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Abstract
Background

Relapse of Plasmodium vivax infection is the main cause of vivax malaria in many
parts of Asia. However at the individual patient level, recurrence of a blood stage
infection following treatment within the endemic area can be either a relapse (from
dormant liver-stage parasites), a recrudescence (blood-stage treatment failure), or a
reinfection (following a new mosquito inoculation). Each requires a different prevention
strategy, but previously they could not be distinguished reliably. Time-of-event and
genetic data provide complimentary information about the cause of P. vivax recurrence,
but the optimum approach to genotyping and analysis remains uncertain.
Methods

Individual-level data from two large drug trials in acute vivax malaria patients
(Vivax History: VHX; Best Primaquine Dose: BPD) conducted on the
Thailand-Myanmar border with follow-up of one year were pooled (n=1299). A total of
710 isolates from both acute and recurrent P. vivax episodes were genotyped using 3-9
highly polymorphic microsatellite markers. These pooled data were analyzed using a
novel population statistical model incorporating an assessment of genetic relatedness,
treatment drug administered, and the time-to-recurrence.
Results

99% of genotyped recurrences in individuals who did not receive primaquine (n=365)
were estimated to be relapses. In comparison, 14% of genotyped recurrences (n=121)
were estimated to be relapses following high-dose supervised primaquine. By comparing
episodes across individuals (90194 comparisons), the false-positive rate of relapse
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identification using genetic data alone was estimated to be 2.2%. We estimated the true
failure rate after high-dose primaquine (7mg/kg total dose) to be 2.6% in this
epidemiological context, substantially lower the reinfection unadjusted estimate of 12%.
Simulation studies show that 9 highly polymorphic microsatellite markers suffice to
discriminate between recurrence states. Drug exposures reflected by plasma
carboxy-primaquine concentrations were not predictive of treatment failure, but did
identify non-adherence.
Conclusion

Using this novel statistical model, relapse of P. vivax malaria could be distinguished
reliably from reinfection. This showed that in this population supervised high-dose
primaquine could avert up to 99% of relapses. In low transmission settings,
microsatellite genotyping combined with time-to-event data can accurately discriminate
between the different causes of recurrent P. vivax malaria.

Author summary
One hundred years ago, Plasmodium vivax, the most globally diverse cause of human
malaria, was present across most of the old-world, throughout tropical and temperate
climes. Its main evolutionary advantage over Plasmodium falciparum, responsible for
the most deadly type of human malaria, is its ability to stay dormant in the liver,
emerging weeks to years later causing recurring illness and continuing transmission. The
dormant liver-stage parasites are called hypnozoites. A recurrent infection can either be
hypnozoite-derived (a relapse), a blood-stage treatment failure (recrudescence), or from
a new mosquito bite (a reinfection). At a population level, each requires a different
preventative strategy but no widely applicable methodology existed to discriminate
between the three possible states: relapse, recrudescence and reinfection. Parasite
genetic data alone cannot resolve the different possibilities. We developed a novel
probabilistic framework which uses both epidemiological and genetic data to determine
the most likely cause of vivax recurrence at the individual level. We applied this method
to the largest available pooled clinical trial data from Southeast Asia incorporating
information from highly polymorphic microsatellite markers, drug treatments received
and time-to-recurrent illness. This analysis provides a tool for estimating probabilities
of relapse, recrudescence and reinfection and, importantly, shows that hypnozoiticidal
high-dose primaquine radical cure is much more effective than previously thought.

Introduction 1

Background 2

Plasmodium vivax is the most geographically widespread Plasmodium spp. that causes 3

human malaria, with an estimated 2.5 billion people at risk of infection [1]. According 4

to the 2017 WHO World Malaria Report, there were an estimated 6-11 million cases of 5

vivax malaria in 2016. Many of these illnesses were in the WHO Southeast Asia region 6

and the majority can be ascribed to relapse [2–4]. 7

P. vivax and P. ovale malarias are characterized by their ability to relapse, which 8

results from the activation of dormant liver-stage parasites called hypnozoites. Multiple 9

relapses can follow a single mosquito inoculation [5]. Two distinct phenotypes of relapse 10

have been described; in tropical climes relapses occur at short intervals (3-4 weeks), 11

whilst in temperate climes the intervals from primary infection to first relapse may be 12

longer (circa 9 months) [6, 7]. Long latency types were prevalent in Europe, North 13

Africa, the former USSR, Central Asia, the Koreas and North and Central America [8], 14
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while short latency P. vivax malaria types only are found in East Asia and Oceania. 15

Both types coexist in India [9, 10]. 16

During the course of repeated P. vivax inoculations, individuals living in an endemic 17

area can amass a liver ‘bank’ of genetically diverse hypnozoites [11]. Thus a relapse (i.e. 18

a hypnozoite-derived blood-stage infection) may be caused by parasites that not only 19

differ genetically but also derive from different mosquitoes [11–18]. Standard 20

antimalarials such as chloroquine that are recommended for the treatment of vivax 21

malaria act on blood-stage parasites but they have no effect on the hypnozoites. The 22

only generally available drug that kills hypnozoites and therefore provides ‘radical cure’ 23

is the 8-aminoquinoline primaquine. Although primaquine is generally recommended, it 24

is not used widely because of the risks of iatrogenic haemolysis in patients with 25

glucose-6-phosphate dehydrogenase (G6PD) deficiency [19]. In the absence of radical 26

cure, relapses comprise a substantial proportion of all vivax malaria episodes [6], with 27

Southeast Asia and Oceania having the highest incidence of relapse, and the greatest 28

contribution of relapse to the overall incidence of illness [3, 4, 20]. 29

Genotyping has proved useful for distinguishing recrudescence and reinfection in the 30

assessment of antimalarial drug efficacy in falciparum malaria, but is not established in 31

the support of efficacy assessments in vivax malaria. Recurrences of P. vivax malaria 32

can be caused by recrudescence, reinfection or relapse. The relapses arise from 33

hypnozoites which are derived from the incident infection, or from a previously acquired 34

infection. In order to understand and interpret genotyping outputs, detailed 35

consideration of the biology of malaria infection is required. Plasmodium spp. are 36

dioecious parasites, capable of both self and cross-fertilization [21]. During blood-stage 37

infections a sub-population of asexual parasites differentiate into gametocytes, the 38

sexual forms of the parasite [21,22]. Gametocytes ingested by a feeding anopheline 39

vector mosquito undergo gametogenesis, fertilization and consequent sexual 40

recombination [21]. Depending on the number of genetically distinct gametocytes in the 41

blood meal and whether they self or cross-fertilize, the resulting progeny that emerge 42

will exhibit various relationships, described in supplementary Figure 7. These 43

relationships may range from a mixture of unrelated ‘strangers’ to complete clonality. 44

Finding genotypes compatible with P. vivax parasites that are clones or siblings in 45

relation to one another across infections provides strong evidence of either recrudescence 46

or relapse. However, finding genetically unrelated P. vivax parasites in a comparison of 47

the acute and recurrent infections is compatible with both relapse and reinfection. 48

Genetic data alone therefore cannot resolve the true ‘state’ (i.e. reinfection, relapse, or 49

recrudescence) of all recurrences since not all genetic data are informative (absence of 50

evidence of relatedness is not evidence of absence of relapse) [23]. In part because 51

relapse is only partially identifiable genetically, previous vivax genotyping work has 52

aimed to distinguish new infection or relapse of heterologous hypnozoites versus 53

recrudescence or relapse of homologous hypnozoites (e.g. [8, 24–26]), where heterologous 54

and homologous are synonymous with an-isogenic and isogenic respectively (see 55

Appendix). While homologous and heterologous are useful genetic descriptors, in 56

therapeutic assessments the primary concern is whether the recurrent infection is a 57

relapse, recrudescence or reinfection. 58

A major complementary source of information regarding relapse, recrudescence and 59

reinfection is the time-to-recurrence (i.e. interval since treatment of the initial episode). 60

Both short and long latency P. vivax relapses exhibit strong periodicity [6]. In the case 61

of recrudescent infections their emergence will be related to parasite biomass at start of 62

treatment, drug pharmacokinetics, host immunity and local resistance patterns. Simple 63

intrahost pharmacodynamic models of malaria argue that relapse will preempt 64

recrudescence when resistance is low grade [6]. Reinfection rates will be either constant 65

over time or seasonal. Time-to-event modeling therefore uses valuable independent 66
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information which complements the genetic data. 67

The inability to distinguish between relapses and reinfections has several 68

consequences for the understanding of the epidemiology of P. vivax malaria and the 69

assessment of treatment efficacy. First, routinely collected case data cannot be used to 70

estimate the force of infection, which is an important measure of transmission intensity 71

and a key metric for disease surveillance. In particular, the relationship between force of 72

infection and the number of P. vivax cases is non-linear because of relapses [27]. Second, 73

the inability to distinguish between relapses and reinfections means that in endemic 74

populations, estimates of the efficacy of radical curative drugs (i.e. primaquine, the only 75

radical cure currently available, and tafenoquine, approved in some countries but yet to 76

be deployed in endemic areas) in populations at continued risk of infection will be 77

biased downwards by the background transmission rate. Finally, the inability to 78

distinguish between relapse and recrudescence (recurrence of the blood-stage infection 79

as result of blood-stage treatment failure) means that it is difficult to estimate the 80

curative efficacy of a blood-stage treatment in endemic areas [28]. This contrasts with 81

Plasmodium falciparum malaria where standardised genotyping is used effectively to 82

distinguish recrudescence from reinfection, allowing for the adjustment of efficacy 83

estimates in populations at continued risk of reinfection [29–31]. 84

In this study, we combined genetic information with longitudinal epidemiological 85

data from two clinical trials of antimalarials in patients infected with P. vivax. This was 86

used to test a novel methodological framework that can discriminate between the causes 87

of recurring P. vivax infections. We estimated the probabilities of each of these causes: 88

relapse, reinfection and recrudescence, using a generative Bayesian model that combined 89

data on the time-to-recurrence, the drug treatment (taking into account the varying 90

pharmacokinetics and pharmacodynamics of antimalarial drugs), and parasite genetics 91

as characterized by genotyping 3 to 9 highly polymorphic microsatellite markers (repeat 92

length polymorphisms). This analysis pooled data from over 1200 patients collected in 93

two randomized controlled trials on the Thailand-Myanmar border, comparing 94

schizontocidal and hypnozoiticidal drugs for the treatment of P. vivax malaria, both 95

with one year follow-up of patients. We showed that by combining P. vivax genotyping 96

and time-to-event information relapses could be distinguished reliably from reinfections 97

in this low transmission setting. 98

Results 99

In the VHX study patients of all ages were randomised to receive either artesunate, 100

chloroquine or chloroquine and primaquine [4]. In the BPD study patients were 101

randomised first to receive either chloroquine or dihydroartemisinin-piperaquine and 102

second to receive either 14 days of primaquine 0.5mg/kg/day or 7 days of primaquine 103

1mg/kg/day [32]. All doses were supervised in both studies. These individual 104

patient-level pooled data contained a total of 2708 time-to-recurrence intervals for 1299 105

patients (more than 1000 patient-years of combined follow-up time including right 106

censored intervals). The median number of observed recurrences was 2 following both 107

artesunate monotherapy and chloroquine monotherapy, and 0 following high-dose 108

primaquine plus partner drug. In patients not receiving radical cure, 1309 recurrences 109

were observed over 330 patient years of total follow-up; in those receiving radical cure, 110

130 recurrences were observed over 675 patient years of total follow-up. High-dose 111

primaquine treatment was therefore associated with a 95% decrease in the number of 112

observed recurrences. 113
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Treatment Artesunate
monotherapy

Chloroquine
monotherapy

Primaquine
with blood stage
drug?

