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Abstract

Genome-wide association studies (GWAS) have identified thousands of variants associated with

human diseases and traits.  However, the majority  of  GWAS-implicated variants  are in  non-

coding  regions  of  the  genome and  require  in  depth  follow-up  to  identify  target  genes  and

decipher  biological  mechanisms.  Here,  rather  than  focusing  on  causal  variants,  we  have

undertaken a pooled loss-of-function screen in primary hematopoietic cells to interrogate 389

candidate genes contained in 75 loci associated with red blood cell traits. Using this approach,

we  identify  77  genes  at  38  GWAS  loci,  with  most  loci  harboring  1-2  candidate  genes.

Importantly, the hit set was strongly enriched for genes validated through orthogonal genetic

approaches. Genes identified by this approach are enriched in specific and relevant biological

pathways, allowing regulators of human erythropoiesis and modifiers of blood diseases to be

defined. More generally, this functional screen provides a paradigm for gene-centric follow up of

GWAS for a variety of human diseases and traits.  
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Introduction

As  genotyping  technologies  and  accompanying  analytical  capabilities  have  continued  to

improve,  genome-wide  association  studies  (GWAS)  have  identified  tens  of  thousands  of

variants associated with numerous human diseases and traits.  Despite these advances, our

ability  to  discern the underlying biological  mechanisms for  the vast  majority  of  such robust

associations has remained limited, with a few exceptions (Claussnitzer et al., 2015; Gupta et al.,

2017; Mohanan et al., 2018; Musunuru et al., 2010; Sankaran et al., 2008; Smemo et al., 2014).

In general, published successes have required in-depth mechanistic studies of individual loci

and implicated genes to decipher biological mechanisms.

Recent  innovations  in  functional  and computational  genomics  have advanced  the field  and

enabled more rapid and higher-throughput identification of putative causal variants. Approaches

that have shown the most success include the use of massively parallel  reporter  assays to

examine allelic variation  (Tewhey et al., 2016; Ulirsch et al., 2016; Vockley et al., 2015) and

perturbation approaches for dissecting the necessity of regulatory elements (Fulco et al., 2016;

Simeonov et al., 2017). In addition, genetic fine mapping approaches have improved our ability

to identify putative causal variants among larger sets of variants in linkage disequilibrium (Guo

et al.,  2016; Huang et al.,  2017; Lareau et al.,  2018). However, even when putative causal

variants are identified at a disease or trait-associated locus, they most often localize to non-

coding regions of the genome, making it difficult to connect variants to genes that mediate the

observed effects in a scalable manner (Claussnitzer et al., 2015; Gupta et al., 2017; Smemo et

al., 2014). 
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In the context of hematopoiesis, GWAS studies have identified thousands of variants associated

with various blood cell traits, including hundreds associated with red blood cell traits alone (Astle

et  al.,  2016;  van der  Harst  et  al.,  2012).  Thorough  follow-up  efforts  at  individual  loci  have

identified important regulators of hematopoiesis, such as the key regulator of fetal hemoglobin

expression, BCL11A (Basak et al., 2015; Liu et al., 2018; Sankaran et al., 2008). However, as in

other tissues, the low-throughput with which associated genetic variants can be connected to

target genes underlying phenotypes continues to pose a problem for gaining biological insights

and clinical actionability in complex traits and diseases.

To accelerate  the  rate  at  which  genetic  variants  can  be  connected  to  target  genes,  high-

throughput  loss-of-function  screens  involving  putative  causal  genes  underlying  the  genetic

associations  can  be  undertaken.  This  approach  is  complementary  to  conventional  variant-

focused methods and overcomes bottlenecks that can arise during downstream target gene

identification. As a proof-of-principle, we connected variants associated with RBC traits to genes

regulating  erythropoiesis  by  directly  perturbing  all  candidate  genes  in  primary  human

hematopoietic stem and progenitor cells (HSPCs) undergoing synchronous differentiation into

the erythroid lineage. We demonstrate unique opportunities to rapidly implicate likely causal

genes  and  identify  networks  of  biological  actors  underlying  trait-associated  variation.  We

additionally illustrate the value of such screens to uncover previously unappreciated biological

regulators of human hematopoiesis that may serve as key disease modifiers.
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Results

