most pathogenic variant alleles of each gene 

inside a combination) is not sufficient to achieve satisfactory results (see run with 2 features in SI Appendix, 

Fig. S3). By adding information of the genes’ recessiveness (see run with 4 features in SI Appendix, Fig. 

S3) we see an improvement in classification, but it is the addition of the complete biological information (i.e. 

the 11 selected features) that provides the best performance. Therefore, it is the synergy of all features that 

contributes to the correct classification of a bi-locus combination, underlining the necessity of developing a 

tool like VarCoPP compared to solely using combinations based on single-variant pathogenicity 

information. 
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From black-box to white-box predictions that also explain classification decisions  
  

Since it is the synergy between the features that determines whether a particular variant combination in 

a pair of genes is pathogenic or not, their joint impact on the prediction process should provide an even 

better understanding of how VarCoPP makes its decisions. Understanding this decision process transforms 

VarCoPP from a black-box into a white-box predictor, an issue that is becoming more and more important 

as these artificial decision-makers may have important impact on patients and people in general.   

Using a method that follows the decision steps for each new bi-locus combination in each individual 

predictor inside VarCoPP (see Materials and Methods), we can show the preference of each feature for 

either the neutral or the disease-causing class in function of the influence of the other features. That 

preference or decision gradient can be either positive or negative, depending on whether the feature pushes 

the decision to the pathogenic or neutral class, respectively. For example, in DIDAv1, most disease-causing 

combinations are between genes that correspond to proteins that are directly or indirectly (i.e. separated 

by one intermediate protein) interacting. Thus, if the biological distance feature (BiolDist) between the two 

genes of a variant combination is rather low, meaning that the genes are very close in the protein-protein 

interaction network, the decision gradient for the biological distance feature will be positive, driving the 

prediction towards the pathogenic class. Performing that preference analysis for each feature and individual 

predictor inside VarCoPP gives a distribution of decision gradient values for that feature for every bi-locus 

variant combination. The simplest way to visualize these values per feature is by using box-plots that reveal 

both the median and variance among the individual predictors in VarCoPP (as can be seen in Fig. 6). 

Positive values that vote for the pathogenic class are depicted in red, while negative values voting for the 

neutral class are depicted in blue.  

The higher the confidence of a prediction, the more clearly features show preference for a particular 

class. As can be seen in Fig. 6, there is a clear positive or negative preference among the features for 

cases where there is either full support for the disease-causing (Fig. 6A, SS=100) or neutral (Fig. 6B, SS=0) 

class for a bi-locus combination. However, in cases where the prediction is ambiguous, like for example in 

cases where the average support from the individual predictors in VarCoPP is close to the threshold (SS ~ 

50%), we observe that such a clear consensus among the features is missing (Fig. 6C).  

These visualizations provide a good indication as to why we reach a disease-causing or neutral 

prediction for a bi-locus variant combination. By examining the actual values of the features that most 

strongly influence the decision process for a particular combination (i.e. are furthest away from zero, see 

Fig. 6), we can obtain insight on why this combination gets a class prediction and people can assess their 

agreement with that prediction. For example, if we see that the CADD feature of a variant drives significantly 

the prediction towards the pathogenic class, we can most probably expect that the CADD feature value of 

that variant is relatively high.   
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DISCUSSION 

This work demonstrates that sufficient genetic knowledge is available to produce pathogenicity 

predictors capable of differentiating between pathogenic and neutral bi-locus variant combinations. We 

presented here VarCoPP, a clinically competent predictive tool, which reveals to be precise and sensitive, 

both in cross validation settings (87% correct predictions) and when tested on new independent data. The 

performance will further increase by improving the quality of the genetic annotations and more training data 

becomes available.  

VarCoPP provides robust 95% and 99% confidence labels, which constitute an objective assessment 

of the relevance of newly identified pathogenic bi-locus variant combinations. These zones are important 

as a form of primary filtering and evaluation of the predictions, while further statistical and biological 

verification can be performed for those 95% and 99% labeled variant combinations. Such an approach 

boosts the clinical relevance of VarCoPP, limiting the search space produced by all variant combinations 

in a gene panel or exome to the most relevant ones and, as a consequence, reducing the required time 

needed to further explore these relevant results.  

Moreover, our method has been designed to produce “white-box” predictions by providing insights into 

the importance of the biological features in distinguishing disease-causing combinations from neutral ones 

(Fig. 5). Furthermore, it can provide objective explanations on the class decision made by the predictor for 

each new bi-locus combination that is being tested (Fig. 6). While the former provides a way to assess the 

relevance of novel features in further developments of VarCoPP, the latter allows users to assess the 

relevance of the prediction using their genetic and biological expertise and to capture reasoning differences 

for different bi-locus instances. Providing such decision transparency for automated systems is highly 

important given the effect that predictions may have on individuals and society.  

Although we can now start to analyze combinations in patient exomes, it is important to keep in mind 

that the magnitude of the search space increases dramatically when moving to full exome analysis. 

Although there is only 1% chance of observing a FP in the 99% zone, the absolute number of FP 

combinations will exponentially increase, a classic problem that is unfortunately encountered in most types 

of bioinformatics predictors when tested at the exome level. Additional pre- or post-filtering steps to reduce 

these absolute numbers are thus required, which can be done, for instance, by adding knowledge about 

the disease or comparing the predictions to genetic information obtained for the parents in trio studies. In 

line with the former, the study can be limited to gene panels known to be associated with the disease or 

belonging to the relevant pathways. We demonstrated that such a focus will indeed help in limiting the 

number of non-relevant bi-locus combinations: using a panel of 150 genes produces potentially 1 non-

relevant combination in the 99% confidence zone, that usually corresponds to a percentage of less than 

1%, confirming the clinical relevance of our method. Furthermore, rare-diseases recessive gene panels 

(like BBS) may produce a bit more FPs, in contrast to known haploinsufficient gene panels (like those of 

neurodevelopmental disorders). Clinical users of VarCoPP should be aware of this issue in the analysis of 

their target disease.  
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The results furthermore show that especially the CADD scores of the first variant allele of each gene - 

an expected observation as we order the variant alleles inside each gene based on pathogenicity - but also 

the gene recessiveness probabilities seem to be the main drivers of predictions. Although these features 

independently show great importance, it is the combination of all 11 selected features, including those with 

a lower effect, that leads to the highest classification accuracy. These results make VarCoPP a clinically 

important tool that is more informative and accurate than simply selecting potentially relevant variant 

combinations based solely on monogenic variant pathogenicity scores, such as CADD.  