Patient years follow-up 161 169 675
Recurrences 722 587 130
Reinfection (%) 2.1 (1.4-3) 3.1 (1.8-3.9) 90.5 (88.1-92.9)
Relapse (%) 95.6 (94.2-96.7) 95.5 (94.3-96.7) 9.4 (6.9-11.8)
Recrudescence (%) 2.3 (1.4-3.5) 1.7 (1.1-2.6) 0.2 (0.1-0.3 )

Table 1. Mean (95% credible intervals) posterior probability estimates of
overall recurrence states in the different treatment arms. All estimates have
been rounded up to one decimal place. ?Blood stage drug: chloroquine or
dihydroartemisinin-piperaquine.

Dynamics of recurrent infections 114

Because of the periodicity of relapse, and the rarity of recrudescence emerging more 115

than two months after administration of efficacious treatments, the interval between 116

successive episodes of P. vivax was shown to be highly informative. We applied a 117

Bayesian population time-to-event mixture model to the 2708 time-to-recurrence 118

intervals. Mean posterior probabilities of the recurrence states (recrudescence, relapse, 119

and reinfection) generated under this model varied over 3 orders of magnitude as a 120

function of time since last episode and treatment drug (Fig 1). Following high-dose 121

primaquine and partner drug, a recurrence in the first few months had a high likelihood 122

of being a relapse, and subsequent recurring infections were almost entirely caused by 123

reinfections (Fig 1). 124

The posterior uncertainty intervals for the individual probabilities of relapse for each 125

recurrence are shown in Fig 2. For approximately 75% of the recurrences observed after 126

treatment without high-dose primaquine, the posterior distributions were extremely 127

narrow with the probabilities of relapse very close to 1 (Fig 2, top left). The remaining 128

25% all had relapse posterior probabilities greater than 0.3 but with wide credible 129

intervals. For the recurrences observed after high-dose primaquine, approximately 15% 130

had mean probabilities greater than 0.1 of being relapses and the remaining 85% had 131

mean probabilities less than 0.1 of being relapses (Fig 2, top right panel). In both cases, 132

the time-to-recurrence is correlated with the posterior uncertainty (Fig 2, bottom 133

panels). The least uncertainty was observed around the peak expected timing of relapse 134

following treatment. This is dependent on whether a slowly eliminated blood-stage drug 135

was administered (chloroquine or dihydroartemisin-piperaquine) or a rapidly eliminated 136

(artesunate monotherapy), irrespective of whether high-dose primaquine was added (Fig 137

2, D). 138

The mean estimates of the recurrence states averaged over all observed recurrences 139

in the pooled time-to-event analysis are given in Table 1. Overall, after supervised 140

high-dose primaquine in this epidemiological context, the model estimated that ≥ 90% 141

of the recurrences are reinfections, as compared to less than 4% when radical cure is not 142

given. There was little evidence of recrudescence for all treatments considered. These 143

results are consistent with previous modelling results from the same area [33]. 144

This pooled analysis confirms the high periodicity of relapse for the frequent relapse 145

phenotype present in Southeast Asia [6]. Some previous statistical models of vivax 146

relapse have assumed a constant rate of awaking hypnozoites [27,33–35]. Our pooled 147

analysis takes into account post treatment prophylaxis and shows that the pattern of 148

relapsing infections does not fit a simple constant rate model. The time-to-event model 149

estimates that 60% of relapses can be explained by a periodic Weibull distribution, with 150

the remaining 40% explained by a constant rate exponential distribution. Such a 151
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Fig 1. Dynamics of recurrent infections. Estimates of the probabilities on the
log10 scale of relapse (A), reinfection (B) and recrudescence (C) for all observed
recurrences (n=1441) are shown as a function of interval since last episode of vivax
malaria (dots). Colours correspond to the treatment used in the previous episode, where
Primaquine+ refers to primaquine with partner drug. D: population mean posterior
probabilities (normal scale) for the three recurrences types as a function of
time-to-recurrence following high-dose primaquine with partner drug (PMQ+) and no
primaquine but a slow acting blood-stage drug such as chloroquine (No PMQ).
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Fig 2. Individual probabilities of relapse based from time-to-event pooled
analysis of the VHX and BPD studies. Top panels: per-episode mean probability
of relapse along with 95% credible intervals (shaded grey) for 1309 recurrences after no
primaquine (left) and for 130 recurrences after high-dose primaquine (right). The
recurrences are ranked by their mean probabilities of relapse state. A zone of
‘uncertainty’ (same as in Fig 3) is highlighted in pink. The upper and lower bounds are
arbitrary. Bottom panels: the relationship between time since last episode and
treatment, and the uncertainty of the posterior estimates (width of the 95% credible
interval on the log10 scale) after no primaquine (no PMQ, left) and after high-dose
primaquine plus partner drug (PMQ+, right). The black lines represent fitted LOESS
curves to highlight trends.
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mixture of distributions would fit an ‘activation’ hypothesis, as given by [6], where 152

relapses could generally emerge at a constant rate with a superimposed illness induced 153

feedback (i.e. fever itself activates hypnozoites), thus increasing the probability of 154

activation and creating periodicity. 155

Combining time-to-event and genetic information 156

In order to obtain more informed individual-level estimates of each recurrence state we 157

incorporated information from highly polymorphic microsatellite marker data. We 158

developed a genetic model to describe the relationships between parasites across 159

infections within individuals, using the posterior probabilities of recurrence states from 160

the time-to-event model as the prior. The estimates from the genetic model alone 161

(uniform prior) are shown in supplementary Fig 8. A total of 710 episodes (of which 494 162

were recurrent) were genotyped from 217 individuals (BPD: n=167 in 80 individuals; 163

VHX: n=543 in 137 individuals). We estimated recurrence state probabilities for 486 of 164

the 494 recurrent episodes (enrollment data were missing for one from BPD, while 165

computational complexity under the genetic model prevented analysis of 7 from VHX). 166

The complexities of infection (COI) in isolates from recurrent vivax episodes were 167

significantly lower than for isolates from enrollment episodes (mean COI of 1.3 versus 168

1.5, p=0.001). There was no significant difference between the COI of recurrences 169

following high-dose primaquine and those following no primaquine treatment. 170

Using the genetic model of parasite relatedness between infections, we estimated 171

that in individuals who did not receive high-dose primaquine, nearly all (99.3%, 80% 172

credible interval, CI: 96.8-99.9) of the typed recurrences were relapses (n=365). In 173

contrast, for individuals who were given high-dose primaquine, only 14.3% (80% CI: 174

12.3-16.7) of recurrences were estimated to be relapses (n=121). The estimates for 175

recrudescence were very low: 0.3% (0.1-0.6) and 0% (0-0.3) for no primaquine and 176

primaquine groups, respectively. Overall, the vast majority of recurrent episodes for 177

which we had genetic data had low uncertainty in the probabilities of their recurrence 178

state (the uncertainty is shown by the vertical lines in Fig 3). We note that trial 179

summaries based on probabilities of the individuals who did not receive high-dose 180

primaquine (all were in the VHX study and the majority received chloroquine 181

monotherapy) are biased by selective genotyping of individuals with the highest number 182

of recurrences. These are presumably the individuals with the largest number of liver 183

hypnozoites and so will not be representative of the general enrollment population. In 184

particular, there are likely competing risks between relapsing infections and reinfections. 185

Relapsing infections will usually reach patency before reinfections, and if they occur 186

simultaneously then the genetic signature could point to relapse. Thus frequent relapse 187

likely hides reinfection. Under the genetic model, we made the simplifying assumption 188

that recurrence states are mutually exclusive. 189

Of particular interest are two recurrences in two separate patients which were 190

classified with high certainty as relapses. Both occurred after a 300 day infection free 191

interval (Fig 3, bottom panel). One individual had received high-dose primaquine and 192

the other had not (Fig 4). 193

194

We estimated the false-positive discovery rate of the genetic model of recurrence by 195

calculating the probabilities of the relapse state when comparing isolates from episodes 196

in separate individuals. This resulted in 90194 pairwise comparisons with data truly 197

generated under the null distribution: i.e. the parasites in the pairwise comparisons are 198

known to derive from different people and thus cannot be relapses, and genetic data are 199

drawn from the true population distribution. This gave an estimated false positive rate 200

(defined as the probability of relapse greater than the upper bound of an arbitrarily 201
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Fig 3. Posterior probabilities of relapse for 486 genotyped P. vivax
recurrences. The top panel shows the recurrences ranked by their probabilities of
relapse state coloured by treatment drug (orange: blood stage treatment only; green:
high-dose primaquine plus partner drug). Credible intervals are shown by the vertical
lines. The bottom panel shows the same posterior probabilities as a function of the time
since the last episode of P. vivax with the same color coding. The ‘uncertainty zone’
(same as in Fig 2 used to classify recurrences in Fig 4) is shown by the pink zone (the
upper and lower bounds are arbitrary). PMQ: primaquine; PMQ+: primaquine plus
partner drug.
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Fig 4. Classification of 486 P. vivax recurrences as a function of time since
the start of study. Each line represents one individual (n=208). Duration of active
follow-up is shown by the span of the horizontal lines (green: high-dose primaquine
given; red: no primaquine given). Recurrences classified as relapses are triangles,
reinfections are hollow circles, and uncertain classification are pink squares since they
fall in the pink zone of uncertainty in Fig 3. The delayed relapses (circa 300 days after
treatment) are circled for clarity with their follow-up duration shown by a black dotted
line. PMQ: primaquine; PMQ+: primaquine plus partner drug.
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defined ‘uncertainty zone’ from 0.3 to 0.7) of 2.2%. Not only does this highlight the 202

discriminatory power of our panel of 9 microsatellites, but it also highlights the 203

considerable population diversity within a small geographic location with low seasonal 204

transmission. 205

Radical cure efficacy of primaquine on the Thailand-Myanmar 206

border 207

We estimated the reinfection adjusted failure rate of high-dose (total dose of 7mg/kg) 208

supervised primaquine to be 2.6% (80% CI: 2.0-3.5), using the genetic and time-to-event 209

model. This was derived from the final model estimate that 15.8% of recurrences 210

following high-dose primaquine in the BPD study were relapses. If we consider the 211

background transmission to be constant over the 4 years studied, this translates into 212

99% of all relapses were averted, decreasing the relapse rate from 3.32 per year to 0.03 213

per year (Table 1). This estimate of number of relapses averted is a function of the 214

individual hypnozoite loads and therefore of the background transmission. These 215

estimates of the radical curative efficacy of high-dose primaquine used all available data 216

from the 655 individuals enrolled in the BPD study, which had requisite genetic data for 217

all but 5 of 92 recurrences. This reinfection adjusted estimate is a considerable 218

reduction from the original reinfection unadjusted estimate of the failure rate at 12% 219

(80% CI: 10-14) [32]. 220

To investigate these results further, we assessed the contribution of individual patient 221

drug exposures by examining the relationship between the day 7 trough concentrations 222

of carboxy-primaquine (the slowly eliminated inactive metabolite of primaquine), and 223

treatment failure (defined as a probability of relapse or recrudescence greater than 0.5), 224

adjusted for primaquine regimen administered (either 14 daily doses of 0.5mg/kg or 7 225

daily doses of 1mg/kg). A statistically significant trend was observed, but this was 226

driven by a few outliers, defined as episodes in which the plasma carboxy-primaquine 227

trough concentrations were more than 3 standard deviations below the mean 228

(supplementary Fig 9). Concentrations this far below expected values are likely to reflect 229

incomplete drug absorption resulting from protocol deviations (e.g. non adherence, 230

vomiting). After adjusting for these outliers, there was no statistically significant 231

relationship between drug exposure and radical cure failure. This result suggests that it 232

is possible to discriminate between drug failures due to biological mechanisms (e.g. high 233

hypnozoite load, cytochrome P450 2D6 polymorphisms, intrinsic drug resistance, etc.) 234

and drug failures because of vomiting the medication or non-adherence. This is 235

important for correct estimation of drug efficacy. Given the very low failure rate of 236

supervised high-dose primaquine (estimated at 2.6%), only very large pooled patient 237

data analyses would have the necessary power to confirm or refute this conjecture. 238

