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ABSTRACT

Large-scale cohorts with combined genetic and phenotypic data, coupled with methodological

advances, have produced increasingly accurate genetic predictors of complex human phe-

notypes called polygenic risk scores (PRS). In addition to the potential translational impacts

of identifying at-risk individuals, PRS are being utilized for a growing list of scientific applica-

tions including causal inference, identifying pleiotropy and genetic correlation, and powerful

gene-based and mixed model association tests. Existing PRS approaches rely on external

large-scale genetic cohorts that have also measured the phenotype of interest. They further

require matching on ancestry and genotyping platform or imputation quality. In this work we

present a novel reference-free method to produce PRS that does not rely on an external

cohort. We show that naive implementations of reference-free PRS either result in substan-

tial over-fitting or prohibitive increases in computational time. We show that our algorithm

avoids both of these issues, and can produce informative in-sample PRS over any existing

cohort without over-fitting. We then demonstrate several novel applications of reference-free

PRS including detection of pleiotropy across 246 metabolic traits and efficient mixed-model

association testing.

Keywords: PRS, polygenic risk score, linear mixed model, PCA, population structure, cryptic
relatedness, confounding, BLUP, cross-validation

INTRODUCTION
Individual genetic polymorphisms typically explain only a small proportion of the heritability,
even for traits that are highly heritable [Nolte et al. (2017)]. Polygenic risk scores (PRS),
aggregate the contributions of multiple genetic variants to a phenotype [Torkamani et al. (2018)].
These scores can be calculated using routinely recorded genotypes [Torkamani et al. (2018);
Nolte et al. (2017)], are strongly associated with heritable traits [Nolte et al. (2017)], and are
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independent of environmental exposures or other factors that are uncorrelated with germ line
genetic variants. These properties have motivated a rapidly expanding list of applications from
basic science (e.g. causal inference and Mendelian randomization [Burgess and Thompson
(2013)], hierarchical disease models [Cortes et al. (2017)], and identification of pleiotropy
[Krapohl et al. (2016)]) to translation (e.g. estimating disease risk [Khera et al. (2018); Maas
et al. (2016)], identifying patients who are likely to respond well to a particular therapy [Natarajan
et al. (2017)], or flagging subjects for modified screening [Seibert et al. (2018)]).

Polygenic risk scores are calculated as a weighted sum of genotypes. In some applications all
genotyped SNPs may be used, but often only a small set are given nonzero weight. A subset of
SNPs selected to contribute to a PRS may be a genome-spanning-but-uncorrelated (LD-pruned)
set or a set of SNPs with independent evidence of association with the phenotype of interest.
Gene-specific polygenic risk scores are also generated using selected sets of SNPs within a
region of the genome, such as a window around the coding region of a particular gene [Gusev
et al. (2016); Gamazon et al. (2015)]. The weights on the SNPs included in a polygenic score
are often derived from the marginal regression coefficients of an external GWAS [Dudbridge
(2016); Wray et al. (2007)], but they may instead be based on predictive models using all SNPs.
Joint predictive models include LMMs and their sparse extensions [Yang et al. (2011); Zhou
et al. (2013); Vilhjálmsson et al. (2015)] and other regularized regression models such as the
lasso or elastic net [Warren et al. (2014); Gusev et al. (2016); Gamazon et al. (2015); Rakitsch
et al. (2012)]. The predictions from these joint analyses using genome wide variation are also
approximated by post-processing of GWAS summary statistics [Vilhjálmsson et al. (2015);
Gusev et al. (2016)].

For these SNP weights to accurately reflect the SNPs’ joint association with the phenotype
and to generate informative and interpretable polygenic risk scores, the reference data set must
match the target data set in many ways: the populations must have similar ancestry; the trait
of interest must be measured and in a similar way; and identical genotypes must be assayed or
imputed. Further, the reference data must be large enough to accurately learn the PRS weights.

An alternative approach is to use the studied data set to build a reference-free PS. This
eliminates the need for an external reference data set with matched genotypes, phenotypes, and
populations. However, as we show below, naive approaches can easily over-fit genetic effects.
This over-fitting results in PRS correlated with non-genetic components of phenotype, that will
induce bias or other errors in downstream applications. Cross-validation is one established
approach to mitigate over-fitting, which in this context involves holding out and computing a
polygenic score for each sample in turn. The main hurdle to this approach is computation time,
as standard leave-one-out cross validation requires fitting the PRS model N times in a sample
with N individuals.

Here we report an efficient method to generate PRS by using the out-of-sample predictions
from a cross-validated linear mixed model (LMM). Our approach generates leave-one-out
(LOO) polygenic risk scores, which we call cvBLUPs, with computational complexity linear
in sample size after a single LMM fit. In addition to eliminating the reliance on external
data and guaranteeing the PRS are generated from a relevant population and phenotype, we
describe several applications that are only feasible with cvBLUPs. We first demonstrate several
desirable statistical properties of cvBLUPs and then consider applications including evidence
of polygenicity across metabolic phenotypes, a novel formulation of mixed model association
studies, and selection of relevant principal components for control of confounding by population
structure. To facilitate their use, we have incorporated the calculation of cvBLUPs in the in the
genetic analysis program GCTA [Yang et al. (2011)].
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METHODS
We consider the continuous phenotype y measured on N individuals which depends on an
N-by-M matrix of additively coded genotypes G, other covariates X , and random noise e:

y = Xb +GbG + e

e ⇠ N
�
0,s2

e IN
� (1)

For each subject i, the polygenic score PSi is calculated as in Equation 2:

PRSi = Â
SNP j2S

gi j
bbg, j. (2)

where S is the set of SNPs in the polygenic model, gi j is the number of alleles corresponding to
the SNP weights at SNP j carried by subject i, and bbg, j is the SNP weight. bbg, j is often chosen to
be the estimated effect size of SNP j in an external GWAS.

Our objective is to produce a leave-one-out cross-validated polygenic score (PRS) for each
subject. We generate our PRS as a genetic prediction from a linear mixed model (LMM). LMMs
are widely used for genetic prediction [Robinson et al. (1991)], heritability estimation [Yang et al.
(2010); Kang et al. (2008, 2010); Lippert et al. (2011); Zhou and Stephens (2012)], and other
polygenic analyses [Lee et al. (2012); Zhou and Stephens (2012); Kang et al. (2008); Lippert
et al. (2011)]. The LMM (Equation 3) jointly models the contributions of all SNPs Z and other
covariates X to the phenotype y. Following others [Yang et al. (2011)], we define Z by centering
and scaling columns of G to have mean 0 and variance 1.

y = Xb +Zb+ e

b ⇠ N
⇣

0, s2
g

M IM

⌘

e ⇠ N
�
0,s2

e
�

(3)

The key LMM parameters are the genetic variance s2
g and the noise variance var(e) = s2

e .
We estimate these by REML [Patterson and Thompson (1971); Kang et al. (2008); Yang et al.
(2011)] or Hasman-Elston regression [Chen (2014)]. These variance estimates are then used to
estimate b, the genetic effect sizes (i.e. weights), or Zb, the genetic predictions (i.e. BLUPs):

bb =
bs2

g
M ZTbS�1(y�X bb ), (4)

Zbb = Z
bs2

g
M ZTbS�1(y�X bb )

= bs2
g KbS�1(y�X bb )

= Hỹ

= byBLUP

(5)

where K is the genetic relatedness matrix (GRM) computed from the centered and scaled
genotypes Z by K = 1

M ZZT . The estimated phenotypic covariance, bS = bs2
g K + bs2

e IN , where IN
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is the N-by-N identity matrix, decomposes the covariance to components due to shared genetics
(Zb) and to noise (e).

