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Abstract 

Bioinformatics tools for fusion transcript detection from RNA-sequencing data are in general 

developed for identification of novel fusions, which demands a high number of supporting 

reads and strict filters to avoid false discoveries. As our knowledge of bona-fide fusion 

genes becomes more saturated, there is a need to establish their prevalence with high 

sensitivity. We present ScaR, a tool that uses a scaffold realignment approach for sensitive 

fusion detection in RNA-seq data. ScaR detects a set of 50 synthetic fusion transcripts from 

simulated data at a higher sensitivity compared to established fusion finders. Applied to 

fusion transcripts potentially involved in testicular germ cell tumors (TGCTs), ScaR detects 

the fusions RCC1-ABHD12B and CLEC6A-CLEC4D in 9% and 28% of 150 TGCTs, 

respectively. The fusions were not detected in any of 198 normal testis tissues. Thus, we 

demonstrate high prevalence of RCC1-ABHD12B and CLEC6A-CLEC4D in TGCTs, and 

their cancer specific features. Further, we find that RCC1-ABHD12B and CLEC6A-CLEC4D 

are predominantly expressed in the seminoma and embryonal carcinoma histological 

subtypes of TGCTs, respectively. In conclusion, ScaR is useful for establishing the 

frequency of known fusion transcripts in larger data sets and detecting clinically relevant 

fusion transcripts with high sensitivity.  

 

Availability: 

https://github.com/senzhaocode/ScaR 
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Introduction 

Fusion genes and fusion transcripts are important in cancer biology and are often entirely 

cancer specific, making them attractive as biomarkers. Their attention started with the 

discovery of the Philadelphia chromosome and the resulting BCR-ABL1 fusion in patients 

with chronic myelogenous leukemia (CML) (1–4). In the 1980s and 90s, multiple recurrent 

fusions were discovered and characterized with chromosome banding and fluorescence in 

situ hybridization (FISH). These techniques were biased towards detection of fusion genes 

in hematological cancers and fusions arising from interchromosomal rearrangements (5). 

With the advent of high-throughput parallel RNA sequencing (RNA-seq) technology, the 

nomination rate of novel fusion transcripts in both hematological and solid tumor types has 

exploded. This is underlined with 20731 fusion transcripts being detected in 9966 cancer 

samples (33 cancer types) from The Cancer Genome Atlas (TCGA) consortium alone (6). 

Importantly, 83 % of these fusion transcripts are detected in single cancer samples and are 

thus not recurrent. This statistic underlines that fusion transcripts are commonly expressed 

in cancer, often as a result of increased genomic instability, and that only a minority of 

these are selected for and act as oncogenic drivers. Therefore, to minimize the detection of 

additional non-recurrent or nomination of even non-existing (false positive) fusion 

transcripts, most available fusion finder tools have focused on maximizing specificity. 

 

Nevertheless, several recurrent fusion genes have been indicated as targetable molecular 

alterations in personalized cancer medicine. These includes for example fusion genes 

involving the kinase-encoding genes ALK and ROS1 in non-small cell lung cancer, BCR-

ABL1 in CML, and NTRK1, FGFR3 and BRAF in various cancer types (7). In fact, the FDA 

recently approved Vitrakvi (larotrectinib) as the second tumor-agnostic pan-cancer drug 

approved for patients harboring NTRK gene fusions without a known acquired resistance 

mutation, are metastatic or where surgical resection is likely to result in severe morbidity 

and have no satisfactory alternative treatments (8). In addition, highly cancer specific fusion 

transcripts have potential as biomarkers for disease detection, monitoring and predicting 

treatment response.  

 

The ability to detect these fusions at high sensitivity is therefore paramount. This will enable 

us to determine true prevalence of known fusion transcripts in cohorts of cancer patients, 

where existing fusion finder tools would provide underestimates in efforts of avoiding the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 14, 2019. ; https://doi.org/10.1101/518316doi: bioRxiv preprint 

https://paperpile.com/c/7NaDbw/CxaW+KEcZ+bwaT+geCA
https://paperpile.com/c/7NaDbw/6AnU
https://paperpile.com/c/7NaDbw/n1FK
https://paperpile.com/c/7NaDbw/rzRa
https://paperpile.com/c/7NaDbw/AaQB
https://doi.org/10.1101/518316
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

scoring of false positives. However, since we in those cases are not searching for novel 

fusions, we are not risking much by lowering the specificity demands. In more detail, much 

effort has been invested in developing approaches for fusion transcript detection from RNA-

seq data, and a long list of different tools have been developed for this task (Table S1). The 

performance of fusion finder tools has been shown to vary according to the data set to 

which they are applied, and none achieve a perfect sensitivity (9, 10). Most of the currently 

available tools use similar approaches to align reads, nominate fusion transcript 

breakpoints de novo based on supporting reads or read pairs and apply various filters to 

reduce noise from artifact fusion transcript sequences or the presence of chimeric 

transcripts in normal cells. A few of the tools available have an option to take a user 

provided list of known fusion genes and works to force the nominated fusion breakpoints 

through the list of strict filters (e.g. the --focus parameter in FusionCatcher). However, none 

of them provide a way to directly assess specific fusion breakpoints with high sensitivity. 