Number of microsatellite markers for reliable assessment of the 239

unknown recurrence states 240

For microsatellite genotyping in future studies, it is important to determine the 241

minimum number of markers necessary for a reliable assessment of the unknown 242

recurrence states. We simulated data assuming microsatellite markers were independent 243

with effective cardinality of 13 (this is the average effective cardinality in our panel of 244

nine microsatellites, see Methods and Fig 6). To emphasize clearly the information 245

content for a given number of markers in various complexities of infections, we used a 246

uniform distribution over the recurrence states (i.e. recrudesence, reinfection and 247

relapse each have prior probability of 1/3). We simulated paired infections (one primary 248

episode followed by a single recurrence) under three scenarios: the recurrence is either 249

December 23, 2018 11/43

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 25, 2018. ; https://doi.org/10.1101/505594doi: bioRxiv preprint 

https://doi.org/10.1101/505594
http://creativecommons.org/licenses/by/4.0/


Fig 5. Posterior probabilities of recurrence states as the number of
microsatellites typed is increased Each plot corresponds to a different relationship
simulation scenario. Coloured bars show the median posterior probabilities with error
bars extending ± one standard deviation. The effective cardinality of each marker was
set equal to 13 in these simulations. The COIs in the first and second infections were 1
and 1 respectively. The prior probability of each recurrence state was 1/3. As the
number of microsatellites genotyped is increased, the following are expected. 1) Under
the clone scenario, the probability of recrudescence should converge a probability greater
than the prior and the complement of that of relapse; while the probability of reinfection
should converge to 0. 2) Under the sibling scenario, the probabilities should converge to
1 for relapse and 0 otherwise. 3) Under the strange scenario, the probability of
reinfection should converge to a probability greater than the prior and the complement
of that of relapse; while the probability of recrudescence should converge to 0.

an exact clone, a sibling, or a stranger with respect to the primary infection. 250

Fig 5 shows the posterior probabilities of the recurrence states for each of these three 251

scenarios as a function of the numbers of markers typed. When the simulated data had 252

clonal or ‘stranger’ relationships, six or more markers sufficed to recover expected 253

probabilities. When the simulated data had sibling relationships (exclusive evidence of 254

relapse) nine markers or more were needed to obtain a median posterior probability of 255

relapse close to one. These simple simulations suggest that reliable posterior estimates 256

of the unknown recurrence state can be obtained with approximately 9 markers of 257

effective cardinality equal to 13. 258

Discussion 259

Distinguishing recrudescence, relapse and reinfection in recurrent vivax malaria is 260

necessary for optimum planning of malaria control and elimination interventions as each 261

recurrence state has a different implication for case management. To date, there are no 262

available host or parasite biomarkers of the different recurrence states. Our approach is 263

to our knowledge the first principled attempt to use treatment information along with 264

time-to-event and genetic data to estimate individual probabilities of the possible 265

recurrence states. The most important operationally relevant result from this analysis is 266

a re-evaluation of the estimated radical cure failure rate following high-dose primaquine. 267

We re-estimated the true failure rate in the BPD study to be 2.6% as compared to the 268

published reinfection unadjusted estimate of 12% [32]. The radical curative efficacy of 269

primaquine is not a fixed property - even when reinfections are discounted, it depends 270

on hypnozoite burden and thus the background level of transmission [6, 34] - so these 271
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results also probably reflect recent improvements in malaria control in the area [36]. 272

Our analysis reinforces the value of high-dose primaquine radical cure in this setting. 273

We note that the estimated false positive discovery rate for relapse was extremely 274

low (2.2%) when the genetic model alone was tested on isolates from separate patients 275

(null data). This guards against underestimating the efficacy of high-dose primaquine. 276

Additionally, the estimated number of relapses in non-primaquine treated patients was 277

very high (exceeds 98%). This means that the false negative rate for relapse 278

identification in non-primaquine treated patients cannot be more than around 2% and 279

tentatively suggests a similarly low rate for relapses in patients who do receive 280

primaquine, which guards against overestimating the efficacy of high-dose primaquine. 281

Much remains unknown regarding the biology of relapse and the mode of action of 282

the 8-aminoquinoline radical curative drugs. No good in vitro hypnozoite model is yet 283

available. Under a simple in silico model of relapse fit to the data from trials on the 284

Thailand-Myanmar border, where P. vivax exhibits the short-latency phenotype [6, 7], 285

we recovered an approximate 60:40 split between early-periodic relapse and constant 286

rate relapse. Whether this truly captures the biology of relapse activation or whether a 287

more complex system operates is uncertain. We also observed two late recurrences (300 288

days since last episode) with high probability (and low estimate uncertainty) of relapse. 289

Our results thus suggest that short-latency hypnozoites can remain dormant in the liver 290

for up to year, confirming previous reports with presumably similar P. vivax phenotypes 291

(the Chesson strain) [5, 13]. These late relapsing hypnozoites likely awaken via a 292

different mechanism to that of the highly periodic ‘long-latency’ P. vivax [6]; the most 293

parsimonious explanation would be that they awake at ‘random’ (constant rate of 294

relapse). 295

Various statistical and mathematical models of P. vivax exist, ranging from models 296

of within host dynamics to global geostatistical descriptions of 297

prevalence [7, 27,33–35,37–54]. However, only two publications to our knowledge have 298

formally considered recurrence states on an individual basis [37,55]. Ross et al. 299

modelled data from a cohort study in Papua New Guinea (an area of substantially 300

higher transmission than the Thailand-Myanmar border, or indeed almost any vivax 301

endemic area) to estimate P. vivax seasonality and incidence [55]. The model is based 302

on the presence-absence patterns of alleles at two polyallelic markers, each modelled 303

separately, allowing for various mechanisms that beget unobserved alleles, but neither 304

reinfection with the same genotype nor recombination. As such, relapses caused by 305

genetically distinct hypnozoites (siblings or ‘strangers’) are unaccounted for. White et 306

al. combined genetic (from a single polyallelic locus) and time-to-event data using a 307

statistical model of parasite clone acquisition and clearance using samples from cohorts 308

in Papua New Guinea and Thailand [37]. The majority of recurrent episodes were 309

asymptomatic and not treated, and the main target of inference was the duration of 310

asymptomatic infection. Individual probabilities of relapse were estimated but not fully 311

identifiable. Data on a single locus did not discriminate between a single blood-stage 312

infection and multiple successive relapses. 313

This is the first attempt to apply a principled probabilistic model framework of 314

relapse, recrudescence and reinfection in recurrent vivax malaria using both 315

time-to-event and multi-locus genetic data on multiple episodes of malaria in the same 316

individual. It allows complementary information from different data types to be 317

quantified systematically. However, strong assumptions were necessary (a 318

comprehensive list can be found in the Methods) and the genetic model has limitations. 319

The main limitations are poor ability to infer a recrudescent state, and computational 320

complexity. In general, correct classification of recrudescent infections is difficult as at 321

low levels of resistance they will reach patency at similar times as relapsing infections 322

and the genetic signature is the same as a homologous (i.e. isogenic) hypnozoite. Our 323
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genetic model is brittle with respect to recrudescence as we do not account for imperfect 324

detection or genotyping errors. Given there is very little evidence of recrudescence in 325

this area from other indicators (i.e. slowing of parasite clearance rates and rising 326

recurrence rates supported by reduced in-vitro susceptibility), this is unlikely to impact 327

on our results, but it would necessitate modification before application to data from a 328

region where P. vivax antimalarial resistance is suspected. The computational 329

complexity of the model is exponential as a function of the number of recurrences and 330

the complexities of the episodes. Its scope is therefore limited to data from a maximum 331

of three episodes (a primary episode and two recurrences) in which the maximum 332

cumulative COI is 6, with approximately 3-6 heteroallelic genotype calls per episode. 333

The majority of P. vivax endemic areas are consistent with the low transmission 334

settings studied here on the Thailand-Myanmar border [1], where over 99% of the single 335

recurrences fit these stipulations (the median COI in both VHX and BPD is 1). 336

However, the method would require modification before application to data from high 337

transmission settings such as Papua New Guinea, where the estimated complexity of a 338

single infection is often greater than 6 [37,55]. 339

Transmission intensity correlates positively with both genetic complexity and 340

diversity [56]. Our model implies a trade-off: decreasing genetic complexity decreases 341

computational complexity, but decreasing genetic diversity decreases the resolving 342

power of the genetic markers. P. vivax has high levels of genetic diversity even in low 343

transmission settings, probably as a result of ‘heterologous’ genotype 344

activation [6, 57–59]. Nevertheless there is a transmission intensity ‘sweet spot’ for 345

inference whereby genetic complexity is sufficiently low and diversity sufficiently high. 346

A simple simulation study estimated that genotyping 9 highly polymorphic 347

microsatellites was sufficient for reliable inference of recurrence states. There are no 348

commensurable models of vivax recurrence with which to compare this result. It agrees 349

roughly with estimates from parentage and sibship studies [60,61], where both 350

parent-sibling and sibling relationships have an expected relatedness of 0.5 351

(supplementary Figure 7). Highly polyallelic microsatellite length poymorphisms have 352

long been used for relatedness inference due to their per-locus resolving power, but in 353

suitably equipped laboratories they are being superseded by whole genome sequencing 354

(WGS) data [62–64]. WGS data provide greater sensitivity to resolve partially related 355

parasites, while providing additional information on population genetics and possibly 356

drug resistance markers [26,65], but are relatively costly. Moreover, the information 357

they provide may exceed that required for recurrence state inference, which is primarily 358

concerned with a subset of relationships: clones, siblings and strangers. With this in 359

view, there has been recent interest in using micro-haplotypes for recurrence state 360

inference. Micro-haplotypes combine the resolving power of highly polyallelic 361

microsatellites with high-throughput ease, thereby addressing economic, technical and 362

statistical concerns [66,67]. 363

Models based on the time-to-event fit well generally and can provide probabilistic 364

estimates of hidden recurrence states. However, they necessitate large training samples 365

(the pooled analysis trial used over 2700 time intervals recorded in over 1200 366

individuals) and do not use important information regarding relatedness as captured by 367

genetic data. On the other hand, genetic data alone can generate estimates of relapse, 368

recrudescence and reinfection, but they are largely uninformative when pairs of 369

infections are unrelated. Alone, each model is useful but sub-optimal. In combination 370

they provide more informed probabilistic estimates. In this work we combined the two 371

models informally, using the posterior of the time-to-event model as a discrete prior in 372

the genetic model. Using this approach we determined that the radical curative efficacy 373

of supervised high-dose primaquine is considerably higher than previously thought in 374

the epidemiological setting of frequent relapse vivax malaria on the Thailand-Myanmar 375
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border. 376

Conclusion 377

Time-to-recurrence combined with highly polymorphic microsatellite genotyping data 378

provide valuable complimentary information for the inference of relapse, recrudescence 379

and reinfection states of recurrent vivax infections. 380

Methods 381

Clinical procedures 382

This section summarizes the clinical procedures followed in the Vivax History (VHX) 383

trial [4] and the Best Primaquine Dose (BPD) trial [32]. Both trials were conducted by 384

the Shoklo Malaria Research Unit in clinics along the Thailand-Myanmar border in 385

northwestern Thailand. This is an area with low seasonal malaria transmission. The 386

patient populations comprised of migrant workers and displaced persons of Burman and 387