While the BLUPs in Zbb could be used as a polygenic score, we show below that this in general
over-fits the noise (e) and is therefore inappropriate for most PRS applications. To address this
problem, we propose to use leave-one-out (LOO) cross-validated BLUPs instead of ordinary
BLUPs, which guarantees independence between genetic predictions and e . Unfortunately,
standard LOO approaches will multiply computational time by a factor of N.

We avoid this penalty by leveraging the fact that for linear models, where fitted values are
a linear transformation of phenotypes, by = Hỹ, the LOO prediction errors can be calculated
from a single model fit [Hastie et al. (2009)]. BLUPs from LMMs fall in this category of
linear predictors by applying H := bs2

g KbS�1 to ỹ := (y�X bb ), i.e. the phenotype after removing
estimated fixed effects.

In more detail, the LOO prediction errors are the differences between the LOO genetic
predictions and the observed residual phenotypes after subtracting fixed effects, ei,loo = yi,loo� ỹi.
The residuals r are the difference between the BLUPs and the residual phenotypes ri = Zibb� ỹi.
For a linear model, these are related by a simple equation [Hastie et al. (2009)]:

ei,loo =
ri

1�Hi,i
(6)

where Hi,i is the i’th diagonal element of the matrix H. Intuitively this says that due to over-fitting,
the in-sample residuals ri are deflated by (1�Hi,i) relatively to their unbiased LOO counterparts.

We can rearrange these expressions to calculate the LOO predictions, or cvBLUPs, given
the standard BLUPs, the phenotype residuals ỹ = y�X bb , and the diagonal elements of the H
matrix:

byi,cvBLUP =
byi,BLUP �Hi,iỹi

1�Hi,i
(7)

Because all of these elements are computed when fitting an LMM, cvBLUPs can be produced
with no additional computational complexity.

RESULTS

Empirical confirmation of cross-validated predictions
To examine the properties of the proposed cvBLUP formulation we conducted a set of simulations.
We generated 1000 data sets with N = 1000 subjects under the model y = Xb +gbg +Zb+ e .
X consists of 5 normally distributed covariates and Xb jointly explain 20% of the phenotypic
variance. g represents an additively coded SNP with allele frequency 0.5, and gbg contributes
2% of the phenotypic variance. Z represents M = 1000 independent SNPs with minor allele
frequencies drawn i.i.d. and uniformly from [0.05,0.5]. Effect sizes b j are drawn i.i.d. from

N
⇣

0, s2
g

M

⌘
with the genetic variance s2

g accounting for 39% of the phenotypic variance. The

residual noise e ⇠ N
�
0,s2

e
�

also accounts for 39% of the phenotypic variance, giving a heri-
tability h2 ⇡ 50%. For each simulated data set, we first estimate variance components and then
compute BLUPs and cvBLUPs as described above.

Figure 1 shows scatter plots for one simulation of non-genetic (e) and genetic factors (Zb)
plotted against in-sample BLUPs (Left) and cvBLUPs (Right). As expected, the standard BLUPs
are highly correlated with e but the cvBLUPs are not, a central required property of genetic
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predictors for most applications. In contrast, both BLUPs and cvBLUPs are highly correlated
with the true Zb, emphasizing the subtlety in constructing valid polygenic risk scores.

Table 1 shows the mean correlations of true simulated values with standard BLUPs and
cvBLUPs. Again, standard BLUPs are clearly correlated with the noise term e due to over-fitting,
but cvBLUPs are appropriately uncorrelated with e . Standard BLUPs, but not cvBLUPs, are
also correlated with the unmodeled causal SNP. This type of correlation causes downstream
problems for residual analyses, predictions, and causal inference. Importantly, the cvBLUPs are
independent of all unmodeled effects as desired.

BLUP cvBLUP
y 0.8241 (0.0013) 0.4058 (0.0013)

Xb 0.0004 (0.0007) 0.0005 (0.0009)
Zb 0.7884 (0.0005) 0.6212 (0.0008)

e 0.4749 (0.0008) 0.0009 (0.0012)
Unmodeled Causal SNP 0.0840 (0.0010) 0.0009 (0.0010)

Unmodeled Null SNP 0.0006 (0.0010) 0.0012 (0.0010)

Table 1. Mean correlations (and standard errors) of BLUPs and cvBLUPs with each
component of the additive simulation model, y = Xb +gbg +Zb+ e . Statistically significant
correlations (a = 0.05) in bold face.
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Figure 1. Correlations of genetic predictions, BLUP and cvBLUP, with true genetic factors Zb
and independent environmental factors e in a simulation of a continuous phenotype with
h2 ⇡ 50%, 1000 subjects, and 1000 independent SNPs having random effect sizes. BLUPs are
correlated with e while cvBLUPs are not. Lines and p-values are from linear regression fits. R2

values: A:0.21, B:0.0019, C:0.64, D:0.38.

Genetic predictions and cross-trait predictions using cvBLUPs
We next applied cvBLUP in an analysis of Finnish men from the METSIM cohort [Laakso et al.
(2017)]. This cohort is comprised of 10197 men aged 45 to 73 at recruitment between 2005 and
2010 in Kuopio, Finland. Blood serum samples were collected from each participant, and 228
metabolites in the samples were quantified by NMR. In addition to the metabolites, biometric
traits including height and weight, and epidemiological traits such as diagnoses or family history
of diabetes and CHD were recorded for a total of 248 phenotypes. Continuous phenotypes were
quantile normalized. All samples were genotyped at 665,478 SNPs on the Illumina OmniExpress
chip. After removing subjects with missing rates above 5 percent and SNPs with missing rates
above 5 percent, 10070 subjects and 609131 SNPs remain.

We initially consider genetic predictions of the metabolic, biometric, and epidemiological
traits in an unrelated subset of subjects (with genetic relatedness less than 0.05). Since the
metabolic traits are expected to be affected by statins and by pharmaceutical interventions
for diabetes, we exclude subjects with diabetes or who use statins from the initial analysis
and calculation of cvBLUPs. There are no comparable data sets with the set of metabolic
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measurements available in the METSIM cohort, but cvBLUPs allow computationally efficient
genetic predictions of all 246 phenotypes (excluding diabetes status and statin use). With the
genetic prediction models learned in the restricted set of subjects, we extended predictions to the
excluded subjects with standard BLUP effect size estimates (Equation 4). Thus, cvBLUPs allow
analyses of reference-free genetic predictions in a subset of subjects that is restricted to avoid
confounding by known environmental exposures (statins and responses to diagnoses of diabetes)
or by family structure; and these genetic predictions may then be extended to subjects who are
initially excluded to avoid confounding.