Further expansions of VarCoPP into the oligogenic realm should consider that the variant filtering criteria 

that were shown to be important for the method, differ from the ‘strict’ criteria that are commonly used to 

identify pathogenic variants in rare mendelian diseases, i.e. rare exonic variants with a strong monogenic 

effect. Although the majority of positive cases in DIDA has a MAF of less or equal to 3%, we observed that 

some variants involved in rare oligogenic diseases can reach for instance a MAF of up to 18%(53). As 

these are present but constitute exceptions in the current data set, at the moment we restricted ourselves 

to MAF of 3% for the creation of the neutral data set. Nonetheless, this threshold can be further relaxed in 

the future as more data on pathogenic bi-locus combinations becomes available.  

Similarly, while it is widely presumed that genes involved in the same disease can belong to the same 

molecular pathway or biological process, this does not necessarily apply to all cases. It is shown in DIDAv1 

that for some gene pairs, such as the ANOS1-PROKR2 pair found in many studies associated with Kallman 

syndrome(45, 54–56), no interaction or co-expression information is known yet, indicating that potentially 

more complex pathways and cellular mechanisms may be involved to cause disease. Nonetheless, the 

pairs of genes in the neutral data used by VarCoPP were filtered in such a way that they had the same 

biological distance distribution as was observed in DIDAv1. As a consequence, this feature has a less 

important role in the decision process. It remains to be seen whether this stratification should not be relaxed 

when moving into the realm of oligogenic disease cases, as subsets of genes involved in different pathways 

may be responsible for the observed phenotype. Yet, relaxing this biological distance normalization will 

lead to a less “clever” predictor with a higher FP rate, as it would provide an obvious way to learn separating 

known pathogenic from random neutral bi-locus combinations (SI Appendix, Fig. S5).  

VarCoPP is a bi-locus variant combination pathogenicity predictor that is trained using combinations 

involved in known oligogenic diseases. As our predictor is not phenotypically-driven, it could also be used 

to predict bi-locus combinations involved in cases of dual molecular diagnosis, i.e. cases where several 

independent monogenic diseases are present in an individual due to segregation of monogenic variants in 

two unrelated loci. The recent work of Posey et al.(21) provides a collection of such dual molecular 

diagnoses cases. An analysis of 76 cases in that paper revealed that VarCoPP predicted 67 (88%) correctly 

(see SI Appendix, Fig. S6 and Dataset S5). These results are again very promising, especially since dual 

diagnosis cases are almost completely missing from DIDAv1, which was used to train the predictor. 

Nonetheless, such cases appear to consist of strong monogenic variants and genes whose nature and 

properties are different compared to those causing or modulating the diseases contained in DIDAv1. Within 
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the context of another study, expanding on Gazzo et al.(39), it is observed that dual diagnosis instances 

are indeed separated from the other types of bi-locus diseases. Although further developments of VarCoPP 

should incorporate these cases for training, a distinction should be further made between dual diagnosis 

instances with distinct and overlapping phenotypes. Especially the latter appear to be relevant for a 

predictor that aims to find synergies between variants, which is the long-term ambition of VarCoPP.   

In conclusion, VarCoPP reveals that the first steps to multi-variant pathogenicity predictions can be 

taken. Our method shows great predictive ability during cross-validation and using independent validation 

sets, which may be further improved with the advent of new data and the inclusion of additional biological 

information. The provision of statistical evaluations, as well as white-box explanations on the obtained 

results establish VarCoPP as a pioneering clinical tool for the detection of disease-causing variants 

implicated in more complex genetic patterns. By scoring bi-locus combinations and gene pairs, gene triplets 

or quadruplets may be identified in exome or gene panel data as causative genetic models for a particular 

disease, paving the path for the detection of multi-locus signatures derived with machine learning 

approaches. VarCoPP therefore provides an important leap forward, allowing for more fine-grained 

pathogenic predictions. 

MATERIALS AND METHODS 

An illustrated summary of the Materials and Methods used in this study is presented in Fig. 3. Additional 

details on each Materials and Methods subsection can be found in the SI Appendix, Text S4.  

 

Data filtering and annotation  
 

We filtered the variants and genes between DIDAv1 and 1KGP so that both sets contained comparable 

information (Fig. 3A), using exonic and splicing SNPs as well as indels of MAF equal or less than 3%. 

Individuals in 1KGP that carried disease-causing bi-locus combinations, as well as the corresponding 

combinations in DIDAv1, were removed (Fig. 2 and SI Appendix, Table S1). We annotated both sets based 

on information at the variant, gene and gene pair level, leading initially to 21 features per entry. After a 

feature selection procedure this set was reduced to 11 features (Fig. 3B and SI Appendix, Text S4, Table 

S2 and Table S3 for an overview and explanation of the features). Variants and genes inside each bi-locus 

combination were ordered in both data sets, so that gene A and the first variant allele of each gene in a bi-

locus combination were the most pathological ones according to the Gene Damage Index (GDI) score(57) 

and CADD score(12), respectively (Fig. 3B).  

Stratification of the 1KGP data and training 

 
To train VarCoPP we created 500 balanced sets (Fig. 3C), each consisting of 200 1KGP bi-locus 

combinations of randomly chosen gene pairs and the 200 disease-causing combinations of DIDAv1. For 
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each 1KGP subset, we included 40 individuals per continent. However, there is no significant difference in 

performance when the predictor is trained using 1KGP combinations only from individuals of a particular 

continent against DIDAv1, confirming no population bias (SI Appendix, Table S8). Each random control 

subset contained gene pairs following a degree of separation distribution equal to that of DIDAv1, based 

on information obtained from the Human Gene Connectome tool(58) (SI Appendix, Fig. S5). We used the 

scikit-learn version 0.18.1 implementation(59) of the RF algorithm(52) as a classifier for each of the 500 

balanced sets. Each RF consisted of 100 decision trees using bootstrapping with a maximum tree depth of 

10, using the square root of the features for each split. We implemented a Leave-One-Pair-Out stratified 

cross-validation procedure individually for each predictor(39).  