Karen ethnicity [68]. During the time these studies were conducted, primaquine radical 388

cure treatment was not routinely given to patients in this area. 389

Ethical Approval 390

The BPD study was approved by both the Mahidol University Faculty of Tropical 391

Medicine Ethics Committee (MUTM 2011-043, TMEC 11-008) and the Oxford Tropical 392

Research Ethics Committee (OXTREC 17-11) and was registered at ClinicalTrials.gov 393

number NCT01640574. The VHX study was given ethical approval by the Mahidol 394

University Faculty of Tropical Medicine Ethics Committee (MUTM 2010-006) and the 395

Oxford Tropical Research Ethics Committee (OXTREC 04-10) and was registered at 396

ClinicalTrials.gov trial number NCT01074905. 397

Vivax History trial (VHX) 398

This randomized controlled trial was conducted between May 2010 and October 2012. 399

644 patients older than 6 months and weighing more than 7kg with microscopy 400

confirmed uncomplicated P. vivax mono-infection were randomized to receive 401

artesunate (2 mg/kg/day for 5 days), chloroquine (25 mg base/kg divided over 3 days: 402

10 mg/kg, 10 mg/kg, 5 mg/kg) or chloroquine plus primaquine (0.5 mg base/kg/day for 403

14 days). G6PD abnormal patients (as determined by the fluorescent spot test) were 404

randomized only to the artesunate and chloroquine monotherapy groups. The aim was 405

to measure chloroquine efficacy and characterise the ‘natural’ history of P. vivax 406

recurrence in order to assess the risks and benefits of radical cure. 407

Subjects were followed daily for supervised drug treatment. Follow-up continued 408

weekly for eight weeks and then every four weeks for a total of one year. Patients with 409

microscopy confirmed P. vivax infections were retreated with the same study drug as in 410

the original allocation. Patients in the artesunate monotherapy or chloroquine 411

monotherapy groups who experienced more than 9 recurrences were given radical 412

curative treatment with the standard primaquine regimen (0.5 mg base/kg/day for 14 413

days). 414

Best Primaquine Dose trial (BPD) 415

Between February 2012 and July 2014, 680 patients older than 6 months were enrolled 416

in a four-way randomized controlled trial simultaneously comparing two regimens of 417
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primaquine (0.5 mg/kg/day for 14 days or 1 mg/kg/day for 7 days) combined with one 418

of two blood-stage treatments: chloroquine (25 mg base/kg) or 419

dihydroartemisinin-piperaquine (dihydroartemisinin 7mg/kg and piperaquine 55mg/kg). 420

The aim was to characterize the efficacy and tolerability of a shorter course (7 days 421

rather than 14) of higher dose primaquine, with a second randomization to chloroquine 422

or dihydroartemisinin-piperaquine. All doses were supervised. 423

The inclusion and exclusion criteria for this study were the same as for the VHX 424

study, except for the following: patients were excluded if they were G6PD deficient by 425

the fluorescent spot test, had a haematocrit less than 25%, had received a blood 426

transfusion within 3 months, or could not comply with the study requirements. 427

Follow-up visits occurred on weeks 2 and 4, and then every 4 weeks for a total of one 428

year. Any recurrent P. vivax infections detected by microscopy (same criteria as for 429

VHX) were treated with a standard regimen of chloroquine (25 mg base/kg over 3 days) 430

and primaquine (0.5 mg base/kg/day for 14 days). 431

In both studies, recurrent episodes were detected actively at the scheduled visits by 432

microscopy (lower limit of detection is circa 20 parasites per µL). Patients were 433

encouraged to come to the clinics between scheduled visits when unwell and so some 434

recurrences were detected passively (less than 5%). 435

Microsatellite genotyping 436

Whole blood for complete blood count was collected by venipuncture in a 2mL EDTA 437

tube. Remaining whole blood was frozen at -80C. Plasmodium vivax genomic DNA was 438

extracted from 1 mL of venous blood using automated DNA extraction system 439

QIAsymphony SP (QIAGEN, Germany) and QIAsymphony DSP DNA mini kit 440

(QIAGEN, Germany) according to the manufacturer’s instructions. In order to compare 441

primary infections and recurrences genotypic patterns, we genotyped initially using 442

three polymorphic microsatellite loci that provided very clean amplification: no stutter 443

peaks, and on the basis of amplification (i.e. reliability of PCR amplification at the low 444

parasite densities usually found in recurrent infections). These loci were PV 3.27, PV 445

3.502, and PV ms8. PCR amplification was performed following previously described 446

protocols [12, 69]. The genotypes of pre- and post-treatment samples were subsequently 447

assigned a crude classification: ‘related’ versus ‘different’. ‘Related’ genotypes were 448

defined as identical alleles observed at at least two loci out of the three typed. If all 449

alleles at all loci were different, or identical alleles were only observed at one loci, the 450

samples were classified as ‘different’. If the paired samples were classified as ‘related’, six 451

more microsatellite markers were genotyped (PV 1.501, PV ms1, PV ms5, PV ms 6, PV 452

ms7, and PV ms16). 453

For allele calling on the microsatellites, the lengths of the PCR products were 454

measured in comparison to internal size standards (Genescan 500 LIZ) on an ABI 3100 455

Genetic analyzer (PE Applied Biosystems), using GENESCAN and GENOTYPER 456

software (Applied Biosystems) to measure allele lengths and to quantify peak heights. 457

Multiple alleles were called when there were multiple peaks per locus and where minor 458

peaks were > 33% of the height of the predominant allele. We included negative control 459

samples (human DNA or no template) in each amplification run. A subset of the 460

samples (n = 10) were analyzed in triplicate to confirm the consistency of the results 461

obtained. All pairs of primers were tested for specificity by use of genomic DNA from P. 462

falciparum or humans. 463

Statistical models 464

All model code and statistical data analysis were written in R (version 3.4.3). The 465

genetic model uses the R package igraph [70] to manipulate relatedness graphs. 466
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Time-to-event models were written in rstan based on the stan probabilistic programming 467

language [71, 72]. Logistic and poisson mixed effects regression models were fitted using 468

the package lme4. R code along with deindentified microsatellite and time-to-event 469

datasets can be found on github at github.com/jwatowatson/RecurrentVivax. 470

Time-to-event model of vivax recurrence 471

For recurrent P. vivax infections in the VHX and BPD studies, we developed and 472

compared two Bayesian mixed-effects mixture models describing the time-to-event data 473

conditional on the treatment drug administered. Notation was chosen so as to be 474

consistent with the mathematical notation for the genetic model (next section). For 475

each individual (denoted by the subscript n ∈ 1..N), we record the time intervals (in 476

days) between successive P. vivax episodes (the enrollment episode is denoted episode 477

0). The last time interval is right censored at the end of follow-up. The models assume 478

early dropout is not a confounding factor for drug efficacy. For the nth individual, data 479

concerning the time interval t (the time between episode t− 1 and episode t) is of the 480

form x
(t)
n = {D(t)

n , Z
(t)
n , C

(t)
n }, where D(t)

n ∈ {AS,CQ,PMQ+} is the drug combination 481

used to treated episode t− 1 (AS: artesunate monotherapy; CQ: chloroquine 482

monotherapy; PMQ+: primaquine plus blood stage treatment), Z(t)
n is the time interval 483

in days, and C
(t)
n ∈ {0, 1}, where 1 corresponds to a right censored observation (i.e. 484

follow-up ended before the next recurrence was observed) and 0 corresponds to an 485

observed recurrent infection. In general, let xn = {x(0)
n , . . . ,x

(T )
n }, denote all available 486

time-to-event data for the nth individual. Few recurrences (n=8) occurred in the first 8 487

weeks for patients randomized to the dihydroartemisinin-piperaquine arms of the BPD 488

trial, so we modelled the post-prophylactic period of piperaquine as identical to that of 489

chloroquine (i.e. PMQ+ includes both chloroquine and dihydroartemisinin-piperaquine 490

as blood stage treatments). In reality the elimination profiles and intrinsic activities are 491

slightly different, with piperaquine providing slightly longer asexual stage suppression 492

than chloroquine. 493

Time-to-recurrence is modeled as a mixture of four distributions, with mixture 494

weights depending on treatment of the previous episode. The mixture distributions 495

correspond to the different recurrence states. The four mixtures are: reinfection given 496

by an exponential distribution; early/periodic relapse given by a Weibull distribution 497

with treatment drug dependent parameters; late/random relapse given by an 498

exponential distribution; recrudescence given by a Weibull distribution with treatment 499

drug dependent parameters. 500

Model 1 assumes 100% efficacy of high-dose primaquine with only reinfection
possible. Model 2 does not assume 100% efficacy of high-dose primaquine and specifies
different mixing proportions for the reinfection component in the non primaquine and
primaquine groups, pn(AS) = pn(CQ) and pn(PMQ+), respectively. The mixing
proportion between late and early relapse within the relapse component is the same
across primaquine and non-primaquine groups. The likelihood for model 2 is given as:

Z
(t)
n ∼ pn(D(t)

n ) E(λ) +
(

1 − pn(D(t)
n )
){

(1 − c(D(t)
n ))

(
q W (µ

D
(t)
n

, σ
D

(t)
n

) + (1 − q) E(γ)

)
+ c(D(t)

n ) E(λRC )

}
,

where pn(·) ∈ (0, 1) is the individual and drug-specific mixture probability of reinfection 501

(we set the prior to reflect our belief that pn(AS) = pn(CQ) > pn(PMQ+)) and 502

c(·) ∈ (0, 1) is the nested drug-specific mixture probability of recrudescence. 503

The likelihood for model 1 is the same except that pn(PMQ+) = 1 (only reinfection 504

possible). λ is the rate of reinfection; E(·) denotes the exponential distribution. E(λRC) 505

is an exponential distribution with rate parameter λRC (assumed drug independent) 506

modelling the time to recrudescence; the parameters µ
D

(t)
n

and shape parameter σ
D

(t)
n

507

determine the drug-specific mean and variance of the time to relapse, with 508
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µCQ = µPMQ+ and σCQ = σPMQ+. q is the doubly nested mixing proportion between 509

‘periodic’ (first component) and ‘random’ (second component) relapses. This is a fixed 510

proportion across all individuals. The ‘random’ relapses are parameterized by the rate 511

constant γ. The individual marginal probability of reinfection is given by p(D(t)
n )

n ; the 512

individual marginal probability of recrudescence is given by (1− pn(D(t)
n ))c(D(t)

n ); the 513

individual marginal probability of relapse is given by (1− pn((D(t)
n ))(1− c(D(t)

n )). 514

We used informative prior distributions (supplementary Fig 10) to ensure 515

identifiability of the mixture components. Information content in the data, over and 516

above that specified in the prior, was visually examined using prior-to-posterior plots. 517

The prior-to-posterior plot for model 2 is shown in supplementary Figure 10. 518

All time-to-event models were coded and implemented in stan [72] and run using R 519

version 3.4.3. The complete models can be found on github at 520

github.com/jwatowatson/RecurrentVivax/Timing_Model. 521

The stan models output (i) Monte Carlo posterior distributions for all model 522

parameters; (ii) posterior estimates of recurrence states for each time interval x(t)
n ; (iii) 523

log likelihood estimates of each posterior draw. For each model, we ran 8 chains with 524