We first estimated s2
g and s2

e for each phenotype using linear mixed models [Yang et al.
(2011)]. Overall, 198 of 246 phenotypes have statistically significant heritability at the 0.05
significance level by Wald tests. The significant heritabilities range from 14.6 to 46.1 percent
with a mean and standard deviation of 27.5 and 8.0 percent respectively. The 48 non-significant
heritabilities range from 0 to 14.4 percent with a mean and standard deviation of 8.3 and
4.3 percent respectively. We next used the method described above to compute leave-one-out
polygenic risk scores (i.e. cvBLUPs). Figure 2 and Supplemental Table 12 show the correlation of
the phenotypes (rows) with cvBLUPs (columns) for all 246 phenotypes grouped by hierarchical
clustering [Kolde and Kolde (2018)] of rows and applying the same permutation to columns. The
blue diagonal shows the expected positive correlation between a cvBLUP and its own phenotype
with mean 0.065 and standard deviation 0.037. Focusing on the 198 traits with significant
heritabilities the correlations of cvBLUP and phenotype have mean 0.078 and standard deviation
0.027.

The off-diagonal blue patches in the figure represent cvBLUPs that are positively correlated
and predictive of different phenotypes, while red patches represent cvBLUPs that are predictive
but negatively correlated with different phenotypes. The off-diagonal correlations show the
widespread pleiotropy of genetic effects on metabolism with over 16203 off-diagonal cvBLUP-
phenotype associations at FDR=0.05 [Benjamini and Yekutieli (2001)]. Many cvBLUP-trait
correlations are sign-consistent with the respective trait-trait correlations. For example, HDL and
LDL cholesterol are well known be negatively correlated [Terry et al. (1989)], and our results
demonstrate this is partially due to negative genetic pleiotropy. That is, we observe that SNPs
associated with increased LDL are also associated with decreased HDL in aggregate (and vice
versa).
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Figure 2. Correlations of phenotypes (rows) and genetic predictions (cvBLUPs, columns)
across 246 phenotypes. Many cvBLUPs are strongly correlated with additional phenotypes. A
larger version of the figure and a table of the correlations are included in the supplementary
materials

cvBLUPs in association testing

In addition to use in detection of pleiotropy, polygenic modelling is a widely used tool in
association testing [Kang et al. (2008); Yang et al. (2014); Lippert et al. (2011); Zhou and
Stephens (2012); Loh et al. (2015)], and we therefore consider cvBLUPs in this this context. We
compare the relative performance of five groups of methods. First, unadjusted regression; second,
principal component adjusted regression; third, standard linear mixed model (LMM) association
tests; fourth, LMM residual based methods; and fifth, cvBLUP adjusted regression. Standard
LMM-based methods use association tests where the covariance of the observations based on
the genetic relatedness of the subjects is estimated and used to calculate effect estimates and
test statistics by generalized least squares [Kang et al. (2008); Yang et al. (2014); Lippert et al.
(2011); Zhou and Stephens (2012)]. The LMM residual-based methods perform association tests
on the BLUP residualized phenotypes and possibly genotypes. Then, to try and account for the
bias inherent in using the overfit BLUPs, they perform an adjustment step on the resulting test
statistics and effect sizes. These methods were pioneered by GRAMMAR/GRAMMAR-g and
include the recent BOLT and BOLT-INF methods [Aulchenko et al. (2007); Svishcheva et al.
(2012); Loh et al. (2015)].

The typical sources of confounding for associations with germ-line genetic markers are
population structure, family structure, and batch effects in the data collection [Listgarten et al.
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(2010)]. Genetic principal components as adjustment covariates may suffice to control for
confounding by population structure or batch effects but linear mixed models are often more
effective at controlling these sources of confounding [Kang et al. (2010)], while also helping
to control confounding by family structure and boosting power to detect true associations over
standard fixed-effect regression models [Yang et al. (2014)]. These benefits of linear mixed
models come at the expense of an increased computational burden over standard linear regression.

In genome wide association studies the statistical significance of each variant g j is tested
individually. Here, the SNP is jointly analyzed with covariates X and the contributions of
unmodeled variants contribute to a larger error term h = Z(� j)b(� j) + e .

y = Xb +g jbg, j +h (8)

Often a better estimate of the effect size for a particular SNP g j may be made by accounting
for the contributions of the other variants to the phenotype y, and by blocking the effects
of confounders of the associations of genotypes and the phenotype – by adjustment with an
appropriate set of fixed effect covariates or other means [Zaitlen et al. (2012a,b); Yang et al.
(2014)].

Here we demonstrate the use of cvBLUPs as adjustment covariates in a linear regression
model that efficiently captures some of the benefits of a standard mixed model association study.
To compare the performance cvBLUP adjusted analyses to existing methods for association
testing under a range of study scenarios, simulations were used. Methods compared were:
unadjusted linear regression, PC adjusted linear regression, a standard LMM association test
(GCTA), and BOLT association tests. BOLT results were collected both for the infinetissimal
genetic model (BOLT-INF) and the sparse causal genetic model (BOLT-LMM). Association tests
conducted with cvBLUP adjustment, GCTA, and BOLT were done with leave-one-chromosome-
out schemes wherein the variance components, cvBLUPs, and phenotypic predictions and
residuals (BOLT) were calculated using only SNPs that are on different chromosomes than the
test-SNPs.

In each simulation, data sets were generated with N = 2000 subjects under the model
y = Xb +gbg +Zb+ e . Here X consists of normally distributed covariates drawn to contribute
i.i.d. noise to the phenotypes in the independent-subject simulation, but to be correlated with the
subjects’ ancestral populations in the simulations with population structure and with family in
the simulations with confounding by family structure. Xb was scaled to contribute 10% of the
phenotypic variance. g represents a set of 5 additively coded causal SNPs with effect sizes bg set
to a common fixed value of 0.25. A set of 5 null SNPs were also drawn but did not contribute to
the phenotype y. Z represents M = 2000 independent SNPs modeled with random effect sizes.
For simulations run under the infinitessimal genetic model, the random effects b j were drawn

from N
⇣

0, s2
g

M IM

⌘
with the genetic variance s2

g accounting for 40% of the phenotypic variance.
For the sparse non-infinitessimal model, a fraction mc = 2% of the SNPs in Z were selected to be
causal with effect sizes drawn from N

⇣
0, s2

g
Mmc

IM

⌘
The residual noise e ⇠ N

�
0,s2

e
�

accounts

for 40% of the phenotypic variance, giving a heritability h2 ⇡ 50%. Effect estimates and test
statistics produced by the various analysis methods are summarized for 1000 null SNPs and
1000 causal SNPs.