Validation of VarCoPP  

 
We collected 23 new disease-causing bi-locus combinations derived from independent scientific papers 

published after the release of DIDAv1 (Fig. 3D and SI Appendix, Table S5 and Dataset S1). For confidence 

testing, we collected different sets of random 100, 1000 and 10000 neutral bi-locus combinations from the 

1KGP that were unused during training (Fig. 3D and SI Appendix, Datasets S2, S3 and S4). For the gene 

panel analysis, we created random panels consisting of 10, 30, 100 and 300 genes and tested each gene 

panel on 100 random 1KGP individuals with 100 iterations. For BBS, we used the 21-gene list obtained 

from the Genome Diagnostics Nijmegen laboratory (http://www.genomediagnosticsnijmegen.nl/) and for 

autism, the SFARI gene panels (https://gene.sfari.org/). 

Feature selection and interpretation 

 
We applied a recursive feature elimination procedure(60) on a balanced set with median performance 

among all sets leading to a performance peak with 10 features (SI Appendix, Fig. S3).  As no variant 

features about the second variant allele of gene B remained, we included for interpretability reasons the 

CADD score of this allele (CADD4), finalizing the number of selected features to 11. To create the decision 

boxplots per bi-locus combination we used the treeinterpreter Python package 

(https://github.com/andosa/treeinterpreter, Ando Saabas).  

 

VarCoPP can be accessed online at: http://varcopp.ibsquare.be/. This online tool annotates a list of 

given variants and scores all possible bi-locus variant combinations present in that list.  

ACKNOWLEDGMENTS 

We thank all the members of the Interuniversity Institute for Bioinformatics in Brussels, especially the group 

of people interested in digenic and oligogenic diseases, for their comments and valuable suggestions. This 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2019. ; https://doi.org/10.1101/520353doi: bioRxiv preprint 

https://paperpile.com/c/aYO2jf/JpMAN
https://paperpile.com/c/aYO2jf/Az377
https://paperpile.com/c/aYO2jf/xD4n9
http://www.genomediagnosticsnijmegen.nl/
https://gene.sfari.org/
https://paperpile.com/c/aYO2jf/DLB1U
http://varcopp.ibsquare.be/
https://doi.org/10.1101/520353
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

work was supported by the ARC project Deciphering Oligo- and Polygenic Genetic Architecture in Brain 

Developmental Disorders [to A.G., N.V., C.N. and T.L.]; the European Regional Development Fund (ERDF) 

and the Brussels-Capital Region-Innoviris within the framework of the Operational Programme 2014–2020 

through the ERDF-2020 project ICITY-RDI.BRU [27.002.53.01.4524 to S.P, A.N., S.V.D. and T.L.]; a Fonds 

de la Recherche Scientifique (F.R.S) - FNRS Fund for Research Training in Industry and Agriculture (FRIA) 

[to S.P.]; a Vrije Universiteit Brussel, PhD funding [to S.P.]; a Vrije Universiteit Brussel, Reproduction and 

Genetics and Regenerative Medicine (RGRG) Cluster, Reproduction and Genetics Research Group [to 

A.G. and S.V.D.]  

REFERENCES 

   

1.  ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human 
genome. Nature 489(7414):57–74. 

2.  Fu W, et al. (2013) Analysis of 6,515 exomes reveals the recent origin of most human protein-coding 
variants. Nature 493(7431):216–220. 

3.  Lek M, et al. (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 
536(7616):285–291. 

4.  Exome Sequencing Project (ESP) Exome Variant Server. Available at: 
http://evs.gs.washington.edu/EVS/. 

5.  1000 Genomes Project Consortium, et al. (2015) A global reference for human genetic variation. 
Nature 526(7571):68–74. 

6.  Ng SB, Nickerson DA, Bamshad MJ, Shendure J (2010) Massively parallel sequencing and rare 
disease. Hum Mol Genet 19(R2):R119–24. 

7.  Bamshad MJ, et al. (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat 
Rev Genet 12(11):745–755. 

8.  Chong JX, et al. (2015) The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and 
Opportunities. Am J Hum Genet 97(2):199–215. 

9.  Bainbridge MN, et al. (2011) Whole-genome sequencing for optimized patient management. Sci 
Transl Med 3(87):87re3. 

10.  Adzhubei IA, et al. (2010) A method and server for predicting damaging missense mutations. Nat 
Methods 7(4):248–249. 

11.  Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on 
protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081. 

12.  Kircher M, et al. (2014) A general framework for estimating the relative pathogenicity of human 
genetic variants. Nat Genet 46(3):310–315. 

13.  Raimondi D, Gazzo AM, Rooman M, Lenaerts T, Vranken WF (2016) Multilevel biological 
characterization of exomic variants at the protein level significantly improves the identification of their 
deleterious effects. Bioinformatics 32(12):1797–1804. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2019. ; https://doi.org/10.1101/520353doi: bioRxiv preprint 