This is underlined in a case where a simple search of a chimeric sequence in raw 

sequencing data, using the unix tool “grep” outperformed the sensitivity of several 

established fusion finder tools (11). As the knowledge of fusion transcripts and their clinical 

impact expands together with an increasing amount of patients with RNA-seq data 

available, there is therefore a need for a tool that can establish the presence of already 

known and validated fusion transcripts in RNA-seq data with superior sensitivity. 

 

A type of cancer for which no recurrent fusion genes have been established as biomarkers 

or drug targets is testicular germ cell tumors (TGCT), which is the most commonly 

diagnosed cancer among young men (12). In fact, not much effort has been done to 

introduce genomics based personalised medicine for this disease. Although TGCT patients 

have among the highest survival rates, the treatment choices are few, and side effects are 

often profound. Further, since the patients are young, serious side effects may affect many 

decades of their life (13). Therefore, research on fusion genes as potential biomarkers or 

therapeutic targets in TGCT is of priority. We recently described the detection and 

characterization of recurrent fusion genes in TGCT (14). TGCT is a disease with distinct 

histological subtypes including seminomas and nonseminomas, where the latter can be 

subdivided into pluripotent embryonal carcinomas and more differentiated subtypes; 

teratomas, yolk sac tumors, and choriocarcinomas. The pluripotent phenotype of malignant 

TGCTs has similarities to that of embryonic stem cells (15). Studying these cancers can 

therefore shed light on cancer biology in a context of pluripotency. We previously also 
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showed that the expression of the fusion transcripts RCC1-ABHD12B and RCC1-HENMT1 

is reduced upon in vitro differentiation of the EC cell line NTERA2 (14). It is therefore of 

interest to explore the frequency and distribution of the, sometimes weak, expression of 

these previously identified fusion transcripts in larger cohorts of TGCTs. 

 

Based on the identified need for a sensitive approach to evaluate the recurrence of known 

fusion transcripts, we herein report the development of a new tool ScaR - Scaffold 

Realignment. We present benchmarking of ScaR on simulated data and apply it to 

investigate the prevalence of previously identified fusion transcripts in an extended cohort 

of TGCTs. 

Materials and Methods 

RNA-sequencing data 

We downloaded and processed paired-end RNA-seq raw fastq files of 150 TGCT samples 

from The Cancer Genome Atlas (TCGA) project (dbGAP accession: phs000178.v9.p8)(16). 

There were a median of 58.3 million pairs of reads per sample (min: 27.3 million - max: 

107.3 million) with read length of 48 x 2 bp (see Table S2 for detailed RNA-seq metrics and 

sample information). We further downloaded and processed paired-end RNA-seq raw fastq 

files of 198 normal testicular tissue samples of deceased individuals included in the 

Genotype-Tissue Expression (GTEx) project (dbGAP accession: phs000424.v6.p1)(17, 18). 

All GTEx tissue samples were taken from healthy testis and the cause of death of 

individuals is not related to cancer, according to clinical data from GTEx (Table S4). There 

were a median of 42.8 million pairs of reads (min: 27.8 million - max: 132.2 million) with 

read length of 76 x 2 bp (Table S2). Paired-end RNA-seq data from the ES cell line Shef3, 

as described in Hoff et al. (14), was used together with simulated RNA-seq data from 

synthetic fusion transcripts for benchmarking (see Benchmarking and data simulation). 

 

ScaR and the scaffold realignment approach 

The main purpose of Scaffold realignment is to evaluate the presence of known fusion 

transcripts with breakpoint sites at exon boundaries or within exon regions (Figure 1). 

Scaffold realignment seeks two types of sequence reads to support fusion transcripts, split 

reads (a read mapping directly across the fusion transcript breakpoint sequence) and 

spanning reads (i.e. the paired reads map to one fusion partner gene each). Split reads are 
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divided into two categories (Figure 1): discordant-split reads (i.e. the other read of the pair 

maps to the fusion gene partner A / B, or across the fusion transcript breakpoint sequence) 

or singleton-split reads (i.e. the other read of the pair does not map to the transcriptome or 

genome). The pipeline is divided into four steps: (i) build reference sequences (scaffolds), 

(ii) read alignment to reference sequences, (iii) read re-alignment to genome sequences 

and (iv) summarize split read alignments across samples. 
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Figure 1: Overview of the scaffold alignment approach - ScaR 
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Build reference sequences 