In Table 2, the results of analyzing data sets with independent subjects and an infinitessimal
genetic architecture are shown. All methods produced unbiased effect estimates and well
calibrated tests under the null (c2

Null ⇡ 1), but the cvBLUP and mixed-model based methods
were more powerful – with greater average test statistics for the causal SNPs. The BOLT effect
estimates were biased, with effect sizes deflated towards zero. This deflation of BOLT effect
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estimates is seen across the simulation scenarios, however we do not detect deflation of the
BOLT effect estimates in the real-data analyses of the METSIM cohort data below, where there
are much ratios of counts of SNPs to number of subjects. Bias in BOLT may be due to the
empirical estimation of a deflation-correction factor for the residual based test based on the
GRAMMAR-g adjusted residual analysis method Loh et al. (2015); Svishcheva et al. (2012).
In analogous simulations with a sparse genetic model (Table 9, Supplement), BOLT-LMM is
considerably more powerful because it explicitly models the sparse genetic architecture. When
the true genetic contribution to the phenotype, Zb, (not including the test-SNPs) is included as a
covariate in a linear regression association test of causal SNPs g, the power is greatly increased.

In Table 3, the results of analyzing data sets with confounding by population structure are
shown. Subjects were drawn from 5 distinct populations with pairwise Fst set to 0.03. Population
specific allele frequencies were generated by the Balding-Nickels model [Balding and Nichols
(1995)]. The component Xb in the generating model was drawn to be correlated with population,
but X was not used in the analyses. In this scenario, unadjusted linear regression and linear
regression with fewer than 4 principal components as adjustment covariates give inflated test
statistics and excessive false positives under the null, c2

Null > 1. Correcting for population
structure by inclusion of 4 principal components, cvBLUP adjustment, or use of the mixed model
based methods gives well calibrated test statistics under the null, c2

Null ⇡ 1. For causal test SNPs,
cvBLUP and mixed model based methods give greater test statistics than PC-adjusted linear
regression with 4 PCs, indicating greater power. Linear regression with adjustment with the true
genetic effect Zb gives high power for detecting causal SNPs, but does not control for inflation of
test statistics at null SNPs due to population structure – c2

Null = 3.55 � 1. Covariate adjustment
with cvBLUPs controls the confounding by population structure and improves the power as do
the LMM based methods. These methods use all SNPs and detect the shifts in allele frequencies
across populations when there is confounding by population structure.

cvBLUPs correct for population structure because they are weighted combinations of ALL
principal components, where weights are based on the the singular value corresponding to the
principal component and on the strength of the association of the principal component with the
outcome (see Supplement). Conceptually, cvBLUPs control for population structure as if all PCs
were considered and the most relevant ones for the analysis were kept.

In Table 4, the results of analyzing data sets with confounding by family structure are
shown. Here the 2000 subjects in each simulation represented 200 families with 10 subjects
each. Families were generated in pedigrees with four founders and six of their descendants,
with descendants’ genotypes selected independently by drop-down from their parents. In the
data generating model, there were covariate effects correlated with family membership, Xb but
these covariates were not included in the analyses, creating confounding by family structure.
In this scenario, unadjusted linear regression, and PC-adjusted linear regression have inflated
test statistics (c2

Null > 1) and correspondingly high false discovery rates. Standard linear mixed
models (GCTA) control for the confounding by family structure, with accurate effect estimates
bbg under the null and alternate, and barely inflated test statistics under the null – c2

Null having
mean and standard deviation 1.10 and 0.05 respectively. In this scenario, cvBLUP adjusted
analyses and the results from BOLT have biased effect estimates under the alternative, and
deflated (conservative) test statistics under the null. This suggests over-adjustment for family
structure in both cvBLUP-adjusted analyses and BOLT.
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Model mean(bg0) se(bg0) mean(c2
Null) se(c2

Null) mean(bg) se(bg) mean(c2) se(c2)
LR -4.00E-04 1.30E-03 0.99 0.05 0.250 1.30E-03 47.11 0.66
LR + 4 PCs -5.00E-04 1.30E-03 0.99 0.05 0.250 1.30E-03 46.97 0.66
LR + cvBLUP -1.30E-03 1.10E-03 1.00 0.05 0.249 1.20E-03 58.53 0.81
LR + BLUP -1.00E-03 6.00E-04 1.05 0.05 0.096 6.00E-04 36.63 0.56
LMM -1.30E-03 1.10E-03 1.00 0.05 0.249 1.20E-03 56.62 0.76
BOLT-INF -1.30E-03 1.00E-03 1.01 0.05 0.219 1.00E-03 56.13 0.76
BOLT-LMM -1.30E-03 1.00E-03 1.00 0.05 0.219 1.00E-03 56.04 0.75
LR + true genetic effect -1.00E-03 9.00E-04 1.04 0.05 0.250 9.00E-04 96.28 1.26

Table 2. Simulations with infinitesimal genetic model, without population or family structure.
Mean and standard errors for effect estimates and test statistics of association tests at 1000 Null
SNPs with true bg0: cbg0 and c2

Null; and at 1000 causal SNPs with an alternative hypothesis of
true bg = 0.25: bbg and c2

Model mean(bg0) se(bg0) mean(c2
Null) se(c2

Null) mean(bg) se(bg) mean(c2) se(c2)
LR -1.2E-03 2.30E-03 2.94 0.14 0.250 2.20E-03 47.28 0.92
LR + 1 PC -8.00E-04 2.10E-03 2.44 0.12 0.250 1.90E-03 48.20 0.85
LR + 2 PCs -1.00E-04 1.80E-03 1.94 0.09 0.253 1.70E-03 49.00 0.80
LR + 3 PCs -3.00E-04 1.60E-03 1.49 0.07 0.252 1.50E-03 48.90 0.76
LR + 4 PCs 1.00E-03 1.30E-03 1.02 0.05 0.250 1.30E-03 47.86 0.70
LR + cvBLUP 4.00E-04 1.20E-03 1.00 0.04 0.240 1.20E-03 56.8 0.81
LMM -2.00E-04 1.20E-03 0.99 0.05 0.252 1.20E-03 56.97 0.79
BOLT-INF -1.00E-04 1.00E-03 0.97 0.04 0.214 1.00E-03 54.34 0.76
BOLT-LMM -1.00E-04 1.00E-03 0.97 0.04 0.214 1.00E-03 54.37 0.76
LR + true genetic effect 2.20E-03 1.80E-03 3.55 0.16 0.250 1.80E-03 89.28 1.56

Table 3. Simulations with infinitesimal genetic model and population structure. Mean and
standard errors for effect estimates and test statistics of association tests at 1000 Null SNPs with
true b = g0: cbg0 and c2

Null; and at 1000 causal SNPs with an alternative hypothesis of true
bg = 0.25: bbg and c2