http://paperpile.com/b/aYO2jf/Ri7Wy
http://paperpile.com/b/aYO2jf/Ri7Wy
http://paperpile.com/b/aYO2jf/Ri7Wy
http://paperpile.com/b/aYO2jf/Ri7Wy
http://paperpile.com/b/aYO2jf/NJ1H0
http://paperpile.com/b/aYO2jf/NJ1H0
http://paperpile.com/b/aYO2jf/NJ1H0
http://paperpile.com/b/aYO2jf/NJ1H0
http://paperpile.com/b/aYO2jf/KTUXw
http://paperpile.com/b/aYO2jf/KTUXw
http://paperpile.com/b/aYO2jf/KTUXw
http://paperpile.com/b/aYO2jf/KTUXw
http://paperpile.com/b/aYO2jf/HZOnP
http://paperpile.com/b/aYO2jf/HZOnP
http://paperpile.com/b/aYO2jf/HZOnP
http://paperpile.com/b/aYO2jf/HZOnP
http://evs.gs.washington.edu/EVS/
http://paperpile.com/b/aYO2jf/HZOnP
http://paperpile.com/b/aYO2jf/itRPv
http://paperpile.com/b/aYO2jf/itRPv
http://paperpile.com/b/aYO2jf/itRPv
http://paperpile.com/b/aYO2jf/itRPv
http://paperpile.com/b/aYO2jf/wvdUj
http://paperpile.com/b/aYO2jf/wvdUj
http://paperpile.com/b/aYO2jf/wvdUj
http://paperpile.com/b/aYO2jf/wvdUj
http://paperpile.com/b/aYO2jf/6FvAf
http://paperpile.com/b/aYO2jf/6FvAf
http://paperpile.com/b/aYO2jf/6FvAf
http://paperpile.com/b/aYO2jf/6FvAf
http://paperpile.com/b/aYO2jf/l25O4
http://paperpile.com/b/aYO2jf/l25O4
http://paperpile.com/b/aYO2jf/l25O4
http://paperpile.com/b/aYO2jf/l25O4
http://paperpile.com/b/aYO2jf/r9Ts9
http://paperpile.com/b/aYO2jf/r9Ts9
http://paperpile.com/b/aYO2jf/r9Ts9
http://paperpile.com/b/aYO2jf/r9Ts9
http://paperpile.com/b/aYO2jf/OETPu
http://paperpile.com/b/aYO2jf/OETPu
http://paperpile.com/b/aYO2jf/OETPu
http://paperpile.com/b/aYO2jf/OETPu
http://paperpile.com/b/aYO2jf/3xJPB
http://paperpile.com/b/aYO2jf/3xJPB
http://paperpile.com/b/aYO2jf/3xJPB
http://paperpile.com/b/aYO2jf/3xJPB
http://paperpile.com/b/aYO2jf/pl17F
http://paperpile.com/b/aYO2jf/pl17F
http://paperpile.com/b/aYO2jf/pl17F
http://paperpile.com/b/aYO2jf/pl17F
http://paperpile.com/b/aYO2jf/72AyQ
http://paperpile.com/b/aYO2jf/72AyQ
http://paperpile.com/b/aYO2jf/72AyQ
http://paperpile.com/b/aYO2jf/72AyQ
http://paperpile.com/b/aYO2jf/72AyQ
https://doi.org/10.1101/520353
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

14.  van Heyningen V (2004) Mechanisms of non-Mendelian inheritance in genetic disease. Hum Mol 
Genet 13(suppl_2):R225–R233. 

15.  Badano JL, Katsanis N (2002) Beyond Mendel: an evolving view of human genetic disease 
transmission. Nat Rev Genet 3(10):779–789. 

16.  Schäffer AA (2013) Digenic inheritance in medical genetics. J Med Genet 50(10):641–652. 

17.  Lupski JR, Belmont JW, Boerwinkle E, Gibbs RA (2011) Clan Genomics and the Complex 
Architecture of Human Disease. Cell 147(1):32–43. 

18.  Chen R, et al. (2016) Analysis of 589,306 genomes identifies individuals resilient to severe 
Mendelian childhood diseases. Nat Biotechnol 34(5):531–538. 

19.  Nussbaum RL, McInnes RR, Willard HF, Hamosh A (2007) Genetics of Common Disorders with 
Complex Inheritance. Thompson & Thompson Genetics in Medicine, pp 151–174. 

20.  Robinson JF, Katsanis N (2010) Oligogenic Disease. Vogel and Motulsky’s Human Genetics, pp 
243–262. 

21.  Posey JE, et al. (2017) Resolution of Disease Phenotypes Resulting from Multilocus Genomic 
Variation. N Engl J Med 376(1):21–31. 

22.  Scriver CR, Waters PJ (1999) Monogenic traits are not simple: lessons from phenylketonuria. Trends 
Genet 15(7):267–272. 

23.  Friedman T, et al. (2000) Modifier genes of hereditary hearing loss. Curr Opin Neurobiol 10(4):487–
493. 

24.  Brooks AS, Oostra BA, Hofstra R (2004) Studying the genetics of Hirschsprung’s disease: unraveling 
an oligogenic disorder. Clin Genet 67(1):6–14. 

25.  Cutting GR (2010) Modifier genes in Mendelian disorders: the example of cystic fibrosis. Ann N Y 
Acad Sci 1214:57–69. 

26.  Cristino AS, et al. (2014) Neurodevelopmental and neuropsychiatric disorders represent an 
interconnected molecular system. Mol Psychiatry 19(3):294–301. 

27.  Vissers LELM, Lisenka E L, Gilissen C, Veltman JA (2015) Genetic studies in intellectual disability 
and related disorders. Nat Rev Genet 17(1):9–18. 

28.  Goh K-I, et al. (2007) The human disease network. Proceedings of the National Academy of 
Sciences 104(21):8685–8690. 

29.  Bauer-Mehren A, et al. (2011) Gene-disease network analysis reveals functional modules in 
mendelian, complex and environmental diseases. PLoS One 6(6):e20284. 

30.  Yang Y, et al. (2013) Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N 
Engl J Med 369(16):1502–1511. 

31.  Yang Y, et al. (2014) Molecular findings among patients referred for clinical whole-exome 
sequencing. JAMA 312(18):1870–1879. 

32.  Posey JE, et al. (2016) Molecular diagnostic experience of whole-exome sequencing in adult 
patients. Genet Med 18(7):678–685. 