Design and Execution of an shRNA Screen Using Blood Cell Trait GWAS Hits to Identify

Genetic Actors in Erythropoiesis

We applied a gene-centric loss-of-function screening approach to GWAS of  RBC traits.  We

focused on 75 loci associated with RBC traits that were identified by a GWAS performed in up to

135,000 individuals (van der Harst et al., 2012) spanning 6 RBC traits (Figure S1A). Importantly,

these  75  loci  have  been  robustly  replicated  and  show  large  effect  sizes  in  more  recently

reported association studies performed on larger cohorts and thus represent ideal targets for

perturbation studies (Astle et al., 2016; Lareau et al., 2018). We endeavored to select all genes

that could potentially underlie these 75 GWAS signals. To do this, each of the 75 sentinel SNPs

was first expanded to a linkage disequilibrium (LD) block including all SNPs in high LD (r2 > 0.8,

Figure 1A, Figure S1B), then further to the nearest genomic recombination hotspot. Based upon

insights  from  previous  expression  quantitative  trait  locus  (eQTL)  studies  (Montgomery  and

Dermitzakis,  2011;  Rossin et  al.,  2011;  Veyrieras et  al.,  2008),  each gene annotated in the

genome was  expanded  to  include  a  wingspan  encompassing  110 kb  upstream and  40  kb

downstream of  the transcriptional  start  and end sites,  respectively, to also capture potential

functional regulatory elements. This resulted in selection of 389 genes overlapping or in the

vicinity  of  the  LD  blocks  to  be  tested  in  the  pooled  loss-of-function  screen.  These  were

distributed at a median of 4 genes per loci (Figure S1C).

Since the majority of common genetic variation underlying RBC traits appears to act in a cell-

intrinsic manner within the erythroid lineage, we decided to perturb the candidate genes during

the process of human erythropoiesis (Giani et al., 2016; Sankaran et al., 2012; Sankaran et al.,

2008;  Ulirsch et  al.,  2016).  We chose a pooled short  hairpin  RNA (shRNA) based loss-of-
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function approach in primary hematopoietic cells to leverage a number of distinct strengths.

First, we have had prior success validating individual genes underlying RBC traits using shRNA-

based approaches in primary CD34+ HSPC-derived erythroid cells. Second, shRNA libraries can

be  much  more  efficiently  packaged  into  lentiviruses  and  delivered  to  primary  CD34+ cells

compared to alternative CRISPR/Cas9-based guide RNA libraries  (Ting et al., 2018). Third, it

avoids  potential  complications  like  non-uniform loss-of-function  or  gain-of-function  outcomes

produced  by  CRISPR/Cas9  based  approaches  due  to  unpredictable  DNA repair  processes

(Mandegar et al., 2016). Furthermore, shRNAs can act rapidly to achieve gene knockdown and

thereby  avoid  compensatory  effects  that  can  occur  when  complete  CRISPR  knockout  is

achieved (Rossi et al., 2015), better recapitulating the subtle changes in gene expression that

are characteristic of common genetic variation. 

Mobilized peripheral blood-derived primary human CD34+ HSPCs from 3 independent healthy

donors were infected with a lentiviral-based pooled shRNA library consisting of 2803 hairpins

targeting the 389 GWAS-nominated genes, along with 30 control genes  (Moffat et al., 2006).

Each gene was targeted with 5-7 distinct shRNAs (Figure S1D). The set of control shRNAs

encompassed  essential  control  genes,  negative  controls  (e.g.  luciferase  and  other  non-

expressed  genes),  and  a  well-defined  set  of  genes  important  for  erythropoiesis  (erythroid

controls)  (Figure 1B, Table S2).  Using lentiviral  libraries with defined titers,  we achieved an

infectivity of 35-50%, which is optimal for obtaining either zero or one stably integrated shRNA

per  cell,  while  minimizing the possibility  of  infection  of  a single cell  by multiple  viruses.  To

achieve sufficient library representation, we infected at least 1000 CD34+ HSPCs per hairpin

(7~11 *  106 cells  per  experiment).  The infected HSPCs were cultured using a  three-phase

erythroid differentiation method (Giani et al., 2016; Hu et al., 2013) that results in synchronous

differentiation and maturation of erythroid progenitors into RBCs. We hypothesized that hairpins
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targeting potential regulators of erythropoiesis would be depleted or enriched during the three-

phase erythroid culture, similar to our prior experience in analyzing specific GWAS-nominated

genes (Giani et al., 2016; Sankaran et al., 2012; Ulirsch et al., 2016). To assay these hairpins,

we isolated and deep-sequenced genomic DNA from the pool of infected cells at 6 different

culture  time  points  that  represent  distinct  stages  of  erythropoiesis  to  most  broadly  assess

putative causal genes that may act across the span of differentiation (Figure 1C, S1E).