In the first step, a given breakpoint sequence supporting a fusion transcript is split in two 

sequences at the breakpoint site, which corresponds to Scaffold_partA and Scaffold_partB 

(Figure 1). If the sequences are longer than the read length used in the sequencing 

experiment, they are trimmed to match the length of the reads. Each sequence is then 

screened against all cDNA sequences of gene partners to match parental transcripts (3 

transcriptome assembly annotations are packaged with the tool: Ensembl release 89 as 

default, and GENCODE release 27 or UCSC annotation based on GenBank release 225 

and RefSeq release 86 as optional). ScaR also allows user-provided reference annotations 

if the breakpoint sequences are not previously annotated in the three transcriptome 

resources. If the sequence match more than one transcript, the longest one (e.g. GeneA-T1 

and GeneB-T1 marked as * in Figure 1) is selected to represent the gene. If the sequences 

are shorter than read length, the sequences are extended from the 5’-end of the matching 

transcript of Scaffold_partA and the 3’-end of the matching transcript of Scaffold_partB, 

respectively to match the read length. The extended sequences are re-assembled to a new 

breakpoint sequence scaffold, which together with the sequences of the targeted transcripts 

from gene A / B serves as a reference sequence for read alignment. 

Read alignment to reference sequences 

To detect the presence of reads supporting the fusion breakpoint, paired-end reads are 

aligned to the custom scaffold reference using HISAT2 (19). Briefly, an index of the custom 

scaffold reference sequence is built using hisat2-build with default parameters. Paired-end 

reads are then aligned to the reference sequences using --no-spliced-alignment model with 

--no-softclip setting. On the basis of the aligned SAM/BAM files, we retrieve three types of 

mapping reads: discordant-split reads, singleton-split reads and spanning reads. To 

increase mapping specificity, a minimum anchor length of 6 bp is required (by default) for 

split reads that map to the fusion breakpoint sequence (Figure 1). All supporting read-pairs 

of these three mapping types are extracted and saved as fastq files. 

Read re-alignment to genome sequences 

The supporting reads of a fusion breakpoint are further evaluated at a genomic level by 

aligning all extracted reads to the human reference genome (GRCH38) using HISAT2 --

spliced-alignment model with –no-softclip setting (Figure 1). Supporting reads that are 

found to align to multiple locations are filtered out. This approach improves specificity and 
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ensures that supporting reads that originate from repetitive sequences or gene homologs 

are not included in the support of a fusion breakpoint. In this step, singleton-split reads are 

also renamed as discordant-split reads if the unmapped read could be aligned uniquely to a 

gene partner at the genomic level. 

Summary of fusion breakpoint support and cohort level statistics 

A minimum support of two discordant-split reads are required to call a positive fusion 

breakpoint in a given sample. In addition, when the coverage of the fusion transcript is low, 

supported by only two or three split reads for each sample, the read coverage can show an 

uneven distribution between Scaffold_partA or Scaffold_partB regions. This uneven 

distribution can be attributed to either a sampling bias of a random distribution, or an 

indication of artifact fusion sequences. For a better overview of the mapping distribution for 

a given scaffold, split reads across all samples in a cohort can be concatenated and aligned 

to the scaffold sequence. A Fisher’s exact test is then applied to test whether there is a 

significant bias in the distribution of the number of reads mapped to the upstream and 

downstream parts of the fusion scaffold sequence (Figure 1). 

 

Benchmarking and data simulation 

To compare the performance of our scaffold alignment approach to that of established de 

novo fusion finders, we applied it together with deFuse v.0.7.0 (20) and FusionCatcher 

v.0.99.5a (21) on the external TGCT and normal testis data sets from TCGA and GTEx. We 

searched for the fusion transcripts RCC1-ABHD12B, RCC1-HENMT1, CLEC6A-CLEC4D 

and  EPT1-GUCY1A3, as previously identified and characterized in TGCT by Hoff et al. 

(14). The Unix command line tool grep was also applied as a simple blunt tool for 

comparison to our scaffold approach. A string of 15 bp matching the gene on each side of 

the known breakpoints (30 bp total) were searched for in the fastq files using grep and a 

minimum of two split reads were required for a positive call. 

 

To further benchmark our scaffold alignment approach on a controlled data set, we 

simulated RNA-seq reads from synthetic fusion transcripts using the MAQ v0.7.1 tool (22). 