33.  Jehee FS, et al. (2017) Dual molecular diagnosis contributes to atypical Prader-Willi phenotype in 
monozygotic twins. Am J Med Genet A 173(9):2451–2455. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2019. ; https://doi.org/10.1101/520353doi: bioRxiv preprint 

http://paperpile.com/b/aYO2jf/DXhGN
http://paperpile.com/b/aYO2jf/DXhGN
http://paperpile.com/b/aYO2jf/DXhGN
http://paperpile.com/b/aYO2jf/DXhGN
http://paperpile.com/b/aYO2jf/lN9bw
http://paperpile.com/b/aYO2jf/lN9bw
http://paperpile.com/b/aYO2jf/lN9bw
http://paperpile.com/b/aYO2jf/lN9bw
http://paperpile.com/b/aYO2jf/FJAaV
http://paperpile.com/b/aYO2jf/FJAaV
http://paperpile.com/b/aYO2jf/FJAaV
http://paperpile.com/b/aYO2jf/B52tU
http://paperpile.com/b/aYO2jf/B52tU
http://paperpile.com/b/aYO2jf/B52tU
http://paperpile.com/b/aYO2jf/B52tU
http://paperpile.com/b/aYO2jf/8a8PQ
http://paperpile.com/b/aYO2jf/8a8PQ
http://paperpile.com/b/aYO2jf/8a8PQ
http://paperpile.com/b/aYO2jf/8a8PQ
http://paperpile.com/b/aYO2jf/WA9Kq
http://paperpile.com/b/aYO2jf/WA9Kq
http://paperpile.com/b/aYO2jf/WA9Kq
http://paperpile.com/b/aYO2jf/WA9Kq
http://paperpile.com/b/aYO2jf/WSTos
http://paperpile.com/b/aYO2jf/WSTos
http://paperpile.com/b/aYO2jf/WSTos
http://paperpile.com/b/aYO2jf/WSTos
http://paperpile.com/b/aYO2jf/y1Ro
http://paperpile.com/b/aYO2jf/y1Ro
http://paperpile.com/b/aYO2jf/y1Ro
http://paperpile.com/b/aYO2jf/y1Ro
http://paperpile.com/b/aYO2jf/sGy8i
http://paperpile.com/b/aYO2jf/sGy8i
http://paperpile.com/b/aYO2jf/sGy8i
http://paperpile.com/b/aYO2jf/sGy8i
http://paperpile.com/b/aYO2jf/0SEJK
http://paperpile.com/b/aYO2jf/0SEJK
http://paperpile.com/b/aYO2jf/0SEJK
http://paperpile.com/b/aYO2jf/0SEJK
http://paperpile.com/b/aYO2jf/MnwnY
http://paperpile.com/b/aYO2jf/MnwnY
http://paperpile.com/b/aYO2jf/MnwnY
http://paperpile.com/b/aYO2jf/MnwnY
http://paperpile.com/b/aYO2jf/4NQC
http://paperpile.com/b/aYO2jf/4NQC
http://paperpile.com/b/aYO2jf/4NQC
http://paperpile.com/b/aYO2jf/4NQC
http://paperpile.com/b/aYO2jf/1Xod
http://paperpile.com/b/aYO2jf/1Xod
http://paperpile.com/b/aYO2jf/1Xod
http://paperpile.com/b/aYO2jf/1Xod
http://paperpile.com/b/aYO2jf/zWZy
http://paperpile.com/b/aYO2jf/zWZy
http://paperpile.com/b/aYO2jf/zWZy
http://paperpile.com/b/aYO2jf/zWZy
http://paperpile.com/b/aYO2jf/rCvvR
http://paperpile.com/b/aYO2jf/rCvvR
http://paperpile.com/b/aYO2jf/rCvvR
http://paperpile.com/b/aYO2jf/rCvvR
http://paperpile.com/b/aYO2jf/hDGiZ
http://paperpile.com/b/aYO2jf/hDGiZ
http://paperpile.com/b/aYO2jf/hDGiZ
http://paperpile.com/b/aYO2jf/hDGiZ
http://paperpile.com/b/aYO2jf/Js7m
http://paperpile.com/b/aYO2jf/Js7m
http://paperpile.com/b/aYO2jf/Js7m
http://paperpile.com/b/aYO2jf/Js7m
http://paperpile.com/b/aYO2jf/KpkO
http://paperpile.com/b/aYO2jf/KpkO
http://paperpile.com/b/aYO2jf/KpkO
http://paperpile.com/b/aYO2jf/KpkO
http://paperpile.com/b/aYO2jf/FqvR
http://paperpile.com/b/aYO2jf/FqvR
http://paperpile.com/b/aYO2jf/FqvR
http://paperpile.com/b/aYO2jf/FqvR
http://paperpile.com/b/aYO2jf/YqHw
http://paperpile.com/b/aYO2jf/YqHw
http://paperpile.com/b/aYO2jf/YqHw
http://paperpile.com/b/aYO2jf/YqHw
https://doi.org/10.1101/520353
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

34.  Katsanis N (2016) The continuum of causality in human genetic disorders. Genome Biol 17(1):233. 

35.  Gazzo AM, et al. (2016) DIDA: A curated and annotated digenic diseases database. Nucleic Acids 
Res 44(D1):D900–7. 

36.  Katsanis N (2004) The oligogenic properties of Bardet-Biedl syndrome. Hum Mol Genet 13 Spec No 
1:R65–71. 

37.  M’hamdi O, Ouertani I, Chaabouni-Bouhamed H (2014) Update on the Genetics of Bardet-Biedl 
Syndrome. Mol Syndromol 5(2):51–56. 

38.  Dryja TP, Hahn LB, Kajiwara K, Berson EL (1997) Dominant and digenic mutations in the 
peripherin/RDS and ROM1 genes in retinitis pigmentosa. Invest Ophthalmol Vis Sci 38(10):1972–
1982. 

39.  Gazzo A, et al. (2017) Understanding mutational effects in digenic diseases. Nucleic Acids Res 
45(15):e140. 

40.  He H, et al. (2013) Involvement of and interaction between WNT10A and EDA mutations in tooth 
agenesis cases in the Chinese population. PLoS One 8(11):e80393. 

41.  Cockburn BN, et al. (2004) Insulin Promoter Factor-1 Mutations and Diabetes in Trinidad: 
Identification of a Novel Diabetes-Associated Mutation (E224K) in an Indo-Trinidadian Family. J Clin 
Endocrinol Metab 89(2):971–978. 

42.  Chapla A, et al. (2015) Maturity onset diabetes of the young in India - a distinctive mutation pattern 
identified through targeted next-generation sequencing. Clin Endocrinol  82(4):533–542. 