Summary Characterization of shRNA Screen Outcomes

For the vast majority of the ~3000 hairpins included in the library, infection was efficient and

consistent. Greater than 95% of hairpins were represented at levels of at least 5 log2 counts per

million (CPM) at day 4, two days post-infection (Figure 2A). Across the two-week time course, a

diversity  of  effects  -  in  terms  of  both  increased  and  decreased  hairpin  abundance  -  were

observed.  While  many  hairpins  were  selected  against  during  the  course  of  erythroid

differentiation, as reflected in decreases of those hairpin abundances over time, there were also

a number of hairpins that increased in the culture over the time course (Figure 2B, S2A).

The  tested  set  of  hairpins  targeting  genes  nominated  by  the  75  loci  showed  a  variety  of

activities, forming a broad distribution spanning both decreases and increases in abundance at

different  time  points  (Figure  2C).  The  various  controls  included  in  the  library  behaved  as

expected. Hairpins targeting genes with known significance to erythropoiesis, such as  GATA1

and RPS19 (Khajuria et al., 2018; Ludwig et al., 2014), showed markedly decreased abundance

across the time course. Likewise, hairpins targeting a set of broadly essential genes (Table S2)

were strongly depleted by day 16 when compared to negative control hairpins targeting non-

human genes, which showed little if any change (Figure 2C-E). These trends were recapitulated

with strong correlation in each of the three donor CD34+ cell backgrounds (Figure S2B).
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Statistical  Modeling  of  Gene  Effects  and  Accounting  for  Confounders  in  the  shRNA

Screen

The resulting longitudinal observations of hairpin abundance at each time point were used to

model the importance of each targeted gene during the process of erythropoiesis. A linear mixed

model was implemented to account for the longitudinal nature of the time course data (Li et al.,

2015) and to handle the confounding off-target and efficiency effects inherent to the shRNA

modality  (Riba et al., 2017; Tsherniak et al., 2017). Since we wanted our model to be able to

detect significant changes in hairpin abundance at any time point throughout the differentiation

process, we converted the absolute hairpin abundances at each of the six time points to a log2

fold change relative to the initial hairpin abundances at the start of the differentiation. Using this

metric  as  our  response  variable,  we  specified  a  fixed  effect  for  each  gene  to  capture  the

contribution that suppressing it with shRNAs would have on the respective abundances for each

of the resulting five time intervals. Given the potential variability that could emerge by using

shRNAs, we fit a random effect for each hairpin to minimize the chance of conflating inefficiency

or off-target effects with the specific on-target gene effect.

After fitting this model to the data, we selected our hit set using a two-threshold approach in

which both the magnitude and statistical  confidence of  the estimated gene effect  size were

considered. Specifically, genes were called as hits if  they had a fitted slope > 0.1 log2 fold

change per day within the interval while simultaneously possessing a Wald chi-square FDR-

adjusted q value < 0.1. This combined approach allowed us to avoid focusing on genes with

large,  but  highly  variable  or  conflicted  effects,  as  well  as  genes  with  highly  confident  but

miniscule effects. In total, this approach identified 77 genes at 38 of the 75 targeted loci which,

when suppressed, had a significant effect on the slope of shRNA-encoding DNA abundance at
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any point during the time course. A majority of these hit  loci  (27 loci)  had 1-2 gene targets

prioritized (Figure 3A, S3A). These candidate genes were found to be distributed across all 6 of

the originally annotated RBC GWAS traits (Figure S3B).