Briefly, we simulated paired-end reads from in total 50 synthetic fusion transcripts. Here, 

the fusion transcripts were generated between random partner genes that were not 

paralogs and also with an intergenic distance of more than 50 kb. The minimum combined 

length of synthetic fusion transcripts was set to 500 bp, with a minimum upstream and 
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downstream sequence length of 100 bp. Paired-end reads (76 bp each) with settings of 

background mutation rate, -r = 0.0001, fraction of indels, -R = 0.01 and a insert size of 170 

bp (SD=25 bp) were simulated. Further, different amounts of synthetic reads to match a 

gradient sequencing depth of the synthetic fusion transcripts (5X, 10X, 20X, 30X, 50X, 80X, 

100X, 150X and 200X) were generated (See Table S3) and then mixed with the RNA-seq 

reads from the embryonic stem cell line Shef3 (background data). DeFuse, FusionCatcher 

and grep were then applied on this synthetic data set, with identical settings to that 

previously described. For the scaffold alignment approach, we generated scaffolds of the 

50 synthetic transcripts and required a minimum of two discordant split reads as support. 

The sensitivity of these tools to detect the synthetic fusion transcripts in different mixtures 

were compared and reported. 

 

TGCT hierarchical clustering and differential expression analysis 

To perform hierarchical clustering and differential expression analysis of the 150 TGCT 

samples from the TCGA cohort we acquired raw gene count data produced by HTSeq-

count from NCI’s Genomic Data Commons (http://xena.ucsc.edu) as well as clinical data 

including the International Classification of Diseases for Oncology (ICD-O) morphological 

codes (the latter being available for 134 of the 150 samples; Table S4). Mutation data for 

the 150 samples was also acquired from cBioportal. The DESeq2 R package (23) was used 

to perform data normalization and differential expression analysis. Genes that were not 

expressed across the cohort were removed from further analyses. Prior to performing 

principal component analysis (PCA) and hierarchical clustering, variance stabilizing 

transformation was applied on the raw counts. PCA was then performed with the top 500 

variable genes used for principal components. Hierarchical clustering was performed on the 

transformed raw counts using the top 50 most variable genes, clustering on both samples 

and genes. Clustered heatmaps were produced with the pheatmap R package, plotted 

together with annotation tracks including ICD-O histological subtypes, fusion transcript 

status (determined by ScaR) and mutation data of known TGCT driver genes. Mutation 

status was plotted for genes previously implicated in TGCT and that were mutated in two or 

more samples in the TCGA cohort. Differential expression analysis was performed on 

RCC1-ABHD12B positive samples vs negative samples and CLEC6A-CLEC4D positive vs 

negative samples, both controlling for the effect of ICD-O histology subtypes. 
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Results 

Overview of the ScaR workflow 

Here, we sought to establish the frequency of known fusion transcripts in a larger cohort of 

TGCT patients and we report the development of ScaR - a tool for sensitive detection of 

known fusion transcripts, which is openly available at 

https://github.com/senzhaocode/ScaR. ScaR takes any fusion scaffold sequence as input 

together with raw RNA-seq data, to return the number of spanning and discordant- / 

singleton- split reads supporting the scaffold sequence (Figure 1). Finally ScaR can 

summarize the number of of supporting reads across a larger cohort. We applied ScaR to 

investigate the recurrence of four previously described fusion transcripts (RCC1-ABHD12B, 

CLEC6A-CLEC4D, RCC1-HENMT1 and EPT1-GUCY1A3) in 150 primary TGCT samples 

using RNA-seq data from TCGA. Overall, we find that ScaR has a sensitivity which is 

superior to de novo tools such as  deFuse and Fusioncatcher and the basic grep method in 

detection of four known fusion transcripts in TGCT. 

 

Optimization of ScaR parameters 

To balance sensitivity and specificity for fusion transcript detection with ScaR, we 

investigated the sensitivity of detecting the TGCT fusion transcripts with a variable 

threshold. We also applied the de novo fusion finder tools, deFuse and FusionCatcher as 

well as the basic grep method, to provide a reference for the performance of ScaR. As 

expected, the detection rate decreased with increasing the minimal threshold of required 

split reads for all four methods, but ScaR consistently achieved a higher sensitivity 

compared with the other three tools when setting the threshold below 5 required split reads 

(Figure 2). All of the four tools show a low sensitivity of detection and a high false negative 

rate when strict criteria (split read number > 5) are applied for fusion nomination. To 

evaluate the reads mapping to the different scaffold sequences, ScaR has the ability to 

concatenate all supporting split reads from a given cohort (in this case the 150 TGCT 

samples) and align them to the scaffold. For example from this cohort, 59 samples have 

detectable RCC1-HENMT1 with a threshold set to one split read, but 51 of them have only 

one discordant-split read support (Figure 2C; Table S5). We found that 62 reads from 38 of 

the 51 samples aligned to a scaffold sequence that show a biased distribution around the 

scaffold breakpoint sequence with a shift towards the RCC1 part of the scaffold (p = 2x10-

12; Fisher’s exact test; Figure S1J), indicating that these are false positives. The same 
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pattern was observed for the fusion scaffold RCC1-ABH12B_alt1 (Figure S1B), but without 

a significant p-value, probably due to the small number of supporting reads. This coverage 

bias in the consensus of split read alignments indicates that the reads mapping to the 

breakpoint scaffold sequences of RCC1-HENMT1_alt1 and RCC1-ABH12B_alt1 are most 

likely mapping artifacts and that these fusion scaffolds represent false positives. These are 

therefore excluded from further analysis. Overall, from these results, we find that a minimal 

requirement of two discordant-split reads represents a good balance between sensitivity 

and specificity for fusion nomination by the ScaR approach, which is further used as a 

threshold for fusion detection in this study. 