43.  Font-Llitjós M, et al. (2005) New insights into cystinuria: 40 new mutations, genotype-phenotype 
correlation, and digenic inheritance causing partial phenotype. J Med Genet 42(1):58–68. 

44.  Gucev Z, et al. (2011) Cystinuria AA (B): digenic inheritance with three mutations in two cystinuria 
genes. J Genet 90(1):157–159. 

45.  Sarfati J, et al. (2010) A comparative phenotypic study of kallmann syndrome patients carrying 
monoallelic and biallelic mutations in the prokineticin 2 or prokineticin receptor 2 genes. J Clin 
Endocrinol Metab 95(2):659–669. 

46.  Zhang K, et al. (2014) Synergistic defects of different molecules in the cytotoxic pathway lead to 
clinical familial hemophagocytic lymphohistiocytosis. Blood 124(8):1331–1334. 

47.  Sun Z, et al. (2015) A novel ensemble method for classifying imbalanced data. Pattern Recognit 
48(5):1623–1637. 

48.  Mencarelli MA, et al. (2015) Evidence of digenic inheritance in Alport syndrome. J Med Genet 
52(3):163–174. 

49.  Mouden C, et al. (2016) Complex mode of inheritance in holoprosencephaly revealed by whole 
exome sequencing. Clin Genet 89(6):659–668. 

50.  Coppieters F, et al. (2010) Genetic screening of LCA in Belgium: predominance of CEP290 and 
identification of potential modifier alleles in AHI1 of CEP290-related phenotypes. Hum Mutat 
31(10):E1709–66. 

51.  Brehm A, et al. (2015) Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS 
patients promote type I IFN production. J Clin Invest 125(11):4196–4211. 

52.  Breiman L (2001) Random Forests. J Mach Learn Res 45(1):5–32. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2019. ; https://doi.org/10.1101/520353doi: bioRxiv preprint 

http://paperpile.com/b/aYO2jf/MIjIK
http://paperpile.com/b/aYO2jf/MIjIK
http://paperpile.com/b/aYO2jf/MIjIK
http://paperpile.com/b/aYO2jf/WaYsw
http://paperpile.com/b/aYO2jf/WaYsw
http://paperpile.com/b/aYO2jf/WaYsw
http://paperpile.com/b/aYO2jf/WaYsw
http://paperpile.com/b/aYO2jf/7PndX
http://paperpile.com/b/aYO2jf/7PndX
http://paperpile.com/b/aYO2jf/7PndX
http://paperpile.com/b/aYO2jf/7PndX
http://paperpile.com/b/aYO2jf/O2mBv
http://paperpile.com/b/aYO2jf/O2mBv
http://paperpile.com/b/aYO2jf/O2mBv
http://paperpile.com/b/aYO2jf/O2mBv
http://paperpile.com/b/aYO2jf/OG2dx
http://paperpile.com/b/aYO2jf/OG2dx
http://paperpile.com/b/aYO2jf/OG2dx
http://paperpile.com/b/aYO2jf/OG2dx
http://paperpile.com/b/aYO2jf/OG2dx
http://paperpile.com/b/aYO2jf/hyhKi
http://paperpile.com/b/aYO2jf/hyhKi
http://paperpile.com/b/aYO2jf/hyhKi
http://paperpile.com/b/aYO2jf/hyhKi
http://paperpile.com/b/aYO2jf/Fh7gY
http://paperpile.com/b/aYO2jf/Fh7gY
http://paperpile.com/b/aYO2jf/Fh7gY
http://paperpile.com/b/aYO2jf/Fh7gY
http://paperpile.com/b/aYO2jf/46W9M
http://paperpile.com/b/aYO2jf/46W9M
http://paperpile.com/b/aYO2jf/46W9M
http://paperpile.com/b/aYO2jf/46W9M
http://paperpile.com/b/aYO2jf/46W9M
http://paperpile.com/b/aYO2jf/Sulqm
http://paperpile.com/b/aYO2jf/Sulqm
http://paperpile.com/b/aYO2jf/Sulqm
http://paperpile.com/b/aYO2jf/Sulqm
http://paperpile.com/b/aYO2jf/124mc
http://paperpile.com/b/aYO2jf/124mc
http://paperpile.com/b/aYO2jf/124mc
http://paperpile.com/b/aYO2jf/124mc
http://paperpile.com/b/aYO2jf/slYvn
http://paperpile.com/b/aYO2jf/slYvn
http://paperpile.com/b/aYO2jf/slYvn
http://paperpile.com/b/aYO2jf/slYvn
http://paperpile.com/b/aYO2jf/O7jZp
http://paperpile.com/b/aYO2jf/O7jZp
http://paperpile.com/b/aYO2jf/O7jZp
http://paperpile.com/b/aYO2jf/O7jZp
http://paperpile.com/b/aYO2jf/O7jZp
http://paperpile.com/b/aYO2jf/ue2R0
http://paperpile.com/b/aYO2jf/ue2R0
http://paperpile.com/b/aYO2jf/ue2R0
http://paperpile.com/b/aYO2jf/ue2R0
http://paperpile.com/b/aYO2jf/dFMIi
http://paperpile.com/b/aYO2jf/dFMIi
http://paperpile.com/b/aYO2jf/dFMIi
http://paperpile.com/b/aYO2jf/dFMIi
http://paperpile.com/b/aYO2jf/sJ0Jb
http://paperpile.com/b/aYO2jf/sJ0Jb
http://paperpile.com/b/aYO2jf/sJ0Jb
http://paperpile.com/b/aYO2jf/sJ0Jb
http://paperpile.com/b/aYO2jf/woSa3
http://paperpile.com/b/aYO2jf/woSa3
http://paperpile.com/b/aYO2jf/woSa3
http://paperpile.com/b/aYO2jf/woSa3
http://paperpile.com/b/aYO2jf/cfApP
http://paperpile.com/b/aYO2jf/cfApP
http://paperpile.com/b/aYO2jf/cfApP
http://paperpile.com/b/aYO2jf/cfApP
http://paperpile.com/b/aYO2jf/cfApP
http://paperpile.com/b/aYO2jf/e7U7W
http://paperpile.com/b/aYO2jf/e7U7W
http://paperpile.com/b/aYO2jf/e7U7W
http://paperpile.com/b/aYO2jf/e7U7W
http://paperpile.com/b/aYO2jf/xD4n9
http://paperpile.com/b/aYO2jf/xD4n9
http://paperpile.com/b/aYO2jf/xD4n9
https://doi.org/10.1101/520353
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

53.  Girardelli M, Vuch J, Tommasini A, Crovella S, Bianco AM (2014) Novel missense mutation in the 
NOD2 gene in a patient with early onset ulcerative colitis: causal or chance association? Int J Mol Sci 
15(3):3834–3841. 