To evaluate  the  validity  of  this  hit  set,  we  began  by  assaying  for  enrichment  of  erythroid

essentiality, as recently quantified for each gene in the K562 erythroid cell line  (Wang et al.,

2015). A permutation comparing the sum of K562 essentiality scores for the hit genes with those

of randomly drawn, identically-sized gene sets from the library of targeted genes revealed that

the hit  set  was indeed enriched with p = 0.0269 (Figure 3B).  Likewise,  when compared to

permuted sets of 77 genes randomly chosen from the genome (Figure S3C), there was even

stronger enrichment for erythroid essentiality with p = 0.00021, consistent with the idea that

genes in the library likely have stronger essentiality due to their genomic proximity to the GWAS

hits. We further explored whether the enrichment could be due to an intrinsic bias inherent to

GWAS screening itself by permuting sets of genes from libraries nominated by SNPs associated

with low-density lipoprotein levels, high-density lipoprotein levels, and triglyceride levels, finding

the hit set to be significantly enriched in all comparisons (Willer et al., 2013) (Figure S3D-F).

We  further  validated  the  ability  of  this  approach  to  discover  genetically  relevant  hits  by

performing a permutation analysis based upon five “gold standard” genes in the library, which

possess known genetic  underpinnings via identified causal  variants:  CCND3 (Lareau et  al.,

2018;  Sankaran  et  al.,  2012),  SH2B3  (Giani  et  al.,  2016),  MYB (Galarneau  et  al.,  2010;

Sankaran et al., 2013; Sankaran et al., 2011), KIT (Jing et al., 2008; Lareau et al., 2018), and

RBM38 (Ulirsch et al.,  2016). Calculating the rank sums of hairpins ordered by our model’s

computed FDR scores for 1,000,000 random combinations of five genes from the library yielded

a distribution over which enrichment for the five gold standards was seen with p=0.0249 (Figure
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3C). While the vast majority of putative causal variants at the RBC trait-associated loci are in

non-coding regions, which can be challenging to use to identify a specific target gene, a subset

are in coding regions and thereby nominate a specific gene. As a result, we assayed for the

presence of coding variants fine-mapped to the interrogated loci from a recent large GWAS that

demonstrated a  minimum posterior probability of association of 0.1 among the gene hits and

compared this with the overall  set of genes interrogated in our library  (Lareau et al.,  2018).

Among the 389 GWAS-nominated genes in our library, 20 (~5%) were found to contain at least

one coding variant from this list. Of these, there was a significant enrichment observed among

the hits (~9%, p=0.03907 as determined by permutation analysis; Figure 3D). 

Having established genetic confidence in our hit set, we next investigated whether the selected

genes  satisfied  enrichment  criterion  within  the  erythroid  branch  of  hematopoiesis.  RNA

expression values for each of the 77 hit genes were examined in datasets spanning human

hematopoiesis (Corces et al., 2016), as well as adult and fetal erythropoiesis (Yan et al., 2018)

(Figure  3E,F;  Figure  S3G).  In  the  more  holistic  hematopoiesis  dataset,  common  myeloid

progenitors  (CMPs)  and  megakaryocyte-erythroid  progenitors  (MEPs)  were  significantly

enriched  for  hit  genes  (p  <  0.01).  These  progenitor  populations  are  known to  contain  the

progenitors that give rise to erythroid cells. Within a more detailed and separate analysis of

human adult erythropoiesis, proerythroblast, early basophilic, and late basophilic erythroblast

stages were particularly enriched (p < 0.001). The stage at which given genes are implicated to

play a role in erythropoiesis from the literature likewise often corresponded with the largest

magnitude fold changes across the longitudinal time course measurements, as was the case for

earlier genes like  RPL7A,  RPL23A,  RPS19,  and  KIT (Gazda et al.,  2012;  Jing et al.,  2008;

Moniz et al., 2012) as well as late genes like SLC4A1 and ANK1 (Bennett and Stenbuck, 1979;

Peters et al., 1996). Taken together, these results show that this functional gene-centric screen
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allows for the identification of putative causal genes underlying RBC-trait  GWAS hits,  which

demonstrate  clear  enrichment  in  independent  genetic  and  cell  biological  datasets.  We are

therefore able to validate the utility of such an approach to identify biologically-relevant genes

underlying human genetic variation and holistically identify potential stages by which such target

genes may act to impact the process of hematopoiesis.