 

Figure 2. ScaR performance on TGCT data from TCGA. Comparison of sensitivity between ScaR and other 

tools (deFuse, Fusioncatcher, grep and Combine; combination of the three other tools) for fusion transcripts 

RCC1-ABHD12B (A), CLEC6A-CLEC4D (B) and RCC1-HENMT1 (C) across 150 TCGA TGCT samples. The 

x-axes show an increasing threshold of minimum required supporting split reads. The y-axes show the 

number of samples with positive detection. 
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ScaR - Benchmarking using simulated fusion transcript read data 

To evaluate the performance of ScaR on a controlled data set, we simulated RNA-seq data 

from 50 synthetic fusion transcripts (Table S3). Various amounts of reads were simulated at 

5X to 200X coverage of these synthetic fusion transcripts  and mixed in silico with real 

RNA-seq data from the ES cell line Shef3 (48.1 million read pairs; 76 bp x 2). Briefly, 97.5 

% of the synthetic reads were found to map to the genome. We further compared the 

performance of ScaR, deFuse and FusionCatcher to detect these fusion transcripts. ScaR 

was able to detect 44 out of the 50 fusion transcripts (88 %) at 5X coverage of simulated 

data, with median of four split reads and one spanning read (Figure 3 and Table S3). In 

comparison, FusionCatcher and deFuse detected only 23 and 41 of the fusion transcripts at 

this level, respectively. When increasing the coverage of the synthetic fusion transcripts to 

10X and above, all 50 fusion transcripts were detected by ScaR. DeFuse was only able to 

detect all 50 synthetic fusion transcripts at 200X coverage and FusionCatcher reached a 

maximum of 45 detectable fusion transcripts. 

Figure 3. ScaR performance on simulated data. Benchmarking performance of ScaR, deFuse and 

FusionCatcher on simulated RNA-seq data showing the number of synthetic fusion transcripts detected at 

simulated coverage levels ranging from 5X to 200X. 

Known fusion transcripts in TGCT are frequently detected by applying ScaR to larger 

cohorts 

To further evaluate the performance of ScaR on real biomedical data we applied ScaR on 

the TGCT TCGA cohort to detect the previously described fusion transcripts. Specifically, 

for RCC1-ABHD12B (Figure 4A), ScaR detected the fusion transcript in 13 samples (8.7%) 

with at least two supporting discordant-split reads (Table S5). In comparison, deFuse, 

FusionCatcher and grep detected the fusion in only one (0.6%), five (3.3%) and eight 
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(5.3%) samples, respectively. By merging the results from these three tools, RCC1-

ABHD12B was detected in 10 unique samples, where all except one sample (TCGA-XE-

A8H4; Figure 4A) overlapped with the positive samples from ScaR. ScaR failed to report 

the fusion transcript in this sample because one of two supporting split reads is a singleton-

split type (Table S5). ScaR detected RCC1-ABHD12B in four additional unique samples 

compared to the other three tools. For CLEC6A-CLEC4D (Figure 4B), we evaluated six 

different fusion breakpoint scaffolds between the two neighbouring genes, as have 

previously been reported ((14);Table S5). Samples with reads supporting any of these 

scaffold sequences were regarded as positives. In total, ScaR detected the fusion transcript 

in 42 (28%) samples, which is higher compared to the frequency identified by deFuse (11; 

7.3%), FusionCatcher (33; 22%) and grep (23; 14.7%). Importantly, five of 42 samples 

detected as positive by ScaR failed to be nominated by any of the three other tools. All 

positive samples except three cases detected by the deFuse, FusionCatcher or grep are 

also identified by ScaR. Two of these (TCGA-2X-A9D6 and TCGA-WZ-A8D5) are uniquely 

identified with grep and have two supporting split reads. For both samples, one of the reads 

show unspecific multiple alignment at genomic level and is therefore filtered out by ScaR. 