Model mean(bg0) se(bg0) mean(c2
Null) se(c2

Null) mean(bg) se(bg) mean(c2) se(c2)
LR -1.30E-03 1.60E-03 1.52 0.07 0.252 1.60E-03 48.81 0.77
LR + 4 PCs -5.00E-04 1.50E-03 1.49 0.06 0.253 1.60E-03 48.93 0.75
LR + cvBLUP 4.00E-04 1.00E-03 0.81 0.03 0.183 9.00E-04 36.20 0.52
LMM 5.00E-04 1.40E-03 1.10 0.05 0.251 1.30E-03 48.57 0.68
BOLT-INF 5.00E-04 9.00E-04 0.77 0.03 0.166 9.00E-04 33.65 0.46
BOLT-LMM 5.00E-04 9.00E-04 0.84 0.04 0.166 9.00E-04 36.24 0.51
LR + true genetic effect 5.00E-04 1.00E-03 1.21 0.05 0.252 1.00E-03 98.24 1.31

Table 4. Simulations with infinitessimal model and family structure. Mean and standard errors
for effect estimates and test statistics of association tests at 1000 Null SNPs with true bg0 = 0: bb0

and c2
Null; and at 1000 causal SNPs with an alternative hypothesis of true bg = 0.25: bbg and c2
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Finally, we applied these methods to the METSIM data described above. All p-values were
GC adjusted for comparison purposes. All mixed model-based methods, including LR+cvBLUP
were more powerful than standard linear regression. As expected BOLT-LMM had the highest
power due to modelling of non-infinitessimal structure. In this data analysis there is no observed
evidence of bias in effect size estimates by BOLT, such as a systematic deflation of effect
estimates relative to estimates made by standard linear regression or standard LMM fixed effect
estimates, suggesting that it may not be a problem in practice.

LR LMM BOLT-INF BOLT-LMM cvBLUP
lambdaGC 1.02 1.02 1.02 1.02 1.02

p-values below 1e-06 31 32 32 35 33
Ratio of effect size estimates1e-06 0.991 1 0.999 0.999 0.998

Standard error in ratio of effect sizes1e-06 0.00243 0 0.000561 0.000561 0.00088
p-values below 5e-08 15 15 15 16 16

Ratio of effect size estimates5e-08 0.996 1 0.998 0.998 0.999
Standard error in ratio of effect sizes5e-08 0.00232 0 0.000977 0.000977 0.00122

Table 5. GWAS results for baseline low-density lipoprotein cholesterol (LDLC) using an
unrelated subset of subjects from the METSIM cohort. LR: linear regression, LMM: linear
mixed model with GLS analysis of SNP effects implented in GCTA, cvBLUP: cross-validated
prediction-adjusted linear regression, BOLT-INF; BOLT assuming infinitesimal genetic model,
BOLT-LMM: BOLT using mixture of Normal distributions as prior for SNP effect sizes, i.e.
sparse genetic architecture. cvBLUP-adjusted analyses, LMM, and BOLT were used in a
leave-one-chromosome-out scheme with variance components, cvBLUPs, covariance models
(LMM, GCTA), and genetic predictions and residuals (BOLT) generated using SNPs on
chromosomes other than that of the test-SNPs.

LR LMM BOLT-INF BOLT-LMM cvBLUP
lambdaGC 1.04 1.04 1.04 1.04 1.04

p-values below 1e-06 15 15 14 14 16
Ratio of effect size estimates1e-06 1.02 1 0.992 0.992 0.999

Standard error in ratio of effect sizes1e-06 0.00294 0 0.00134 0.00134 0.000866
p-values below 5e-08 13 11 11 13 12

Ratio of effect size estimates5e-08 1.01 1 0.997 0.997 1
Standard error in ratio of effect sizes5e-08 0.00288 0 0.000681 0.000681 0.000897

Table 6. GWAS results for baseline high-density lipoprotein cholesterol (HDLC) using an
unrelated subset of subjects from the METSIM cohort. LR: linear regression, LMM: linear
mixed model with GLS analysis of SNP effects implemented in GCTA, cvBLUP:
cross-validated prediction-adjusted linear regression, BOLT-INF; BOLT assuming infinitesimal
genetic model, BOLT-LMM: BOLT using sparse genetic architecture.cvBLUP-adjusted
analyses, LMM, and BOLT were used in a leave-one-chromosome-out scheme with variance
components, cvBLUPs, covariance models (LMM, GCTA), and genetic predictions and
residuals (BOLT) generated using SNPs on chromosomes other than that of the test-SNPs.

Leveraging cvBLUPs to compute linear mixed model shrink parameters
Finally, we examine the use of cvBLUPs in estimating LMM shrink parameters. The BLUP
effect size estimates from a linear mixed model are ”shrunk” to be smaller in magnitude to
exploit a bias-variance trade-off that reduces their mean squared error. With the estimated
genetic variance component bs2

g , the estimated distribution of effect estimates b j ⇠ N
⇣

0,
bs2

g
M

⌘
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is an empirical prior on the effect sizes, which yields estimates that are biased toward the prior
mean of 0. Equivalently, the BLUP effect sizes estimates are ridge regression estimates with a

penalty parameter l related to the LMM variance components: l =
1�h2

h2 =
bs2

g

bs2
e

.

When SNPs are independent, the LMM shrinkage estimates of the effect sizes b for given
estimates of the variance components is found to be [Vilhjálmsson et al. (2015)]

bb j ⇠ N

 
h2

h2 + M
N

b,
h2

h2 + M
N

bs2
g

M

!
(9)

and the shrink, h2

h2+M
N

, can be calculated directly from the number of individuals and SNPs.
However, when SNPs are in LD, it is more complicated to estimate the effective number of SNPs
[Patterson et al. (2006)] and hence the shrink. Here we show how cvBLUPs can be used to
estimate the shrink directly.

First, in the case of independent SNPs, the LMM estimates of the SNP effects bb would be
reduced in magnitude and variance relative to the true values b, as in Equation 9, and there would
be a corresponding decrease in the variance of polygenic risk scores for a new individual with
normalized genotypes Znew, calculated using bb as weights rather than the true effect sizes b:

var
⇣

Znewbb
⌘

=

 
h2

h2 + M
N

!
var(Znewb)

=

 
h2

h2 + M
N

!
s2

g

(10)

Equation 10 suggests the direct estimation of the shrink by taking the ratio of bs2
g to

var
⇣

Znewbb
⌘

. We confirm this approach is approximately unbiased via simulation. For multiple

settings of N (number of subjects), M (number of SNPs) and h2 (heritability), heritability and
variance components were estimated and the value of the standard independent-SNP model for
the shrink is compared to the empirical BLUP shrink var(BLUP)

bs2
g

and the empirical cvBLUP shrink
var(cvBLUP)

bs2
g

. In each simulation setting, the BLUP shrink is much larger than the independent
model value or the cvBLUP shrink due to over-fitting by the standard BLUPs. However, the
cvBLUP formula and the independent-SNP model are consistent for all parameter settings.