Analysis of Interactions Among Members of the Hit Set Identifies Signaling, Structural,

and Translation-Related Subnetworks Important to Erythropoiesis

By screening all  loci  and genes at  once,  our  approach afforded us the immediate value of

examining mechanisms underlying the associations in a holistic fashion, unearthing both familiar

and more novel core gene network cassettes that play a role in erythropoiesis  (Boyle et al.,

2017). Using STRING interaction network analyses (version 10.5) (Szklarczyk et al., 2017), we

could identify connectivity between the underlying nodes that highlighted a number of interacting

biological processes of both known and previously unappreciated importance to erythropoiesis

(Figure 4). We observed a number of molecules that play roles in cell signaling or transcriptional

regulation. MYB is a master regulator transcription factor that has been implicated in playing a

role in fetal hemoglobin regulation and in erythropoiesis more generally (Mucenski et al., 1991;

Wang et al., 2018). The  MYB  locus has been associated with numerous red blood cell traits

(including mean corpuscular volume, mean corpuscular hemoglobin concentration, and RBC

count)  (Sankaran et al., 2013; van der Harst et al., 2012). ETO2 (CBFA2T3) is a part of the

erythroid transcription factor complex containing TAL1 and is required for expansion of erythroid

progenitors  (Goardon  et  al.,  2006).  Both  stem  cell  factor  receptor  KIT  and  erythropoietin

receptor (EPOR) mediated signaling are essential for erythropoiesis. Our screen identified KIT

as  one  of  the  factors  underlying  common  genetic  variation.  CCND3  fills  a  critical  role  in

regulating the number of cell divisions during terminal erythropoiesis  and has been validated as
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a causal gene associated with variation in RBC counts and size (Lareau et al., 2018; Sankaran

et al., 2012). 

Interacting networks of hits also emerged in other aspects of red blood cell differentiation and

function.  One of  these centered around membrane and structural  cytoskeletal  proteins.  Our

method recovered characteristic RBC genes like solute carrier family 4 member 1 (SLC4A1),

also known as band 3,  (Peters et al.,  1996), which serves as a key component of the RBC

membrane skeleton. Likewise, it recovered a direct interacting partner for SLC4A1, ankyrin 1

(ANK1), which anchors the cytoskeleton and cell membrane (Bennett and Stenbuck, 1979), as

well  as  N-ethylmaleimide  Sensitive  Factor,  vesicle  fusing  ATPase  (NSF),  which  facilitates

membrane vesicle trafficking within the cell (Glick and Rothman, 1987). 

Within the realm of  mRNA translation,  a number of  genes emerged as hits that  specifically

highlight the role of the ribosome. This is interesting in light of recent work that has begun to

illuminate erythroid-specific effects of ribosomal perturbations (Khajuria et al., 2018; Ludwig et

al., 2014), although a connection between translation and common genetic variation affecting

RBC traits has not been previously appreciated. Both  RPL7A and  RPL19, for instance, have

been implicated by mutations observed in studies of Diamond-Blackfan anemia (Gazda et al.,

2012;  Moniz  et  al.,  2012).  The common genetic  variation  affecting  these ribosomal  protein

genes might contribute to the incomplete penetrance and variable expressivity of anemia seen

in Diamond-Blackfan anemia patients (Ulirsch et al., 2018). Similar effects have been reported

in neurodevelopmental disorders,  where common genetic  variants may influence phenotypic

outcomes in patients  (Niemi et al., 2018). Non-ribosomal hits in the mRNA metabolism space

were  also  found  with  both  previously  established  and  unknown  ties  to  erythroid-specific

phenotypes. Exosome component 9 (EXOSC9), for instance, has been demonstrated previously
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to act as part of the exosome complex as a specific gatekeeper of terminal erythroid maturation

(McIver et al., 2014). Other unappreciated components, including the tRNA methyltransferase

TRMT61A, also were highlighted through this analysis.

Transferrin receptor 2 is a Negative Regulator of Human Erythropoiesis 

We selected several candidate genes identified by our screen for further validation, given their

previously  unappreciated roles in  human hematopoiesis/  erythropoiesis.  The first,  transferrin

receptor 2 (TFR2), encodes a protein canonically involved in iron homeostasis that has recently

been shown to also regulate EPO receptor signaling (Forejtnikova et al., 2010; Nai et al., 2015).