106 iterations, thining per 4000 iterations and discarding half for burn-in. Convergence 525

of MCMC chains was assessed using traceplots assessing mixing and agreement of the 526

six independent chains. These can be found in the github repository. 527

Neither of the models incorporate seasonality, which is an important factor in P. 528

vivax transmission on the Thailand-Myanmar border. A seasonal model is in 529

development and will be the subject of future work. 530

Determination of population allele frequencies Allele frequencies are critical 531

for assessing the probability of identity by chance between isolates under the genetic 532

model (described below). Given that the two clinical studies (VHX and BPD) were 533

carried out in the same clinics and populations at a similar point in time (both were 534

completed within a 4 year period), to estimate allele frequencies we combined all 535

microsatellite data from the enrollment episodes in the two studies. Specifically, this 536

included 216 enrollment episodes, with 137 individuals from the VHX trial and 79 from 537

the BPD trial. We excluded recurrent episodes since repeat relapses are liable to 538

introduce intra-individual correlation. 539

There are several ways to compute allele frequencies from enrollment data. A simple 540

approach is to use monoclonal data. However, some alleles are only seen in polyclonal 541

infections. In addition, monoclonal-derived frequencies would almost certainly introduce 542

bias resulting from disproportionately low representation of rare alleles across 543

monoclonal infections [73]. A statistically rigorous treatment would jointly model 544

frequencies, polyclonality and hidden recurrence states, but is prohibitively complex. 545

We therefore took a two step approach: first we generated frequency estimates and then, 546

conditional on these estimates, we modelled relapse allowing for polyclonality (genetic 547

model described below). 548

To compute allele frequencies we used a multinomial likelihood and Dirichlet prior 549

with weight ω = 1 (equivalent to ω pseudo observations per allele) both with dimension 550

equal to the maximum repeat length seen across all the data, thereby interpolating 551

unobserved repeat lengths less than the maximum observed. Conjugacy implies the 552

posterior distribution over allele frequencies is a Dirichlet distribution with parameter 553

vector equal to ω plus the vector of allele counts (counted as 1 per episode observed). 554

The mean posterior estimate was used as a point estimate for the allele frequencies. A 555

Monte Carlo approximation of an 80% credible interval (extending from the 10th to 556

90th percentile) was constructed using 1000 random draws around the point estimates 557

(Fig 6). 558
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For each microsatellite genotyped, we calculated its ‘effective cardinality’ n∗, defined 559

as the theoretical number of alleles (non-integer) which under a uniform distribution 560

would give rise to the same probability of identity by chance. The estimated values of 561

n∗ are shown for each microsatellite in Fig 6, with values varying from 4 (PV.ms1 ) to 562

28 (PV.ms8 ). 563

To lessen the probability that two alleles are identical by chance, some studies 564

discard common alleles (e.g. [55]). In this study, we account for identity by chance using 565

a model of relatedness based on identity by descent (IBD). 566

Fig 6. Allele frequencies for the 9 microsatellites estimated using
enrolment episodes from 216 individuals (79 in BPD and 137 in VHX)).
The mean frequency estimate is shown by the black circles and 95% credible intervals
are shown by the vertical lines. The dotted horizontal line shows the discrete uniform
distribution over alleles for comparison. The number of isolates typed for each
microsatellite is denoted by N . The top row shows the microsatellites which were typed
most frequently (PV.3.502, PV.3.27, PV.ms8 ). The range of feasible alleles is given by
the maximum observed repeat length in all the data per microsatellite combined, and
all repeats are given a pseudo-observation of weight ω = 1. The estimated effective
cardinality of each marker is denoted by n∗.
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Genetic model of relapse 567

In this section we describe the genetic model that outputs the probability that the tth 568

recurrence of the nth individual is a recrudescence, relapse or reinfection, given a vector 569

of prior probabilities of recrudescence, relapse or reinfection, and genetic data on a 570

small number of polyallelic microsatellite markers. In our joint model of time-to-event 571

and genetic data, the prior vector in the genetic model is derived from the posterior 572

distribution over recurrence states given the time-to-event data. Comprehensive 573

mathematical details of the model can be found in the Appendix. 574

To infer the probability of relapse, we construct a statistical model that exploits 575

evidence of relatedness expected within a single mosquito inoculum following 576

recombination (supplementary Fig 7). The only relationships between sporozoites that 577

are exclusive to a single mosquito are those between meiotic clones and siblings (Table 578

2). In other words, relapse can be caused by many types of sporozoites, including those 579

which are ‘strangers’ in relation to one another, but, in the absence of recrudescence, 580

only meiotic clones and meiotic siblings provide conclusive evidence of relapse (Table 2). 581

Genetic data cannot discern clones and siblings that are meiotic or not. We thus use a 582

coarse definition of clones and siblings in this model, ignoring whether the relationship 583

is meiotic. We use the term ‘stranger’ to refer to all parasites whose shared ancestry 584

dates back beyond the most recent mosquito inoculation. Consequently, the term clone 585

refers to first-generation clones only. We assume zero probability of reinfection with 586

first-generation clones or siblings, since the probability of a mosquito feeding on the 587

same human host consecutively is low. Importantly, we do allow ‘strangers’ that are 588

genetically identical by chance. This captures some clones resulting from clonal 589

expansion (i.e. multiple generations of selfing). Parent-offspring pairs are considered 590

siblings under our model since they have an expected relatedness equal to 0.5 in the 591

absence of inbreeding. We ignore half siblings whose expected relatedness is 0.25 in the 592

absence of inbreeding. However, we do allow half-siblings in the sense that we allow two 593

or more alleles per locus within infections assumed to contain only siblings (i.e. we allow 594

for collections of siblings that together share more than two parents). The main model 595

assumptions (including those mentioned above, also summarised in Table 2) are as 596

follows. 597

1. In relation to one another, sporozoites within an inoculum are either clones, 598

siblings or ‘strangers’ with respective expected relatedness of 1, 0.5 + α and 0 + α 599

(where α = 0 in the absence of inbreeding, otherwise α ∈ (0, 0.5]) 600

2. Recrudescence has non-zero probability if and only if all parasites are clones of 601

those in the directly preceding infection 602

3. No genotyping errors (i.e. no microsatellite slippage) 603

4. No mutation (i.e. all diversity due to standing variation) 604

5. 100% detection of all parasite clones during patent infection 605

6. The complexity of a given infection (COI) is equal to the maximum number of 606

distinct alleles seen at any microsatellite within that infection 607

7. The probability of being reinfected with parasites that share alleles with 608

previously inoculated parasite is equal to that of identity by chance (i.e. the 609

product of the frequencies of the alleles observed). 610

8. Mutually exclusive recurrence states 611

9. All microsatellites are independent and neutral 612

December 23, 2018 20/43

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 25, 2018. ; https://doi.org/10.1101/505594doi: bioRxiv preprint 

https://doi.org/10.1101/505594
http://creativecommons.org/licenses/by/4.0/


Assumption 1 disregards half-siblings. However, as described above, within 613

infections assumed to contain only siblings, we allow more than two alleles per locus. 614

Half-siblings are possible within an inoculum if both i) a mosquito takes a blood meal 615

from an infection with COI ≥ 3 (supplementary Fig 7), and ii) two or more zygotes 616

derived from the cross fertilization of three or more genetically distinct gametes survive 617

the severe bottleneck of successful oocyst formation [21,74]. Given the severe 618

bottleneck, and the fact that only 30 of the 710 (4%) genotyped episodes in the pooled 619

dataset have COI estimates ≥ 3, half-siblings are likely to be rare in the data analysed 620

here. If any are present, the likelihood of the observed alleles will be misspecified with 621

expected IBD=0.5 under the model. 622

Assumption 1 also states that all siblings have the same expected relatedness (0.5 in 623

the absence of inbreeding). In general, this assumption holds for all full siblings, meiotic 624

or not (supplementary Fig 7). However, if we condition on meiotic siblings having one 625

or more genetic differences, the expected relatedness between two meiotic siblings is 0.4 626

(see Appendix). Within infections with COI≥ 2, we collapse clonal relationships 627

between haploid parasite genotypes. This means that the expected relatedness is very 628

slightly over-specified (by 0.1) if an infection contains meiotic sibling parasites with 629

distinct haploid genotypes. This level of misspecification is likely inconsequential given 630

natural variation introduced by meiosis [75,76]. Moreover, if we average over the 631

probability that the two distinct parasites came from different oocysts (e.g. rows 4, 5, 6, 632

supplementary Fig 7), the extent of misspecification rapidly declines. 633

To allow for inbreeding under the model, we have included the parameter α ∈ [0, 0.5] 634

as specified in Assumption 1. A recent study found compelling evidence of inbreeding 635

and selfing in oocysts from mosquitoes fed on P. vivax blood samples from the 636

Thailand-Myanmar border in 2013 [77]. As a sensitivity analysis, we reran the 637

computations with α = 0.175 (see github notebook) and compared with results for 638

α = 0. The overall results are robust to this change, the only impact being that some 639

primaquine treated recurrences having a lower probability of relapse. 640

Assumptions 2 to 6 render inference of recrudescence frail under the model. Given 641

there is very little evidence of recrudescence in the time-to-event data, and there is no 642

other evidence to support recrudescences, this likely has little impact on our results. 643

The model would require modification before application to data from a region where P. 644

vivax antimalarial resistance is suspected, however. In comparison, inference of relapse 645

under the model is robust to assumptions 3 and 4 because we account for relapses 646

caused by siblings under the model. Conditioning on sibling relatednesss (IBD=0.5) 647

absorbs differences caused by mutation and slippage, especially since within infections 648

assumed to contain only siblings we allow more than two alleles per locus. Assumption 649

7 is likely to hold except in the rare event that an infected mosquito consecutively feeds 650

on the same human host (thereby transmitting a first-generation clone or recombinant 651

offspring to the same human host from whom the parental parasites were sourced). 652

Assumption 8 implies that all polyclonal reinfections are generated by co-inoculation. 653

That is, we do not allow coincidental blood-stage parasites from different mosquito 654

inoculations unless they are hynozoite-derived. Both the BPD and VHX trials had 655

active follow-up and all asymptomatic infections were treated so this assumption is 656

likely to hold. It would not hold in the context of passive detection or untreated 657

asymptomatic infections. This assumption also implies that we will miss reinfections in 658

individuals with frequent sibling or clonal relapses. 659

Neutrality of microsatellites (assumption 9) implies that allele frequencies of 660

hypnozoites are the same as those in the wider population. The microsatellite markers 661

used in this study were designed specifically to meet this assumption [12,69]. Future 662

data types may include non-independent markers. Extension of the relatedness model to 663

capture linkage between non-independent markers is possible (see [76,78,79]). 664
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Recrudescence Relapse Reinfection

Real life

Meiotic clones Yes Yes No
Meiotic siblings No Yes No
Clones No Yes Yes but unlikely
Siblings No Yes Yes but unlikely
Half siblings No Yes Yes but unlikely
Parent-offspring No Yes Yes but unlikely
Strangers∗ No Yes Yes

Model
Clones† Yes Yes No
Siblings‡ No Yes No
Strangers∗ No Yes Yes

Table 2. Compatibility of parasite relationships across blood-stage
infections conditional on recrudescence, relapse and reinfection assuming
all parasites are detected during patent infection (i.e. underlying truth).
Meiotic clones are parasites derived from a selfed oocyst (row 1, supplementary Fig 7),
which means they must have been coinoculated. Meiotic siblings are parasites derived
from an outcrossed oocyst (row 3, supplementary Fig 7), which also means they must
have been coinoculated. Clones, siblings, parent-offspring and half siblings are all
parasites that share common gamete genotypes but are from different oocysts (i.e. rows
2, 4, 5, and 8, respectively, supplementary Fig 7). They can occur in a single mosquito
or in different mosquitoes (e.g. contemporaneous mosquitoes that share a common
human source, or sequential mosquitoes linked to a common human host who acts a
source to the first mosquito and sink to the second). Strangers∗ include all parasites
whose shared common ancestry dates back beyond the most recent mosquito (rows 6, 7
and 9, supplementary Fig 7). Under the model, clones† includes both meiotic and not;
siblings‡ includes parent-offspring and meiotic and not, but excludes half siblings in the
sense that they have expected relatedness of 0.25 (in the absence of inbreeding).