54.  Dodé C, et al. (2006) Kallmann syndrome: mutations in the genes encoding prokineticin-2 and 
prokineticin receptor-2. PLoS Genet 2(10):e175. 

55.  Canto P, Munguía P, Söderlund D, Castro JJ, Méndez JP (2009) Genetic analysis in patients with 
Kallmann syndrome: coexistence of mutations in prokineticin receptor 2 and KAL1. J Androl 
30(1):41–45. 

56.  Shaw ND, et al. (2011) Expanding the phenotype and genotype of female GnRH deficiency. J Clin 
Endocrinol Metab 96(3):E566–76. 

57.  Itan Y, et al. (2015) The human gene damage index as a gene-level approach to prioritizing exome 
variants. Proc Natl Acad Sci U S A 112(44):13615–13620. 

58.  Itan Y, et al. (2014) HGCS: an online tool for prioritizing disease-causing gene variants by biological 
distance. BMC Genomics 15:256. 

59.  Pedregosa F, et al. (2011) Scikit-learn: Machine Learning in Python. J Mach Learn Res 
12(Octobre):2825−2830. 

60.  Guyon I, Weston J, Barnhill S (2002) Gene Selection for Cancer Classification using Support Vector 
Machines. Mach Learn 46:389-422. 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2019. ; https://doi.org/10.1101/520353doi: bioRxiv preprint 

http://paperpile.com/b/aYO2jf/EvwOK
http://paperpile.com/b/aYO2jf/EvwOK
http://paperpile.com/b/aYO2jf/EvwOK
http://paperpile.com/b/aYO2jf/EvwOK
http://paperpile.com/b/aYO2jf/EvwOK
http://paperpile.com/b/aYO2jf/oXGWE
http://paperpile.com/b/aYO2jf/oXGWE
http://paperpile.com/b/aYO2jf/oXGWE
http://paperpile.com/b/aYO2jf/oXGWE
http://paperpile.com/b/aYO2jf/yHb0r
http://paperpile.com/b/aYO2jf/yHb0r
http://paperpile.com/b/aYO2jf/yHb0r
http://paperpile.com/b/aYO2jf/yHb0r
http://paperpile.com/b/aYO2jf/yHb0r
http://paperpile.com/b/aYO2jf/aWnoI
http://paperpile.com/b/aYO2jf/aWnoI
http://paperpile.com/b/aYO2jf/aWnoI
http://paperpile.com/b/aYO2jf/aWnoI
http://paperpile.com/b/aYO2jf/kx6IE
http://paperpile.com/b/aYO2jf/kx6IE
http://paperpile.com/b/aYO2jf/kx6IE
http://paperpile.com/b/aYO2jf/kx6IE
http://paperpile.com/b/aYO2jf/JpMAN
http://paperpile.com/b/aYO2jf/JpMAN
http://paperpile.com/b/aYO2jf/JpMAN
http://paperpile.com/b/aYO2jf/JpMAN
http://paperpile.com/b/aYO2jf/Az377
http://paperpile.com/b/aYO2jf/Az377
http://paperpile.com/b/aYO2jf/Az377
http://paperpile.com/b/aYO2jf/Az377
https://doi.org/10.1101/520353
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

TABLES 

 
Table 1. Performance of VarCoPP on independent 10, 30, 100 and 300 random gene panels and on specific gene panels for BBS and autism genes 

(SFARI category 1 - high confidence, category 2 - strong candidate and category 3 - suggestive evidence), iterated 100 times on 100 random 1KGP 

individuals (Sd = standard deviation, TNs = True Negatives, FPs = False Positives).  

 

Gene 
panels 

10  
Random 

30  
Random 

100  
Random 

300  
Random 

21 
BBS   

24  
SFARI 1 

79  
SFARI  
1 + 2 

237  
SFARI 
 1+2+3 

Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd 

combinations 3.03 1.9 14.12 12.9 143.63 81.8 1,312 463.8 8.83 12.9 11.99 15.9 146.51 161.4 1672.06 1548.2 

% TNs, 

SS=0 

74.65 19.5 74.87 15.5 72.87 10.9 73.02 6.5 58.24 35.5 90.04 17.9 86.02 12.9 79.88 6.94 

% FPs 7.23 11.6 6.54 8.9 7.93 6.8 7.39 3.4 12.66 20.4 1.99 7.4 2.81 5.0 4.22 3.2 

% 95-zone 

FPs 

4.62 8.9 4.48 7.8 5.53 5.4 5.13 2.7 8.45 16.2 1.39 4.9 2.02 4.1 2.75 2.4 

95-zone FPs 0.16 0.4 0.73 2.1 7.15 7.2 67.27 50.4 1.04 2.4 0.19 0.6 3.18 6.6 48.71 58.6 

% 99-zone 

FPs 

0.81 2.7 0.78 2.4 0.88 1.2 0.88 0.7 2.44 7.3 0.44 2.6 0.46 1.3 0.48 0.76 

99-zone FPs 0.03 0.1 0.11 0.4 1.16 1.5 11.86 11.5 0.35 0.9 0.03 0.2 0.67 1.9 7.80 11.7 
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Fig. 1. Examples of different cases of disease-causing bi-locus variant combinations present in an 

individual, and which can be detected by VarCoPP. (A) A “true digenic” case, where mutations on both 

genes should be present to trigger any symptoms of the disease. Individuals with the mutation in either one 

of the two genes remain unaffected. (B) One example of a “composite” case, where one mutation at the 

most pathological gene can be sufficient to show disease symptoms (see affected parent), but the second 

mutation affects the severity of symptoms or the age of onset. (C) One example of a dual molecular 

diagnosis case, which concerns the simultaneous aggregation of variants that cause two independent 