Although TFR2 has been studied in the context  of  murine erythropoiesis,  its role in  human

erythropoiesis has not been assessed. To validate TFR2 as a regulator of human erythropoiesis,

we  performed individual  knockdown experiments  using  lentiviral  shRNAs in  primary  human

CD34+  HSPCs  undergoing  erythroid  differentiation.  Significant  knockdown  of  TFR2  was

observed at both the mRNA (Figure 5A) and protein levels (Figure 5B) using two independent

shRNAs from among the six targeting TFR2 in the screen. Though two of the six were outliers,

the two chosen here for follow-up were part of the consensus group of four showing similar

effects. Downregulation of TFR2 increased erythroid differentiation as observed by increased

expression of erythroid specific cell surface markers CD235a and CD71 at day 9 (shLUC ~22%;

TFR2 sh1 ~42%; TFR2 sh2 ~40%) and day 12 of culture (shLUC ~60%; TF2 sh1 ~80%; TFR2

sh2 ~80%) (Figure 5C, E & S5A). Downregulation of TFR2 also improved the later stages of

erythroid  differentiation/  maturation,  as  observed  by  an  increased  rate  of  enucleation  and

through assessment of cell morphology (Figure 5D & S5B). Previous studies have reported the

isolation of TFR2 as a component of the erythropoietin (EPO) receptor complex (Forejtnikova et

al.,  2010).  To test  if  downregulation  of  TFR2  can  result  in  increased  EPO  signaling,  we

measured EPO-dependent STAT5 phosphorylation after  TFR2 knockdown in UT7/EPO cells
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(Figure S5C). TFR2 downregulation resulted in significantly higher pSTAT5 phosphorylation in

comparison to the control with EPO stimulation from 0.02 U/mL to 200 U/mL (Figure 5F). In

addition,  the  maximal  pSTAT5 response could  be achieved within  a  shorter  period of  EPO

stimulation upon TFR2 downregulation (Figure S5D). Given our findings that TFR2 is a negative

regulator of EPO signaling, it may be an ideal therapeutic target for conditions characterized by

ineffective erythropoiesis like β-thalassemia (Rund and Rachmilewitz, 2005). A recent study has

supported this hypothesis, showing that Tfr2 downregulation is beneficial in a mouse model of

β-thalassemia (Artuso et al., 2018).

SF3A2 is a Key Regulator of Human Erythropoiesis and is a Disease Modifier in a Murine

Model of Myelodysplastic Syndrome.

Extensive mRNA splicing occurs during the terminal stages of erythropoiesis  (Pimentel et al.,

2016). However, key regulators of this process remain largely undefined. Our study uncovered

splicing  factor  3A  subunit  2  (SF3A2)  in  the  subnetwork  of  erythropoiesis  signaling  and

transcription hits (Figure 4).  SF3A2 specifically was associated with maximal hairpin drop out at

day 12 (FDR = 0.005) – a later time point  in erythropoiesis.  SF3A2 is a component of  the

U2SNRP complex  whose  binding  to  the  branch  point  is  critical  for  proper  mRNA splicing

(Gozani  et  al.,  1996;  Gozani  et  al.,  1998).  Knockdown of  SF3A2 in  primary  human CD34+

HSPCs results in decreased cell numbers during erythroid differentiation starting from day 7

(Figure 6A-C). To measure early effects of SF3A2 and to exclude potential toxicity of puromycin

selection,  we  replaced  the  puromycin  resistance  gene  with  a  GFP encoding  cDNA in  the

lentiviral shRNA constructs. We achieved similar infection (30~40% on day 6) at the early time

points between controls (shLuc) and shRNAs targeting  SF3A2 (Figure S6A). During erythroid

differentiation, we observed a reduction in GFP-expressing cells comparable to the decreased

cell  numbers  seen  with  the  puromycin  resistant  constructs  (Figure  S6A).  Decreased  cell
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numbers were associated with decreased erythroid differentiation as measured by erythroid

surface markers CD71 and CD235a (Figure 6D). We also observed an increase in non-erythroid

lineages based on surface marker expression of CD11b (myeloid) and CD41a (megakaryocyte)

(Figure S6B).