665

Informally, the model proceeds by explicitly summing over labelled graphs of 666

relatedness between parasites both within and across infections. Each vertex label 667

represents a parasite haploid genotype, each edge label represents a relationship 668

between a pair of parasite haploid genotypes. To account for multiple haploid genotypes 669

within complex infections while maintaining the most parsimonious representation of 670

the data, the number of vertices per infection within each relatedness graph is set equal 671

to the maximum number of distinct alleles seen at any microsatellite within that 672

infection (i.e. the COI, assumption 6). Conditional on this number of vertices we 673

enumerate all possible ways to phase the microsatellite data (i.e. all possible ways to 674

label vertices with parasite haploid genotypes); enumerate all viable relationships 675

between parasite genotypes (i.e. all possible ways to label edges with relationships), 676

allowing either sibling or stranger edges within infections (clonal edges within infections 677

collapse), and clone, sibling or stranger edges across infections. For each combination of 678

vertex and edge labels, we then compute the probability of the data conditional on the 679

expected relatedness given the edge label and the allele frequencies of the vertex labels. 680

We integrate over states of IBD, thereby taking into account alleles that are identical 681

due to chance. We allow for some background IBD, since serial transmission of related 682

parasites can lead to higher than expected IBD in low transmission areas, using the 683

parameter α (discussed above). Finally, we sum over all relatednesss graphs weighted by 684

their probability given relapse, recrudescence or reinfection. 685

The probability of a relatedness graph given that the recurrence is a relapse is equal 686

over all viable graphs, since all viable relatedness graphs are compatible with a relapse 687

state (Table 2). The probability of a relatedness graph given the recurrence is a 688
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recrudescence is equal over viable graphs that have, for each haploid parasite genotype 689

in the recurrent infection, one or more clonal edges with haploid parasite genotypes in 690

the previous infection, since only clones are compatible with recrudescence under the 691

model (Table 2 and assumption 2). The probability of a relatedness graph given the 692

recurrence is a reinfection is equal over viable graphs that have only stranger edges 693

between infections, since clones and siblings are not compatible with a reinfection state 694

under the model (Table 2 and assumption 7). 695

For a given recurrence state, we do not weight the probability of each graph by the 696

relative proportion of vertices that are clones, siblings and ‘strangers’ in relation to one 697

another. Doing so is theoretically possible (and could provide a link to a dynamic P. 698

vivax transmission model), but is very difficult without prior knowledge of the relative 699

proportions expected given different recurrence states. A full understanding requires 700

joint modelling of the hidden recurrence states, transmission (to capture the expected 701

counts of ‘strangers’ and siblings in co-inoculations, thus treating COI as a random 702

variable) and of the impact of host covariates (e.g. age, treatment history, etc.) on the 703

hypnozoite bank to better understand the observed variance in homologous versus 704

heterologous relapse [12,14–18,24,80]. 705

Genetic model for more than 2 recurrences Due to computational complexity, 706

the genetic model of recurrence is limited to the joint analysis of one or two recurrences 707

only (see Discussion). This amounted to n=158 patients in the pooled dataset. For 708

individuals with more than two recurrences (n=54), we estimated all within individual 709

pairwise probabilities of recurrence states between episodes (1178 pairwise comparisons). 710

The results of these pairwise comparisons can be used to construct for each individual 711

an adjacency matrix of recurrence states between episodes. Relapse probabilities are 712

then defined as proportional to the maximum estimated probability of relapse with 713

respect to all preceding episodes. Recrudescence probability is proportional to the 714

probability of recrudescence with respect to the directly preceding episode. For each 715

recurrence, the probability of reinfection is the complement of the probability of relapse 716

plus recrudescence. 717

Joint model of relapse 718

Motivation Time-to-event data often only provide intermediate level evidence for or 719

against relapse and ignore rich signals from genetic data. Alone, genetic data do not 720

suffice to pinpoint relapsing infections as unrelated parasites are found both within and 721

across inocula, and are compatible with relapse or reinfection. However, by combining 722

both sources of information we can use genetic data to update the a priori belief of 723

recurrent states based on the time-to-event. In this work we combine the two models 724

informally, using the posterior of the time-to-event model as a discrete prior in the 725

genetic model. It remains to be seen whether a formally joint model of both data types 726

would add value [81]. 727

Conditional independence of time-to-event and genetic information For the 728

nth individual, let xn denote all available time-to-event data (as above), yn denote all 729

available genetic data, and Rn denote hidden recurrent states. Under the joint model of 730

relapse we assume xn and yn are conditionally independent given Rn: 731

P (xn,yn|Rn) = P (xn|Rn)P (yn|Rn) (1)
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This assumption allows sequential update of the posterior probability of Rn. First given
information from the time-of-event data,

P (Rn|xn) = P (xn|Rn)P (Rn)
P (xn) ; (2)

second given information from genotyping (be it microsatellite data or other),

P (Rn|yn,xn) = P (yn|Rn)P (Rn|xn)∑
AllRn

P (yn|Rn)P (Rn|xn) . (3)

We use Monte Carlo sampling to numerically approximate P (Rn|xn), Eq 2. We then 732

draw from the numerical approximation uniformly at random (while also drawing from 733

the posterior allele frequency distributions) to recover a numerical approximation of 734

P (Rn|xn,yn). Since we explicitly sum over all Rn, for a given allele frequency draw, 735

(Eq 3) can be considered a transformation of the sample approximating P (Rn|xn). 736

The conditional independence assumption can be interpreted as ‘no propensity for 737

relapsing stranger parasites to occur at different time intervals than relapsing parasites 738

that are related’. In reality, this assumption may be incorrect. For example, [6] 739

hypothesises that malarial illness itself activates pre-existent hypnozoites which in long 740

latency P. vivax could lead to a preferential activation of genetically unrelated 741

hypnozoites [6]. In long latency vivax, reinfection would thereby trigger activation of 742

previously inoculated parasites (unrelated) and the most recently accumulated 743

hypnozoites would stay dormant for 8-9 months. However, this is highly speculative and 744

thus in our joint model of relapse we assume conditional independence. 745

Classification of recurrent episodes 746

The estimation of the false positive discovery rate of the genetic model and Figure 4 747

both necessitate the specification of classification boundaries. We arbitrarily chose the 748

interval [0.3,0.7] as the ‘zone of uncertainty’, with probabilities of a recurrence state 749

greater than 0.7 implying a certain classification. 750
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Fig 7. Possible meiotic events and subsequent relationships between
sporozoites within a single mosquito. This is an adaptation of Fig 2 of [82].
Possible meiotic events (of which there can be one or more within a mosquito, but only
one per zygote resulting in one oocyst) are represented by trees with two root nodes
representing parental gametes and four leaf nodes representing recombinant offspring
that subsequently replicate by mitosis producing thousands of sporozoites within the
oocyst. Different colours represent different genotypes. Hybrid colours represent
outcrossed offspring. We show scenarios for a maximum of four genetically distinct
parental gametes as this encompasses all possible pairwise relationships. †Expected
relatedness values assume a large randomly mating population (i.e. no inbreeding).
‡The expected relatedness of meiotic siblings is the mean of a bimodal distribution with
modes at 0.3 and 1 (see Appendix and [76,82] for explanation). Strangers∗ include all
parasites whose shared ancestry dates back beyond the mosquito in question.
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Fig 8. Effect of incorporating both time-to-event and genetic data on
probabilities of relapse and reinfection based on either data type alone. The
top two plots show the effect of incorporating time-to-event data, relative to genetic
data alone, on probabilities of relapse (left) and reinfection (right). The bottom two
plots show the effect of incorporating genetic data, relative to time-to-event data alone,
on probabilities of relapse (left) and reinfection (right). The diagonal line marks the line
of equality. Pink bands mark the arbitrarily defined relapse classification ‘uncertainty
zones’. Points in top left and bottom right ‘certainty zones’ (non-pink rectangles) mark
recurrences whose classification changes from not relapse to relapse and vice versa,
respectively, upon incorporation of data. Upon incorporation of time-to-event data
some ‘No PMQ’ and to a lesser extent some ‘PMQ+’ treated recurrences are classified
as relapse where they were not previously, while three ‘PMQ+’ treated recurrences are
classified as not being recurrences where they were previously (top left plot). Upon
incorporation of genetic data, some ‘PMQ+’ treated episodes are classified as relapses
where they were not previously.

S3 Plot Estimated relationship between carboxy-primaquine exposure 1026

and primaquine failure. 1027
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Fig 9. Estimated relationship between carboxy-primaquine exposure and
primaquine failure. The proxy exposure to carboxy-primaquine is defined (lower
bound) as the number of days of primaquine administration multiplied by the log
trough concentration observed on day 7. The fitted trends using all the data are
significant; they are shown by the thick lines. After removal of outliers (circles: defined
as those episodes whose carboxy-primaquine trough concentrations were more than 3
standard deviations from the mean), the fitted trends (non-significant) are shown by the
dashed lines.

S4 Plot Information contained in time-to-event data Going from prior 1028

distributions (red thick lines) to posterior distributions (histograms) for the population 1029

level model parameters. 1030
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Fig 10. Information contained in time-to-event data Going from prior
distributions (red thick lines) to posterior distributions (normalised histograms) for the
population level model parameters. For each prior and posterior, the horizontal axis is
density.
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Appendices 1031

Terminology: homologous and heterologous 1032

Typically, the term ”homologous” is synonymous with genetically identical or near 1033

identical (i.e. allowing for genotyping error), whereas ”heterologous” is synonymous 1034

with genetically different. Both terms are used interchangeably as descriptors both on 1035

the level of a parasite haploid genotype (e.g. ‘heterologous hypnozoite’ [12]) and on the 1036

level of an infection (e.g. ‘homologous recurrences’ [9]). When referring to an infection, 1037

the terms apply to collections of parasites, which may contain different genotypes that 1038

are not necessarily resolved. They are likely unresolved because most genotyping 1039

methods. For example, if two alleles are detected per locus at two loci in a primary 1040

infection (alleles 1 and 2 at locus A; alleles 3 and 4 at locus B) then we do not know 1041

how these ‘phase’ to parasite haploid genotypes (do we have A1B3 and A2B4, or A1B4 1042

and A2B3?), and if the recurrence contained the same four alleles, we cannot therefore 1043

be sure we have the same parasites (i.e. the primary infection could be A1B3 and A2B4, 1044

and the recurrence could be A1B4 and A2B3). Parasites that are siblings, and also the 1045

infections that they cause, could be deemed homologous (as in [6]), heterologous (as 1046

in [26,28]), or referred to separately (as in [18,65,83]). 1047

Relatedness between meioitic siblings 1048

As discussed in [82], the average pairwise relatedness between sporozoites that are 1049

meiotic siblings is 0.5, despite average pairwise relatedness between haploid meiotic 1050

products (hereafter referred to as HMPs) being 0.33. This is because of the massive 1051

expansion of the HMPs during sporogeny [21,74]. In short, expansion amounts to there 1052

being 8
16 = 0.5 IBD permutations of sporozoites from the mature oocyst, despite 1053

2
6 = 0.33 IBD combinations of HMPs from the tetraploid zygote. A more detailed 1054

explanation follows. 1055

Fig 11. A schematic of sexual recombination between genetically distinct
malaria parasites based on a review by [21]. Different colours denote different
genomes. A single locus is highlighted by a solid circle. Two haploid gametes (one
micro, one macro) fuse forming a diploid zygote (step 1). Endomeiotic replication
follows, resulting in a tetraploid zygote with four presumed HMPs, labelled a, b, c and
d (step 2). Note that the labels a to c refer to the HMPs in their entirety, not the alleles
at the highlighted locus. The zygote then transforms into a motile ookinete, where the
second round of meiosis is thought to occur, before maturation of the ookinete into an
oocyst. Within the oocyst, the four presumed haploid meiotic products replicate by
endomitosis producing thousands of genomes that mature into sporozoites (step 3).