Because this approach does not require identification of an effective number of SNPs, it
extends directly to the case where there is linkage disequilibrium. We applied this approach to
simulated data from the METSIM cohort used above. We estimated the shrink parameter for
simulated phenotypes based on the real genotypes at 609131 SNPs with minor allele frequencies
greater than 0.01 on the 6263 unrelated (at the 0.05 level) subjects. Twenty simulations were
run using fractions of causal SNPs between 0.0001 and 1.0. Causal SNPs were chosen by
simple random sampling with equal probability from the genotyped SNPs. SNP effect sizes were
normally distributed and trait heritability was 50 percent. The shrink formula for independent
SNPs suggested a shrink of about 0.0045-0.0055, while the cvBLUP shrink – the ratio of the
variance of the cvBLUPs to the estimated genetic variance component ranged from 0.06-0.08.

In this setting, with LD between the SNPs, the independent SNP formula for the shrink is
invalid. In particular the effective number of SNPs M̃ is much smaller than the total number of
SNPs leading to a shrink estimate over ten times smaller than the the cvBLUP based estimate.
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N M h2 bh2 Independent Shrink BLUP Shrink cvBLUP Shrink
400 400 0.5 0.512 (0.102) 0.335 (0.003) 0.627 (0.007) 0.389 (0.006)
400 800 0.5 0.502 (0.119) 0.200 (0.003) 0.560 (0.010) 0.217 (0.005)
400 1200 0.5 0.494 (0.128) 0.139 (0.003) 0.530 (0.011) 0.150 (0.004)
800 400 0.5 0.492 (0.062) 0.496 (0.002) 0.695 (0.004) 0.573 (0.004)
800 800 0.5 0.501 (0.066) 0.334 (0.002) 0.619 (0.005) 0.383 (0.004)
800 1200 0.5 0.500 (0.075) 0.248 (0.002) 0.581 (0.006) 0.280 (0.004)

1200 400 0.5 0.505 (0.052) 0.600 (0.002) 0.770 (0.003) 0.700 (0.003)
1200 800 0.5 0.501 (0.051) 0.426 (0.002) 0.661 (0.003) 0.494 (0.003)
1200 1200 0.5 0.501 (0.051) 0.332 (0.002) 0.614 (0.004) 0.378 (0.003)

400 400 0.1 0.105 (0.080) 0.089 (0.006) 0.199 (0.010) 0.106 (0.006)
400 800 0.1 0.114 (0.096) 0.052 (0.004) 0.174 (0.011) 0.060 (0.004)
400 1200 0.1 0.114 (0.104) 0.035 (0.003) 0.170 (0.011) 0.044 (0.003)
800 400 0.1 0.102 (0.044) 0.165 (0.006) 0.238 (0.008) 0.169 (0.006)
800 800 0.1 0.101 (0.056) 0.090 (0.005) 0.178 (0.008) 0.094 (0.004)
800 1200 0.1 0.105 (0.066) 0.063 (0.004) 0.160 (0.008) 0.067 (0.004)

1200 400 0.1 0.098 (0.032) 0.222 (0.006) 0.283 (0.007) 0.225 (0.006)
1200 800 0.1 0.101 (0.035) 0.130 (0.004) 0.208 (0.006) 0.132 (0.004)
1200 1200 0.1 0.098 (0.041) 0.088 (0.003) 0.170 (0.006) 0.090 (0.004)

Table 7. Estimation of the shrink parameters for BLUPs and cvBLUPs in simulations with
independent SNPs. The independent shrink is that derived in Formula 9 for independent SNPs.

Fraction Causal SNPs Independent Shrink BLUP Shrink cvBLUP Shrink
1.0 0.0050 (1.60E-04) 0.514 (0.015) 0.076 (0.002)
0.1 0.0053 (1.71E-04) 0.539 (0.016) 0.079 (0.002)

0.01 0.0055 (1.73E-04) 0.556 (0.016) 0.080 (0.002)
0.001 0.0047 (5.45E-05) 0.477 (0.005) 0.067 (0.001)

0.0001 0.0040 (1.20E-04) 0.409 (0.011) 0.058 (0.001)

Table 8. Estimates of the shrink parameter for simulated phenotypes based on the real
genotypes METSIM cohort and various genetic architectures or fractions of causal SNPs. The
independent shrink is that derived in Formula 9 for independent SNPs.

DISCUSSION
Here we describe a new and computationally efficient approach for generating polygenic risk
scores directly from a linear mixed model. We show that the LMM framework allows direct
calculation of out-of-sample genetic predictions. Our approach will have immediate utility for
the growing list of applications that rely on PS, and we provide examples of several additional
application areas, including detection of pleiotropy, powerful association testing, and estimation
of polygenic shrink.

The elimination of over-fitting by cvBLUPs relative to BLUPs suggests a solution to the bias
problem in residual based methods. Rather than post-hoc correction of residual test statistics as
in GRAMMAR-g and BOLT, the LMM residuals may be replaced by out-of-sample prediction
errors with cross-validated predictors: use (y� cvBLUP) instead of standard residuals (y�
BLUP)
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There are several limitations of this approach. First, cvBLUPs are calculated from the
standard LMM framework, which corresponds to the infinitessimal genetic model. As we
see in in supplementary Tables 9-11, in simulations with sparse genetic architectures, sparse
models have considerably higher power. In future work, we intend to use sparse analogues of
cvBLUPs generated as cross-validated predictions. Unfortunately, sparse models including the
BOLT-LMM model and LASSO are not amenable to the fast leave-one-out cross-validation as in
Equation (7).

Another limitation is that when used as adjustment covariates cvBLUPs do not control con-
founding by family structure or cryptic relatedness as well as standard mixed model association
tests. Rather than using all subjects for computation of cvBLUPs, an alternative protocol is to
calculate cvBLUPs for an unrelated subset, and also to calculate BLUP effect size estimates
bb (Equation 4) using these unrelated subjects. This procedure will tend to block confounding
by genetic structure remaining in the nominally unrelated subset and will improve power by
accounting for the polygenicity of the trait, but it could under-adjust for confounding by family
structure because by construction the training set for learning the polygenic model does not
contain closely related subjects. Methods involving cross-validated predictions from multiple
models or cvBLUPs from mixed models with multiple variance components may prove useful,
by analogy with other multiple variance component methods that include sparse relatedness
matrices to indicate family membership [Zaitlen et al. (2013), Tucker et al. (2015)]

In our cross-trait analysis of the METSIM data set we show that the cross-correlations of
PRS for one trait and actual (normalized) phenotypic measures for other traits. We are working
to extend these cross-trait analyses – in particular by using correlations of cvBLUPs for pairs
of traits as estimates of the genetic correlation. However, even naive correlations of cvBLUPs
give an effective picture of the genetic correlations between traits. Since cvBLUPs are efficiently
calculated one at a time, and genetic correlations are then estimated in trivial pairwise analyses of
traits, the pair-wise correlations of hundreds or thousands of traits may be efficiently calculated
this way. Furthermore, in the pair-wise analyses of the METSIM phenotypes, and in our pair-wise
analyses of RNA expression that underlie our trans-eQTL analysis [Liu et al. (2018)] we actually
generate asymmetric cross-correlation matrices because the correlation of cvBLUP for trait A
with measured trait B is not the same as the correlation of measured trait A with cvBLUP for
trait B. We are exploring applications of these asymmetric matrices for network analysis and
causal inference.