The third sample (TTCGA-VF-A8AA) is exclusively detected by deFuse. We found that the 

anchor length for supporting split read alignments for this sample is four bp, below the 

minimum requirement of ScaR. For RCC1-HENMT1, ScaR detected the fusion transcript in 

only one sample when not regarding samples with support for the unreliable RCC1-

HENMT1_alt1 scaffold. DeFuse, Fusioncatcher and grep failed to detect the fusion 

transcript in any of the 150 samples (Table S5). The fusion EPT1-GUCY1A3 could not be 

rediscovered by any of these four tools, with zero spanning and split reads identified. These 

findings indicate that EPT1-GUCY1A3 is most likely a private fusion event. We further 

investigated the scaffold alignments for the samples that were uniquely called by ScaR and 

not by any of the other tools. For RCC1-ABHD12B and CLEC6A-CLEC4D which were 

detected uniquely by ScaR in four and five samples, respectively, we found that the 

mapping qualities of the reads at the breakpoint sites were of high quality with an even 

distribution to upstream and downstream regions, suggesting the breakpoints are true 

positives (Figure 4A and 4B). 
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Figure 4. Fusion transcript detection in TGCTs. Overview of TGCT samples from TCGA (n = 150) that are 

positive for the  fusion transcripts RCC1-ABHD12B (A) and CLEC6A-CLEC4D (B) among the four tools: 

ScaR, deFuse, Fusioncatcher and Grep. Split read alignments of positive samples uniquely identified by ScaR 

are visualized using IGV. The ICD-O histology codes are shown as annotated by TCGA. 

 

TGCT fusion transcripts are malignancy specific and not detected in normal testis 

tissue samples from the GTEx consortium 

We furthermore evaluated the prevalence of these fusion transcripts in 198 normal 

testicular samples from GTEx project using ScaR. In brief, none of the investigated fusion 

transcripts could be detected in any of the normal samples (Table S6). For the fusion 

transcript CLEC6A-CLEC4D where the two genes are located only 30 kb apart on 

chromosome arm 12p, we detected only two split reads and one spanning read all in 

distinct samples across the 198 samples. Therefore, none of the samples pass the 

threshold for detection. Similarly, no split or spanning reads are identified for RCC1-

ABHD12B and one spanning read is identified for RCC1-HENMT1 across all 198 GTEx 

samples. Importantly, reads from the GTEx data aligned to genome show a high mapping 

percentage with a median value of 93.5% (only one sample < 85%) compared to 95.5 % for 

the TCGA tumor samples. Additionally, the GTEx samples have a median sequencing 

output of 6.5 Gbp compared to the median sequencing output of the TCGA tumor samples 

of 5.6 Gbp. These results indicates that the failure to detect the investigated fusion 
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transcripts in normal GTEx samples is not due to differences in sequencing power between 

the cohorts, and that these fusion transcripts are specifically present in TGCT and not in 

normal tissue of the testis. This is in accordance with previously published experimental 

RT-PCR data (14), although then from relatively few samples. 

 

CLEC6A-CLEC4D and RCC1-ABHD12B are more frequently detected in the 

undifferentiated seminoma and embryonal carcinoma like subgroups, respectively 

To investigate the biological associations of the frequently identified fusion transcripts 

CLEC6A-CLEC4D and RCC1-ABHD12B in data from the TCGA cohort, we performed 

principal component analysis on gene expression data from the 150 TGCT samples. Not 

surprisingly, we found that the samples cluster roughly into three groups that correspond 

well to the annotated ICD-O histological subtypes by TCGA (Figure S2A). The three groups 

comprise mostly of seminomas, embryonal carcinomas and a third subgroup with the more 

differentiated histological subtypes and a high frequency of mixed tumors. Further, we 

performed hierarchical clustering with the 50 most variable genes across the cohort and 

annotated the samples with somatic mutation calls in known TGCT driver genes, as well as 

the fusion transcript status, as determined by ScaR (Figure 5). Amongst the top 50 most 

variable genes we found some of the commonly described stem cell associated genes, 

such as NANOG, POU5F1 and SOX2. Intriguingly, we saw a clear enrichment of CLEC6A-

CLEC4D expressing samples within the seminoma-like subgroup (p < 0.0001, Fisher’s 

exact test; Figure 5 and Figure S2C) together with frequent KIT and KRAS mutations. For 

RCC1-ABHD12B there was a clear association with the embryonal carcinoma-like 

subgroup, with 12/13 positive samples clustering within this group (p < 0.0001; Figure 5 and 

Figure S2B). CLEC6A-CLEC4D and RCC1-ABHD12B were also largely mutually exclusive, 

except for in two samples that either had a mixed germ cell tumor or unavailable 

histological subtype. Further, by differential expression analysis we also found that RCC1 

and ABHD12B were significantly upregulated in the RCC1-ABHD12B positive subgroup 

(Figure S3A). Also, both CLEC6A and CLEC4D were among the highest ranked 

upregulated genes in the CLEC6A-CLEC4D subgroup (Figure S3B). 
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Figure 5. Fusion transcripts in TGCT and associated molecular features. Heatmap showing fusions, 

somatic mutations, and RNA expression (normalized RNA-seq counts) of the 50 most variable genes across 

the TCGA cohort. Individual samples are clustered along the horizontal axis while genes are clustered on the 

vertical axis. Annotation tracks include ICD-O histology codes, and fusion transcript status for RCC1-