Fig 11 is a schematic of sexual recombination between genetically distinct malaria 1056

parasites based on the review [21]. Different colours denote different genomes. The 1057
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microgamete is blue, and the macrogamete is red. A single locus is highlighted by a 1058

solid circle. In step 1, two genetically distinct haploid gametes (one micro, one macro, 1059

represented by blue and red, respectively) come together forming a diploid zygote. 1060

Endomeiotic replication follows, resulting in a tetraploid zygote with four presumed 1061

HMPs (step 2). The zygote then transforms into a motile ookinete before maturation 1062

into an oocyst, where, in a process called sporogony, the four presumed haploid meiotic 1063

products replicate by endomitosis producing thousands of genomes that mature into 1064

sporozoites (step 3). 1065

Since there are only four HMPs in the tetraploid zygote (a, b, c and d in Fig 11), 1066

there are only
(4

2
)

= 6 ways to select distinct pairs of HMPs (ab, ac, ad, bc, bd and cd). 1067

A pair is identical by descent (IBD=1) at a given locus only if the HMPs share a marker 1068

inherited from the same gamete (otherwise IBD=0). At any given locus, 2 HMPs inherit 1069

markers from the microgamete (a and b at the highlighted locus in Fig 11), there is thus 1070(2
2
)

= 1 way of choosing two markers derived from the microgametes (ab in this 1071

example). Similarly, there is
(2

2
)

= 1 way of selecting two markers derived from the 1072

macrogamete (cd in this example). Of the 6 HMP pairs, there are thus two that are 1073

identical by descent (IBD=1: ab and cd) and 4 that are not (IBD=0: ac, ad, bc, bd), 1074

amounting to an average pairwise relatedness between HMPs of 2/6 = 0.33. 1075

Since within an oocyst there are thousands of sporozoites derived from only 4 HMPs 1076

we can select sporozoites derived from the same and different HMPs (i.e. equivalent to 1077

sampling HMPs with replacement). Given the four HMP precursors, there are in total 1078

4× 4 = 16 ways to select sporozoites (aa, ab, ac, ad, ba, bb, bc, bd, ca, cb, cc, cd, da, 1079

db, dc, dd). Given two of the four HMP precursors inherit markers from the 1080

microgamete (a and b), there are 2× 2 = 4 ways two select two sporozoites that have 1081

markers derived from the microgametes (aa, bb, ab, ba). Similarly there are 2× 2 = 4 of 1082

selecting two markers derived from the macrogamete (cc, dd, cd, dc). Of the 16 1083

sporozoite pairs, 4 + 4 = 8 are thus IBD, amounting to an average pairwise relatedness 1084

between sporozoites of 8/16 = 0.5. 1085

If we condition on sporozoites having one or more genetic differences (e.g. exclude 1086

repeats aa, bb, cc, dd from numerator and denominator), the average pairwise 1087

relatedness between remaining sporozoites is 4/10 = 0.4. This means that the expected 1088

relatedness between two genetically distinct sporozoites that are meiotic siblings is 0.4. 1089

On the opposite end of the spectrum, if genetically identical micro and macro gametes 1090

self-fertilize all combinations and permutations are IBD and the haploid meiotic 1091

products are clonal. 1092
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Genetic model: full mathematical description 1093

In this section we provide a full mathematical description of the genetic model. It is 1094

broken down into four subsections entitled: Model overview, Evaluation of the prior, 1095

Evaluation of the likelihood (divided into three parts), Model implementation. A running 1096

example is provided in boxes. The full set of mathematical notation used in this model 1097

is given in Table 3. 1098

Model overview 1099

This Bayesian model estimates the probability distribution over the possible recurrence
states R(t)

n , for recurrence t experienced by individual n, given all available genetic data
for that individual, denoted yn. Note that this includes the genetic data of past
episodes and future recurrences. The Bayesian posterior probability of the relapse state
L for the tth recurrence experienced by the nth individual can be written as:

P
(
R(t)
n = L | yn

)
=
∑
L

{
P (yn | Rn)P (Rn)∑

All Rn
P (yn | Rn)P (Rn)

}
, (4)

where 1100

• P (yn | Rn) denotes the likelihood and P(Rn) denotes the prior; 1101

• Rn =
(
R

(1)
n , . . . , R

(Tn)
n

)
where R(t)

n ∈ {C,L, I} for t > 0 where C,L, I denote 1102

recrudescence, relapse and reinfection, respectively, and Tn is the total number of 1103

recurrences experienced by the nth individual (s.t. Rn ∈ {C,L, I} if Tn = 1 and 1104

Rn ∈ {II, LL,CC, IC,CI, IL, LI, LC,CL} if Tn = 2); 1105

• L =
{
Rn : R(t)

n = L
}

(i.e. L is the set of all Rn such that R(t)
n = L); 1106

• yn =
(
y

(1)
n , . . . ,y

(Tn)
n

)
where y

(t)
n =

(
y

(t)
nm , . . . ,y

(t)
nM

)
for t = 0, . . . , Tn, and for 1107

m = 1, . . . ,M microsatellites typed, y(t)
nm =

{
y

(t)
nm

}
is the set of alleles observed at the 1108

mth microsatellite typed in the tth infection experienced by the nth individual (e.g. 1109

y
(2)
n3 = {1, 3} in equation (5)). 1110

Example per-person set of data, yn

yn =

t = 0 t = 1 t = 2( )2, 8 2 8 sets of alleles detected at the first microsatellite, m = 1,
7, 4 3 9 sets of alleles detected at the second microsatellite, m = 2,
3 6 1, 3 sets of alleles detected at the third microsatellite, m = 3.

(5)

Evaluation of the prior 1111

The prior, P(Rn) where Rn =
(
R

(1)
n . . . , R

(Tn)
n

)
, is evaluated by modelling each R(t)

n as
a random variable from a categorical distribution over C,L and I with per person
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Table 3. Mathematical notation in genetic model.
Non-graph notation (the subscript n is dropped where fixed)

n = 1, . . . , N index over N individuals
m = 1, . . . ,M index over M microsatellites
t = 0, . . . , Tn index over infections for the nth individual
Tn total number of recurrent infections experienced by the nth individual
y

(t)
nm a single allele detected at the mth microsatellite of the nth individual’s tth infection
y

(t)
nm =

{
y

(t)
nm

}
set of alleles detected at the mth microsatellite of the nth individual’s tth infection

y
(t)
n =

(
y

(t)
n1 , . . . ,y

(t)
nM

)
set of alleles detected in the nth individual’s tth infection

yn =
(
y(0), . . . ,y(Tn)) all genetic data available for the individual n (e.g. equation (5))

c
(t)
n = max

(
| y(t)

n1 |, . . . , | y
(t)
nM |

)
complexity of infection of the tth infection of the nth individual (assumed not
random)

R
(t)
n ∈ {C,L, I} recurrence state (C if a recrudescence, L if a relapse, and I if a reinfection) of the

tth recurrence of the nth individual
Rn =

(
R

(1)
n , . . . , R

(Tn)
n

)
recurrence states for t = 1, . . . , Tn recurrences experience by the nth individual

H
(t)
n matrix of haploid genotypes compatible with y(t)

n

π̂
(t)
n =

(
π̂

(t)
nC , π̂

(t)
nL , π̂

(t)
nI

)
individual prior probability point estimates of recurrence states (derived from timing
model)

IBD ∈ {0, 1} hidden IBD state (1 denotes IBD, 0 denotes not IBD)
IΩ(x) indicator function equal to one if x ∈ Ω and 0 otherwise
|Ω| size (i.e. number of elements) of a set Ω

Graph notation (subscripts n, a and b are dropped where fixed)
Gnab =

(
Enab ,V

(0)
nab , . . . ,V

(Tn)
nab

)
graph of relatedness between parasite haploid genotypes across all infections of the
nth individual

|Gnab | =
∑Tn
t=0 c

(t)
n size (number of vertices) of Gnab (depends on yn via c(t)n )

i, j = 1, . . . , | Gnab | indices over vertices and edges in graphs
I(t) = 1, . . . , c(t)n + It>0(t)

∑t−1
z=0 c

(z)
n set of indices over vertices and edges within the tth infection

Enab =
{
enabij

}
set of all edges in Gn where j < i and i = 2 . . . | Gnab |

V
(t)
nab =

{
vnabi

}
set of vertices for the tth infection in Gnab where i = I(t)

a = 1, . . . , A index over labelled graphs that differ with respect to their vertex haploid genotype
labels, where A is the number of ways to label a graph (disregarding edge relatedness
labels) with vertex haploid genotype labels compatible with yn (i.e. only includes
graphs whose probability is non-zero according to Eq (10))

b = 1, . . . , B index over labelled graphs that differ with respect to their edge relatedness labels,
where B is the number of viable ways to label a graph (disregarding vertex haplotype
genotype labels) with edge relatedness labels. Viable graphs are those that obey the
transitive property and, additionally, have no clonal edges within an infection, see
section entitled Viable graph brute-force search algorithm)

hnabi =
(
hnabi1

, . . . , hnabiM

)
vertex haploid genotype label of vertex vnabi , where hnabim ∈ y

(t)
nm for all i = I(i)

knabij ∈ {str, sib, clo} relatedness (a.k.a. kinship) label of edge enabij
sib sibling relatedness between a pair of parasites
str stranger relatedness between a pair of parasites
cln clonal relatedness between a pair of parasites
fhnlim frequency of the allele at the mth microsatallite of the haploid genotype on the ith

vertex of Gnab

α ∈ [0, 0.5] additive effect on P(IBD | knabij ) of background population-level inbreeding
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recurrence probability point estimates generated under the time-to-event model, namely
π̂

(t)
n =

(
π̂

(t)
nC , π̂

(t)
nL , π̂

(t)
nI

)
, for t = 1, . . . , Tn,

P(Rn) =
Tn∏
t=1

π̂(t)
n
R

(t)
n

(6)

Evaluation of the likelihood 1112

The likelihood, P (yn | Rn), is evaluated by summing over person-specific (indexed by
n) vertex labelled (indexed by a) and edge labelled (indexed by b) graphs of relatedness
over parasite haploid genotypes within and across infections, Gnab ,

P (yn | Rn) =
A∑
a=1

B∑
b=1

P (yn | Gnab)P (Gnab | Rn) . (7)

The solution to equation (7) is described in three parts: first we describe the set of 1113

fully labelled graphs Gnab , second we describe P (yn | Gnab), and third we describe 1114

P (Gnab | Rn). The individual, n, is considered fixed throughout the next sections so 1115

the subscript n is dropped from yn, Gnab , Rn and Tn, etc. 1116

Vertex and edge labelled graphs of parasite relatedness 1117

Gab =
{
Eab,V

(0)
ab , . . . ,V

(T )
ab

}
denotes an undirected, edge and vertex labelled, viable 1118

graph of relatedness over parasite haploid genotypes within and across t = 0, . . . , T 1119

infections for a given individual. a is an index over all the possible combinations for 1120

labelling the vertices; b is an index over all the possible combinations for labelling the 1121

edges; viable graphs include only those that obey the transitive property and have no 1122

clonal edges within an infection (see section on Viable graph brute-force search 1123

algorithm). ∀a ∈ 1..A, b ∈ 1..B, we define the following: 1124

• Eab =
{
eabij

}j<i,...,|Gab|
j=1,i=2 , the set of all edges in Gab; 1125

• V
(t)
ab = {vabi}i∈I(t) , the set of all vertices in Gab corresponding to the tth 1126

infection, where I(t) = {1, . . . , c(t)}+ It>0(t)
∑t−1
z=0 c

(z) is the set of indices 1127

corresponding to the tth infection and c(t) is the COI of the tth infection; 1128