Efficient generation of out-of-sample genetic predictions using leave-one-out cross-validation
of the predictions from a linear mixed model is an effective way to generate polygenic risk
scores, and opens the application of analyses based on PRS to scenarios where there is no
available reference data to generate a typical scoring model. It is now well known that PRS
and genetic predictions transfer poorly to populations that are distinct from the reference data
set used to learn the genetic model [Martin et al. (2017); Scutari et al. (2016)]. We look
forward to using reference-free PRS methods based on cvBLUPs for applications with data from
under-represented populations.

The principle of using cross-validated predictions from polygenic models as PRS may be
extended to predictions from sparse or complex models, but the cross-validated predictions from
a standard linear mixed model, which we call cvBLUPs, are particularly simple to calculate and
have novel and interpretable applications. To make the results of this work accessible to the
community, we have implemented them in the GCTA software package [Yang et al. (2011)].
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APPENDICES
Formula for efficient leave-one-out cross-validation of the linear mixed model
Let

y = Xb +Zb+ e (11)

represent a linear mixed model with continuous outcome y, fixed effect covariates X , fixed
effect sizes b , additively coded genotypes Z, random genetic effect sizes b and unmodeled or
environmental factors e . The genetic effect sizes b and environmental factors e are modeled as
i.i.d. normally distributed random variables with variances 1

M s2
g and s2

e respectively:

b ⇠ N
⇣

0, s2
g

M IM

⌘

e ⇠ N
�
0,s2

e IN
� (12)

By convention the genotypes are scaled to have mean 0 and variance 1, and the SNP effect
sizes are assumed to have effect sizes independent of MAF on this scale. So the total genetic
contributions to the phenotype Zb are normally distributed with mean 0 and variance s2

g . The
scaled genotypes Z are used to calculate a SNP-based genetic relatedness matrix K:

K = 1
M ZZT . (13)

The observations y in the linear mixed model are normally distributed with a covariance S that
depends on K and the variance components s2

g and s2
e

y ⇠ N (Xb ,S)

S = s2
g K +s2

e IN

bS = bs2
g K + bs2

e IN

H = bs2
g KbS�1

b̂ =
⇣

XTbS�1X
⌘�1⇣

XTbS�1y
⌘

b̂ = bBLUP(?whatisbBLUP?

=
bs2

g
M ZTbS�1(y�X b̂ )

ŷ = BLUP

= Hy

=
bs2

g
M ZZTbS�1(y�X b̂ )

= Zb̂

(14)
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To simplify notation, let fixed effect sizes b and fixed effects Xb = 0:

b̂ =
bs2

g
M ZTbS�1y

ŷ =
bs2

g
M ZZTbS�1y

= Zb̂

(15)

Exclude observation i from the genetic predictive model fit and then make an out-of-sample
(oos) prediction for observation i:

b̂�i =
bs2

g
M ZT

�i
bS�1
�i y�i

ŷi,oos = Zib̂�i

(16)

Now generate the augmented vector y+i as the vector of outcomes y with observation yi

replaced with it’s out-of-sample prediction from a model trained on the remaining observations,
ŷi,oos.

Consider the ridge regression interpretation of the mixed model with the ridge penalty

l =
bs2

e
bs2

g
=

1�h2

h2 . Assume the variance components or heritability have been estimated in a

prior step or are known.
For the reduced data set with the outcome for observation i removed we have:

b̂�i = argmin
b

1
2 Â

k 6=i
(y�i �Z�ib)

2 +
l
2
||b||22 (17)

For the augmented data set with the outcome for observation i replaced by an out-of-sample
prediction we have:

b̂+i = argmin
b

1
2 Â

k 6=i
(yk �Zkb)2 +(ŷi,oos �Zib)2 +

l
2
||b||22 (18)

For the augmented model, (ŷi,oos �Zib̂) = 0, and the remaining terms in the expression for
b̂+i are the same as for the reduced model b̂�i, so b̂+i = b̂�i.

Now consider the differences in the predictions for the ith value from the augmented model
and the model with all observations:

ŷ+i � ŷi = Zib̂+i �Zib̂

= Zi
bs2

g
M ZTbS�1y+i �Zi

bs2
g

M ZTbS�1y

= Zi
bs2

g
M ZTbS�1 (y+i � y)

= Hi,. (y+i � y)

(19)

Here, Zi
bs2

g
m ZTbS�1 is the ith row of the matrix H, or Hi,.. The vectors y+i and y only differ at

the ith element, so:

ŷ+i � ŷi = Hi,. (y+i � y)

= Hi,i
�
Zib̂�i � yi

� (20)
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Finally,

Zib̂�i �Zib̂ = Hi,i
�
Zib̂�i � yi

�

= Hi,iZib̂�i �Hi,iyi

(1�Hi,i)Zib̂�i = Zib̂�Hi,iyi

Zib̂�i =
Zib̂�Hi,iyi

1�Hi,i

Zib̂�i =
Zib̂�Hi,iyi

1�Hi,i

ŷi,oos = Zib̂�i

=
Zi
bs2

g

M
ZTbS�1y�Hi,iy

1�Hi,i

=
ŷi �Hi,iy
1�Hi,i

=
Hi,.�Hi,i

1�Hi,i
y

(21)

Relationship between principal components and cross-validated BLUPs
Genetic principal components are routinely used as quantitative measures of study participants’
ancestry [Patterson et al. (2006); McVean (2009)] and as such are used as adjustment covariates in
association studies to block confounding by population structure [Patterson et al. (2006)]. Linear
mixed models provide another framework for controlling potential confounding by population
structure [Yang et al. (2014)]. Both PCs and LMMs are methods that account for ancestry and
other forms of genetic structure in a data set by analyses of the genetic relatedness matrix (GRM)
K = 1

m ZZT . Specifically, PCA involves calculating some number of eigenvetors of the GRM – or
equivalently left singular vectors of the scaled genotype matrix Z – and using them as adjustment
covariates in regression analyses, while LMMs model observed outcomes as non-independent,
with the random effects that contribute to the outcome y correlated to a degree related to the
amount of shared genetic variation between each pair of subjects: cov(y) = S = s2

g K +s2
e In.

In principal component adjusted analyses, some number of PCs are used as adjustment
covariates in linear regression. With linear mixed models, generalized least squares with an
estimate of the sample covariance bS is used.