ABHD12B, RCC1-HENMT1 and CLEC6A-CLEC4D. Somatic mutation status for genes known to be 

recurrently mutated in TGCT are also shown and colored according to mutation type.  
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Discussion 

We have developed, tested, and applied the bioinformatics tool ScaR for sensitive detection 

of known fusion transcripts in RNA-seq data. ScaR efficiently implements a direct scaffold 

realignment approach, and we have benchmarked the tool on simulated data. Importantly, 

we have evaluated previously described fusion genes in TGCTs in larger cohorts from the 

TCGA and GTEx consortia, and demonstrated that ScaR achieves a high sensitivity for 

known fusions compared to de novo fusion finder tools. 

 

The improved sensitivity will be of value as an expanding array of fusion genes with clinical 

impact are uncovered. Already, multiple fusion genes occurring in cancer are predictive for 

response to kinase inhibitors, and establishing the presence of such fusion genes and their 

fusion transcript products in patients prior to treatment is of importance. Improved detection 

sensitivity for a fusion transcript biomarker can also be important in monitoring a patient’s 

response to treatment or in detecting minimal residual disease, e.g. detecting the presence 

of BCR-ABL1 in patients undergoing treatment with the kinase inhibitor imatinib. By looking 

specifically for the fusion transcripts of interest and thereby circumventing the need for strict 

filters and thresholds to avoid false positives, due to biological and technical noise in RNA-

seq data, our approach with ScaR could be better suited for these purposes. Also, as RNA-

seq data from more patients and cancer types are becoming available, establishing the 

prevalence of known fusion transcripts in expanded and new cohorts are of importance. For 

instance, fusion genes involving the kinases ALK, RET, ROS1 and BRAF have been found 

in multiple cancer types, expanding the repertoire of cancers that kinase inhibitors could 

target (24). 

  

We show that our tool has an improved sensitivity compared to the established fusion gene 

detection tools deFuse and FusionCatcher, both by using simulated data and on real data 

from TCGA. Although, there are tens of fusion finder tools available, most fusion finder tools 

build on similar principles by read-alignment, detection of reads or read-pairs that support a 

fusion breakpoint and applying different filtering criteria. We carried out this comparison 

using deFuse and FusionCatcher on the basis that deFuse has been an established fusion 

finder tool for many years (and still maintained) and that FusionCatcher have repeatedly 

performed well in independent comparison studies on multiple data sets (9, 10, 20). Most 

de novo fusion tools relies on spanning reads to nominate gene partners of fusion genes 
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and split reads are consequently used to refine the exact breakpoint sequences. The 

amount of spanning read pairs for a given fusion breakpoint is highly dependent on the 

insert size of the read-pairs in each RNA-seq library. In fact, in sequencing libraries with 

very short or negative insert sizes (overlapping single-end reads) the number of supporting 

spanning reads may be very low or completely absent leading to a reduced sensitivity of 

detection. By providing ScaR with an already known fusion breakpoint we can avoid this 

bias of insert size. ScaR therefore uses split-reads as the main support for a given fusion 

breakpoint, but also provides the supporting spanning reads in the output, which may be 

used for downstream purposes. This is one of the major impacts on the improved sensitivity 

we see with ScaR compared to de novo fusion tools. The unix tool grep, which we also 

compared to, has been used as a direct approach to indicate the presence of fusion 

transcripts from RNA-seq data (11). However, this approach suffers from requiring a perfect 

match to the query sequence in RNA-sequencing reads, not allowing for single 

mismatches, indels or variable anchor lengths. Also, the supporting reads from the grep 

approach are not confirmed to be unambiguously mapping to the breakpoint sequence, or if 

they potentially map ambiguously to multiple sequences in the genome. ScaR circumvents 

these drawbacks and improves the sensitivity and specificity compared to the basic grep 

tool, by using a dedicated aligner for aligning reads to a fusion specific scaffold sequence 

and further mapping supporting reads back to the genome to avoid ambiguous supporting 

reads. 

 

ScaR requires the use of a transcriptome annotation and generates the fusion scaffold from 

exonic sequences of transcripts matched to the input breakpoint sequence. Currently, we 

include three options of major transcriptome annotation resources (Ensembl, GENCODE 

and UCSC) in ScaR. In addition, we allow a user-defined annotated reference sequence as 

input, which could involve non-coding sequences from intronic and intergenic regions. It 

extends the functionality of ScaR to evaluate fusion transcripts from alternative promoter or 

new splicing events that are not previously annotated in any of the three major 

transcriptome annotations. 