• The relatedness (a.k.a. “kinship”) label kabij ∈ {str, sib, cln}, for each edge eabij , 1129

where str, sib and cln denote stranger, sibling and clone, respectively; 1130

• The haploid genotype label habi =
(
habi1 , . . . , habiM

)
for each vertex, vabi , where 1131

habim ∈ y
(t)
nm for i = I(t), t = 0, . . . , T , and m = 1, . . .M . 1132

Since we assume that the COI of the tth infection, c(t), is equal to the maximum 1133

number of distinct alleles seen at any microsatellite within that infection, i.e. 1134

c(t) = max(
∣∣y(t)

1
∣∣, . . . , ∣∣y(t)

M

∣∣), and since we assume no genotyping error nor mutation 1135

(assumptions 3 and 4, main text), for P (y | Gab) > 0 we require that
∣∣V (t)
ab

∣∣ = c(t) for 1136

all t (i.e. the number of vertices must equal the COI) and all alleles in y need to be 1137

represented at least once by the vertex haploid genotype labels. Figure 12 shows two 1138

example graphs for the example set of data in equation (5). The graphs in Figure 12 1139

differ in their vertex haploid genotype labels hab1 and hab2 , but both have the same set 1140

of edge relatedness labels,
{
kabij

}
for all j < i and i = 2, . . . , | Gab |. As mentioned 1141
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Example graphs compatible with y of equation (5).
G11

c(t) = 2 c(t) = 1 c(t) = 2

h3 = 236

h4 = 891

h5 = 893h1 = 243

h2 = 873

Parasites in infection

t=0
t=1
t=2

Relatedness

clo
sib
str

G21

c(t) = 2 c(t) = 1 c(t) = 2

h3 = 236

h4 = 891

h5 = 893h1 = 273

h2 = 843

Parasites in infection

t=0
t=1
t=2

Relatedness

clo
sib
str

Fig 12. Within each example graph, Gab where a ∈ {1, 2} and b = 1, indices a and
b are fixed so dropped hereafter and within each subplot above. The vertices of
both graphs are labelled from left to right: V (0) = {v1, v2} with haploid genotype
labels {h1,h2}, V (1) = {v3} with haploid genotype label h3, and V (2) = {v4, v5}
with haploid genotype labels {h4,h5}. The edge relatedness (a.k.a. kinship) labels
of both graphs are the same: k12 = sib, k23 = sib, k13 = sib and k45 = sib, while
the rest are all str, such that b = 1 for both graphs. On the contrary, the vertex
haploid genotype labels h1 and h2 differ across the example graphs and so the
example graphs have different indices, a = 1 and a = 2.

above, we use a and b to index over vertex haploid genotype labels and edge relatedness 1142

labels, respectively, and so the two graphs Gab of Figure 12 have the different a ∈ {1, 2} 1143

but the same b = 1. 1144

The number of ways to allocate haploid genotype labels to a graph for the nth
1145

individual, A, is enumerated independently of edge relatedness labels. A depends on 1146

both |y(t)
m | (i.e. the number of alleles detected at a given microsatellite in a given 1147

infection) and the number of
∣∣y(t)
m

∣∣ > 1 (i.e. the number of heteroallelic microsatellite 1148

calls). To see why this is the case, first let H(t) be a matrix whose column vectors are 1149

haploid genotypes compatible with y(t) (e.g. equation (8)). 1150

Example haploid genotypes compatible with y(0) of equation (5)

H(0) =

( )
m = 1 2 8 2 8
m = 2 7 4 4 7
m = 3 3 3 3 3

. (8)

For a given y(t), the number of possible haploid genotypes (i.e. number of columns
of H(t)) is

∏M
m=1

∣∣y(t)
m

∣∣. The number of ways to label vertices in V (t) is given by the
number of ways to choose c(t) haploid genotypes from the

∏M
m=1

∣∣y(t)
m

∣∣ possible haploid
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genotypes, ∏M
m=1

∣∣y(t)
m

∣∣!(∏M
m=1

∣∣y(t)
m

∣∣− c(t))! c(t)!
. (9)

However, of the many combinations given by equation (9),

P (y | Gab) > 0 iff

 T∏
t=0

M∏
m=1

∏
y

(t)
m ∈y

(t)
m

I{him}i=I(t)

(
y(t)
m

) = 1, (10)

That is, only combinations where all alleles in y are represented at least once (e.g. those 1151

in Figure 12) lead to P (y | Gab) > 0, and contribute to the total number of ways, A, to 1152

label a graph with vertex haploid genotype labels compatible with y. Since A is 1153

enumerated independently of edge relatedness labels, graphs that have P (y | Gab) = 0 1154

due to Icln (kij) = 1 and Ihim (hjm) = 0 (see below) or NA values do contribute to A. 1155

Probability of the data given a graph 1156

The probability of the data given a vertex and edge labelled graph, P (y | Gab), is
calculated assuming conditional independence between microsatellites and between
edges,

P (y | Gab) =


|Gab|∏
i=2

i−1∏
j=1

M∏
m=1

P
(
yim , yjm | habim , habjm , kabij

) . (11)

where yim =
{
y

(t)
m ∈ y(t)

m : y(t)
m = him and i ∈ I(t)

}
. Note that yim and yjm may be 1157

within or across infections (i.e. i and j may be from within the same or across different 1158

I(0), . . . , I(T )). 1159

Hereafter we consider a single graph with fixed vertex and edge labels thus drop the
indices a and b. To evaluate P (yim , yjm | him , hjm , kij) we assume conditional
independence between pairs of vertices and edges given the IBD state of the mth marker,

P (yim , yjm | him , hjm , kij) =
1∑

IBD=0
P (yim , yjm | him , hjm , IBD)P (IBD | kij) (12)

where 1160

• P (IBD = 1 | kij = cln) = 1; P (IBD = 1 | sib) = 0.5 + α; P (IBD = 1 | str) = 0 + α; 1161

• P (IBD = 0 | kij) = 1− P (IBD = 1 | kij); 1162

• α is an additive effect of background population-level inbreeding; 1163

• P (yim , yjm | him , hjm , IBD = 1) = 1/2
(
fhim

+ fhjm

)
= fhim

if him = hjm and 0 1164

otherwise; 1165

• P (yim , yjm | him , hjm , IBD = 0) = fhim
× fhjm

; 1166

• fhim
and fhjm

denote the frequency of the allele at the mth microsatellite of the haploid 1167

genotype label of the ith and jth vertex, respectively. Equivalently, we could write fyim
1168

and fyim
, respectively. 1169
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Together, the above lead to

P (yim , yjm | him , hjm , kij = str) =
(
αfhim

+ (1− α)fhim fhjm
)Ihim (hjm )×(

α× 0 + (1− α)fhim fhjm
)1−Ihim

(hjm )
, (13)

P (yim , yjm | him , hjm , kij = sib) =
(

(0.5 + α)fhim + (0.5− α)fhim fhjm
)Ihim (hjm )×(

(0.5 + α)× 0 + (0.5− α)fhim fhjm
)1−Ihim

(hjm )
, (14)

P (yim , yjm | him , hjm , kij = clo) =
(

1× fhim + 0× fhim fhjm
)Ihim (hjm )×(

1× 0 + 0× fhim fhjm
)1−Ihim

(hjm )
. (15)

Probability of a graph given a series of recurrence states 1170

To calculate the probability of a graph given a series of recurrence states, we assume
independence between recurrence states,

P (G | R) =
T∏
t=1

P
(
G | R(t)

)
(16)

where

P
(
G | R(t) = L

)
=

1
AB

(17)

P
(
G | R(t) = I

)
=

{ 1
ABI

∀z < t, ∀i ∈ I(t), ∀j ∈ I(z) kij = str,

0 otherwise,
(18)

P
(
G | R(t) = C

)
=

{ 1
ABC

if ∃ c(t)disjoint pairs ij : i ∈ I(t) and j ∈ I(t−1) and kij = cln,

0 otherwise,
(19)

where BI < B and BC < B denote the number of graphs that satisfy the conditions 1171

outlined in Eq (18) and (19), both of which are determined algorithmically from the 1172

adjacency matrix of G. 1173

The condition outlined in Eq (19) that j ∈ I(t−1) specifies that a recrudescence is 1174

seeded by the most recent past infection only (assumption 2). Also in Eq (19), the 1175

condition that there are c(t) disjoint pairs follows from assumptions 5 and 6 and results 1176

in zero probability of recrudescence following an infection with lower COI (i.e. a 1177

recrudescence cannot be more diverse that the infection that seeded it - diversity cannot 1178

be be created, only lost). For example, in Eq (5), R(2)
n has zero probability of being a 1179

recrudescence because c(2) = 2 > c(1) = 1. 1180

Presently, Eq (17) to (19) do not take into the relative likelihood of parasites that 1181

are strangers, siblings or clones in relation to one another within an inoculation. 1182

However, they could be adapted to do so (e.g. by coupling to a transmission mode). 1183

Note that P (G | R) implicitly conditions on y via c(t). 1184

Model implementation 1185

Above, t = 0, . . . , Tn where Tn is the number of recurrences experienced by the nth
1186

individual. In the code, t = 1, . . . , Tn where Tn is the number of infections experienced 1187

by the nth individual. 1188

The model is implemented on the log scale to prevent under and over flow problems,
using the log sum exp trick where appropriate. Instead of summing over a and b in one
step as Eq (7) implies, we first sum over graphs indexed by a = 1, . . . , A fixing b and
working entirely on the log domain (interior of square brackets Eq (20)); we then sum
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over graphs indexed by b = 1, . . . , BR(t) where BR(t) ∈ {BL = B,BC , BI} is determined
algorithmically from the adjacency matrix of G,

logP (y | R) = log
(

B∑
b=1

A∑
a=1

P (y | Gab)P (Gab | R)
)
,

= log

B
R(t)∑
b=1

A∑
a=1

P (y | Gab)
1

A×BR(t)

 ,

= log

B
R(t)∑
b=1

A∑
a=1

P (y | Gab)
1
A

− logBR(t) ,

= log

B
R(t)∑
b=1

exp
[

log
(

A∑
a=1

exp (logP (y | Gab))
)
− logA

]− logBR(t) ,

(20)

where the subscript n is dropped since n is fixed. 1189

Viable graph brute-force search algorithm 1190

For a given set of complexities c(0)
n , . . . , c

(Tn)
n we implement a brute-force algorithm that 1191

searches over all graphs and stores all viable graphs. Viable graphs can be described 1192

with two independent rules: 1193

(a) No clonal edges between vertices within an infection 1194

(b) All connected paths must obey the transitivity property 1195

The algorithm is summarized as follows: 1196

1. Construct a list SG of all graphs by listing all adjacency matrices described by 1197

block matrices (one per infection) for which the block matrices only contain 1198

{0, 0.5}, and the across blocks contain {0, 0.5, 1} (this implies no clonal edges 1199

within infections). 1200

2. For each G ∈ SG: 1201

• Enumerate all connected components in G and verify that each connected 1202

component is a clique (fully connected subgraph). 1203

• List all triangular cliques (fully connected subgraphs containing exactly three 1204

vertices) 1205

• For each triangular clique G′ compute the sum of the weighted edges: If the 1206

sum of the edges in G′ is equal to 2.5 then Reject G else Accept the 1207

subgraph G′ 1208

3. If all subgraphs are accepted, Accept G 1209

Step 2 results in obeying rule (b) whereby graphs with non-transitive relatedness 1210

patterns (e.g. A is clonal with both B & C but B is sibling with C) are rejected. 1211
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