Principal component adjusted analysis has several disadvantages. First, it is not clear how
many principal components should be used. In GWAS it has become conventional to use a
standard number of PCs, say 10, but it is generally not clear whether that will be enough to
account for the components of genetic structure that are confounded with non-genetic factors in
a study. Second, it is not clear which PCs should be included. Conventionally, PCs are sorted in
descending order by the magnitude of the corresponding eigenvalues, and PCs with the largest
eigenvalues are used. However, selected PCs may not be associated with any non-genetic factors
and may not relieve any confounding. Finally, in association testing applications, tests needlessly
lose power due to over-adjustment when PCs that do not adjust for confounding are included as
covariates. By construction PCs represent axes of variation in the genotype data, so some may
be highly correlated with a test SNP, and inclusion of correlated covariates increases the standard
errors around test SNP effect estimates.

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2019. ; https://doi.org/10.1101/517821doi: bioRxiv preprint 

https://doi.org/10.1101/517821
http://creativecommons.org/licenses/by/4.0/


The spectral decomposition of the GRM K is:

K = ULUT (22)

where U is a unitary matrix whose columns are the genetic PCs or eigenvectors of K, and L is a
diagonal matrix of the corresponding eigenvalues.

Principal component adjusted regression includes Uk (first k columns of U) as regression
covariates to improve the estimation or testing of bg:

y = Xb +gbg +Ukg + e (23)

This leaves open the question of how many or which PCs should be included. As an
alternative to standard practice, we can try using all of the PCs, and use regularization to keep
the model estimable. We can also minimize problems due to over-adjustment by calculating the
PCs U using a GRM K⇤ or scaled genotype matrix Z⇤ that does not include SNPs in linkage
disequilibrium with or on the same chromosome as the test-SNP g.

Towards a connection to cvBLUPs, rescale the columns of U by the corresponding singular
values :

Us =U
p

L (24)

Rescaling U to Us puts a higher prior on PCs with larger eigenvalues. Now compress the
contribution of the principal components to the outcome by calculating a vector of phenotypic
predictions using ridge regression with a penalty l on the principal components:

ŷpc = UsUT
s (UsUT

s +l In)�1(y�X b̂ ) (25)

If we define l =
s2

e
s2

g
=

1�h2

h2 and recall that Us =U
p

(L), so that UsUT
s =ULUT = K⇤,

we have:

ŷpc = s2
g K(s2

g K⇤+s2
e In)�1(y�X b̂ ) (26)

But this is just a BLUP. So, BLUPs arise from a limiting case of trying to do PC-adjusted
regression with all PCs. Therefore cross-validated predictions from ridge regression on all PCs
are cvBLUPs.

cvBLUPs as adjustment covariates are similar to a compression of all PCs into a single
covariate, with the PCs given prior weights that emphasize the PCs with larger eigenvalues, but
do not exclude any. The PCs are also weighted by their relevance to the outcome because they
represent predictions from a ridge regression model that implicitly has ridge regression effect
sizes for the association of the PC with the outcome. Over-fitting in the ridge regression step
is avoided by the leave-one-out cross-validation. Finally, loss of power by over adjustment is
avoided by excluding the chromosome or SNPs in linkage disequilibrium with test SNP from the
GRM used for calculation of the cvBLUPs. In fact, unlike PC adjustment but similar to standard
LMM analyses, cvBLUP adjustment boosts the power of association studies by modeling genetic
contributions to the phenotype other than the SNP of interest, thereby increasing the signal to
noise ratio.
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Additional results with cvBLUP-adjusted association testing

Model mean(b0) se(b0) mean(c2
Null) se(c2

Null) mean(b ) se(b ) mean(c2) se(c2)
LR -1.10E-03 1.40E-03 1.14 0.05 0.249 1.30E-03 47.48 0.70
LR + 4 PCs -9.00E-04 1.40E-03 1.13 0.05 0.249 1.30E-03 47.38 0.68
LR + cvBLUP -1.10E-03 1.30E-03 1.14 0.05 0.248 1.20E-03 58.15 0.83
LMM -1.10E-03 1.30E-03 1.14 0.05 0.248 1.20E-03 56.22 0.78
BOLT-inf -9.00E-04 1.10E-03 1.14 0.05 0.219 1.00E-03 55.81 0.77
BOLT-LMM -9.00E-04 1.10E-03 1.09 0.05 0.219 1.00E-03 80.99 1.05
LR + true genetic effect -6.00E-04 1.00E-03 1.13 0.05 0.249 9.00E-04 94.32 1.26

Table 9. Simulations with sparse genetic model and independent subjects. Mean and standard
errors for effect estimates and test statistics of association tests at 1000 Null SNPs with true
b = 0: bb0 and c2

Null; and at 1000 causal SNPs with an alternative hypothesis of true b = 0.25: bb
and c2

Model mean(b0) se(b0) mean(c2
Null) se(c2

Null) mean(b ) se(b ) mean(c2) se(c2)
LR -1.50E-03 2.30E-03 2.88 0.14 0.245 2.20E-03 46.30 0.90
LR + 4 PCs -6.00E-04 1.30E-03 1.01 0.05 0.248 1.20E-03 46.57 0.66
LR + cvBLUP -6.00E-04 1.10E-03 0.97 0.05 0.238 1.10E-03 54.76 0.78
LMM -7.00E-04 1.20E-03 1.00 0.05 0.247 1.20E-03 55.22 0.76
BOLT-inf -8.00E-04 1.00E-03 0.97 0.05 0.211 1.00E-03 52.78 0.73
BOLT-LMM -8.00E-04 1.00E-03 1.02 0.05 0.211 1.00E-03 77.75 1.05
LR + true genetic effect -2.30E-03 1.90E-03 3.65 0.17 0.247 1.90E-03 87.22 1.56

Table 10. Simulations with sparse genetic architecture and population structure. Mean and
standard errors for effect estimates and test statistics of association tests at 1000 Null SNPs with
true b = 0: bb0 and c2

Null; and at 1000 causal SNPs with an alternative hypothesis of true
b = 0.25: bb and c2

Model mean(b0) se(b0) mean(c2
Null) se(c2

Null) mean(b ) se(b ) mean(c2) se(c2)
LR 1.30E-03 1.60E-03 1.57 0.07 0.248 1.60E-03 47.46 0.73
LR + 4 PCs 1.20E-03 1.60E-03 1.53 0.07 0.248 1.60E-03 47.33 0.73
LR + cvBLUP 1.50E-03 9.00E-04 0.72 0.03 0.184 9.00E-04 35.81 0.49
LMM 2.00E-03 1.30E-03 0.98 0.05 0.249 1.30E-03 47.34 0.64
BOLT-inf 1.30E-03 9.00E-04 0.69 0.03 0.168 8.00E-04 33.39 0.44
BOLT-LMM 1.30E-03 9.00E-04 0.86 0.04 0.168 8.00E-04 64.13 0.79
LR + true genetic effect 1.70E-03 1.00E-03 1.14 0.05 0.250 1.00E-03 93.55 1.21

Table 11. Simulations with sparse genetic architecture and family structure. Mean and standard
errors for effect estimates and test statistics of association tests at 1000 Null SNPs with true
b = 0: bb0 and c2

Null; and at 1000 causal SNPs with an alternative hypothesis of true b = 0.25: bb
and c2
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