 

Here, our aim was to validate the presence and explore on the prevalence of fusion 

transcripts we previously discovered to be recurrent in a small cohort of TGCTs (14), in a 

larger cohort from TCGA. Admittedly, we initially found that the frequency of samples 

positive for these fusion transcripts was much lower than what we previously established 
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with quantitative real-time PCR in our cohort of TGCTs. We therefore explored if these 

fusion transcripts could be expressed at low levels in a larger number of samples, and that 

more sensitive approaches were needed to detect this signal in RNA-seq data. By 

developing and applying ScaR we discovered that these fusion transcripts, especially the 

read-through CLEC6A-CLEC4D and the interchromosomal fusion RCC1-ABHD12B, are 

detectable in a higher frequency of TGCTs than what could be established with de novo 

fusion finder tools. Importantly, we also show that our sensitive detection approach with 

ScaR does not uncover these fusion transcripts in any samples from a large cohort of 

normal testis samples (GTEx), indicating that these fusion transcripts, albeit being 

expressed at low levels, are cancer-specific. Further, by hierarchical clustering on gene 

expression data from the TCGA, we show that the TGCT samples cluster according to their 

histological subtypes (16), in line with previous publications on gene expression in TGCT 

(25). From the heatmap in Figure 5, we see that CLEC6A-CLEC4D is significantly enriched 

in samples of the undifferentiated seminoma-like cluster, while RCC1-ABHD12B is 

significantly enriched in samples of the undifferentiated embryonal carcinoma-like cluster. 

These findings support our previous results that showed that RCC1-ABHD12B expression, 

but not CLEC6A-CLEC4D expression, was significantly reduced when a pluripotent 

embryonal carcinoma cell line (NTERA2) was differentiated in vitro (14). These 

observations support a biological significance of these fusion transcripts being markers of 

pluripotent TGCTs. 

Conclusion 

We have developed ScaR, a tool that uses a scaffold alignment approach for sensitive 

detection of known fusion transcripts in RNA-seq data. Such sensitive detection of known 

fusion transcripts will be of importance in personalized cancer medicine. Further, we have 

used ScaR to establish that the RCC1-ABHD12B and CLEC6A-CLEC4D fusion transcripts 

are frequently detected in TGCTs and associated with the undifferentiated embryonal 

carcinoma and seminoma histological subtypes.  
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Supplementary files 

Figure S1.  Split reads across 150 TCGA TGCT samples are concatenated and aligned to 

the ten chimera scaffold sequences. The number of reads aligned to mostly upstream and 

downstream regions of the scaffold breakpoint is indicated as “x | y”, where the breakpoint 

is indicated by a red dotted line, and a P value for the estimate of mapping biases towards 

either part of the scaffold sequence from a Fisher’s exact test is shown. 

 

Figure S2. The first two components from principal components of gene expression data 

from the 150 TCGA TGCT samples. Data from the top 500 variable genes were used as 

input. Samples are colored according to:  A) histology subtype (ICD-O codes), and 

detection of the fusion transcripts B) RCC1-ABHD12B, C) CLEC6A-CLEC4D and D) RCC1-

HENMT1.  

 

Figure S3. Boxplots of log2-transformed normalized count values for A) RCC1 and 

ABHD12B grouped by RCC1-ABHD12B fusion transcript status, as determined by ScaR 

and B) CLEC6A and CLEC4D grouped by CLEC6A-CLEC4D fusion transcript status. 

Adjusted p-values from differential expression analysis using DESeq2 and controlling for 

ICD-histology effect contribution are shown.  

 

Table S1. Compiled list of fusion finder tools. The number of citations were extracted from 

Google Scholar January 2019. 

 

Table S2. Total number of paired end reads and mapping statistics from the 150 TGCT 

TCGA samples and the 198 normal testis samples from GTEx. 

 

Table S3. Summary of the RNA-sequencing data simulated by the MAQ tool and used for 

benchmarking. The 50 fusion genes and their respective gene partners are listed. Further, 

mapping statistics are shown and results from ScaR, deFuse and FusionCatcher. 

 

Table S4. Clinical annotation of the 150 TCGA and 198 GTEx samples. 
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Table S5. Results from deFuse, FusionCatcher, grep and ScaR for detecting the fusion 

transcripts RCC1-ABHD12B, CLEC6A-CLEC4D, RCC1-HENMT1 and EPT1-GUCY1A3 in  

150 TCGA TGCT samples. The scaffold sequences used for ScaR are also listed. 

 

Table S6. Results from ScaR for detecting fusion transcripts RCC1-ABHD12B, CLEC6A-

CLEC4D, RCC1-HENMT1 and EPT1-GUCY1A3 in 198 normal testis samples from GTEx. 
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