Mendelian diseases, with or without overlapping phenotypes.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2019. ; https://doi.org/10.1101/520353doi: bioRxiv preprint 

https://doi.org/10.1101/520353
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2019. ; https://doi.org/10.1101/520353doi: bioRxiv preprint 

Sofia Papadimitriou


https://doi.org/10.1101/520353
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Fig. 2. Overlapping variants and bi-locus combinations between DIDA and the 1KGP. (A) Statistics on 

1KGP individuals carrying at least one DIDA independent variant or a disease-causing bi-locus 

combination. (B) Histogram of 1KGP individuals carrying one or more independent DIDA variants. (C) 

Histogram of the DIDA bi-locus combinations found in 1KGP and the diseases they are leading to.  
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Fig. 3. Summary of the methodology procedure for the construction of VarCoPP and the validation process 

(A) Genes and variants were filtered in the same way for both 1KGP and DIDAv1. Individuals of the 1KGP 

project carrying DIDAv1 combinations, as well as the overlapping combinations, were filtered out. Exonic 

variants (SNPs and indels) were used with a MAF frequency of ≤ 3%, including intronic and synonymous 

variants close to the exon edges (r13 nt). The genes involved in the procedure were only confirmed protein-

coding genes, following the gene types present in DIDAv1. (B) A bi-locus variant combination is represented 

using four variant alleles (two alleles for gene A and two alleles for gene B). Gene A is the gene with the 

lowest Gene Damage Index (GDI) score, thus with the higher probability of being a pathological gene. 

Variant alleles inside the same gene were ordered based on their CADD pathogenicity score, with the first 

variant allele of that gene always having the highest CADD score. The initial number of biological features 

used for classification was 21, but the final selected and more relevant features were filtered to 11. These 

included information at the variant level (Flex1 and Hydr1, i.e. flexibility and hydrophobicity amino acid 

differences of the first variant allele of gene A, as well as CADD1, CADD2, CADD3, CADD4, i.e. the CADD 

scores of the four alleles of a bi-locus combination), gene level (RecA, RecB, HI_A, HI_B, i.e. gene 

recessiveness and haploinsufficiency probabilities) and gene pair level (BiolDist, i.e. a metric of biological 

relatedness between two genes of a pair based on protein-protein interaction information). For a more 

detailed explanation of the features, see SI Appendix, Table S2. (C) After the filtering process, the 1KGP 

data set contained billions of bi-locus combinations compared to the DIDAv1 set, which contains 200 bi-

locus combinations. To solve this class imbalance problem, 500 random 1KGP samples, each containing 

200 bi-locus combinations, were extracted using two types of stratification: each sample contained an equal 

amount (40) of bi-locus combinations from individuals of each continent, as well as an equal distribution of 

degrees of separation between the genes of each pair, following the degrees of separation distribution of 

DIDAv1. Each 1KGP sample was used against the complete DIDAv1 set to train an individual classifier that 

gives a class probability for each bi-locus combination. Based on a majority vote among the individual 

classifiers, the output of VarCoPP for each tested bi-locus combination is the final class (“neutral” or 

“disease-causing”), a support score (i.e. the percentage of the classifiers agreeing about the pathogenic 

class, SS) and a classification score (i.e. the median probability among the individual predictors that the bi-

locus combination is pathogenic, CS). (D) To validate VarCoPP on new disease-causing data we collected 

23 bi-locus combinations from independent scientific papers, which included gene pairs not used during 

the training phase. To perform a confidence testing, we extracted three different random sets of either 100, 

1000 and 10000 bi-locus combinations from the 1KGP set, which included gene pairs not used during the 

training phase of VarCoPP. By exploring the number of False Positives (FPs) predicted with these sets, we 

defined 95% and 99% confidence zones that provide the minimum SS and CS boundaries above of which 

a bi-locus combination has 5% or 1% probability of being FP, respectively.  
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Fig. 4. Distribution of the predictions of DIDA and those of the independent test bi-locus combinations based 

on the classification score (CS) on the x-axis and the support score (SS) on the y-axis. (A). A SS>50 and 

CS>0.489 was required to label a bi-locus combination as disease-causing. The red box represents the 

area where a bi-locus combination is predicted as disease-causing, while the blue box represents the area 

where a bi-locus combination is predicted as neutral. (B) Distribution of disease-causing bi-locus 

combinations of DIDAv1 during a cross-validation procedure.  (C) Distribution of the 23 disease-causing bi-

locus combinations of the validation set. (D) Distribution of the 1000 neutral test set combinations. The 95% 

confidence zone has a minimal boundary of CS=0.55 and SS=75 and contains combinations with 5% 

probability of being false positives (FPs), while the 99% confidence zone has a minimal boundary of 

CS=0.74 and SS=100 and contains combinations with 1% probability of being FPs. 
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Fig. 5. Boxplot of the Gini importance for each feature among all 500 individual predictors of VarCoPP using 

the training DIDA and 1KGP data.  
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Fig. 6. Decision profile (DP) boxplots that show the class preference (or decision) gradients of each feature 

used for the classification of test bi-locus combinations. Features whose median decision gradient values 

among all classifiers of VarCoPP fall above 0 on the y-axis are in favor of the disease-causing class (red 

color), whereas features whose median decision gradient values fall below 0 on the y-axis are in favor of 

the neutral class (blue color). (A) A DP boxplot for a true positive bi-locus combination with support score 

(SS)=100 (SI Appendix, Dataset S1, testpos_21), where the vast majority of features have a median 

decision value above 0 (B) A DP boxplot for a true negative bi-locus combination with SS=0 (SI Appendix, 

Dataset S3, testneg_769), where all features have a median decision value below 0 agreeing for the neutral 

class. (C) An example of an indecisive DP boxplot for a neutral bi-locus combination of the set of 1000 test 

neutral combinations, which was predicted as disease-causing with of SS=51 (SI Appendix, Dataset S3, 

testneg_358). 
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