To identify the molecular mechanisms underlying the reduced differentiation of erythroid cells we

sorted stage-matched CD71+/CD235+ cells and performed RNA-Seq analysis. We also ran this

analysis in parallel for data from hematopoietic progenitors from patients with myelodysplastic

syndrome (MDS), a disorder well-known for significant impairment in terminal erythropoiesis,

either with or  without  somatic  mutations in the related splicing factor  SF3B1  (Obeng et  al.,

2016). Cells treated with shRNA to suppress SF3A2 were found to differentially express 6061

genes with an adjusted p value < 0.05 as compared to the shLuc control, whereas only 807

genes were differentially expressed given the same threshold cutoff in the MDS patients with an

SF3B1  mutations  compared  to  those  without  (Figure  6E).  Genes  from  both  the  SF3A2

differentially  expressed  set  and  the  SF3B1  differentially  expressed  set  were  significantly

enriched  for  structural  constituents  of  the  ribosome  (p  <  3.2  x  10-44  and  p  <  7.5  x  10-24,

respectively)  among  other  cellular  components  and  functions  (Tables  S6-S9).  Examining

differential splicing in the set of genes not differentially expressed in either condition, both were

found to exhibit  a similar proportion of altered splicing events, including alternative 3’ splice

sites, alternative 5’ splice sites, mutally exclusive exons, and skipped exons with bayes factor >

10 (Figure 6E, Tables S10-S19).

We therefore wanted to further explore this connection between SF3A2 and its role in common

variation in RBC traits with SF3B1 and the role it plays in the pathogenesis of MDS. To this end,

we utilized a recently developed faithful mouse model harboring the  Sf3b1K700E mutation that
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displays characteristic features of MDS, including an anemia due to impaired erythropoiesis

(Obeng et al., 2016). We tested if downregulation of SF3A2 could worsen the already impaired

erythropoiesis seen in these animals. Equal numbers of lineage-negative HSPCs were isolated

from bone marrow of wild-type and Sf3b1K700E mice and infected with shRNAs targeting SF3A2

and then erythroid differentiation was induced (Figure S6C, D). Consistent with previous reports,

we  observed  that  Sf3b1K700E cells  show  reduced  erythroid  differentiation  and  cell  growth

compared to wild-type cells infected with control non-targeting shRNAs (Figure 6F, G, S6E-G).

Downregulation of SF3A2 using two independent shRNAs further worsens the defects in both

erythroid differentiation and cell growth observed for Sf3b1K700E cells (Figure 6F, G, S6E, F, G).

This  data suggests that  modulation of  SF3A2 could modify  the alterations of  erythropoiesis

observed  in  the  setting  of  somatic  SF3B1 MDS-causal  mutations.  This  form  of  MDS  is

characterized by significant variation in the degree of anemia found at the time of presentation

(Papaemmanuil  et  al.,  2011).  We  therefore  attempted  to  examine  whether  such  common

genetic variation could contribute to such phenotypic variation. We identified a coding SNP,

rs25672, that was in LD with the sentinel SNP at this locus, rs2159213 (r2 = 0.737675 in CEU

1000GENOMES phase 3). Prevalence of the alternate "G" allele (which is associated with the

prevalence of the "C" effect allele in the van der Harst et al. locus) has a suggestive correlation

with an increase in hemoglobin levels (Figure S6H) that was likely insignificant due to the limited

number of patients studied here. Unfortunately, larger cohorts in such a relatively rare disorder

could  not  be  identified.  However,  these  findings  suggest  that  the  subtle  variation  noted  in

populations at the SF3A2 locus may more profoundly cause variation among individuals with an

acquired blood disorder, such as MDS, illustrating the value of such a gene-centric study to

identify potential disease modifiers.
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Discussion

A major challenge in moving from GWAS-nominated variants to function is to identify potential

target  genes  systematically.  While  many  functional  follow  up  approaches  focus  on  causal

variants, we reasoned that a gene-centered approach may be complementary to other emerging

methods and represent a scalable approach for gaining broad insights into GWAS. To this end,

we designed and executed a GWAS-informed high-throughput loss-of-function screen to identify

key players in primary human HSPCs undergoing erythroid differentiation. Such dynamic in vitro

systems afford a unique window through which to longitudinally screen, enabling unique insight

to be gained into inherently non-stationary biological processes like erythropoiesis. The screen

identified 77 gene hits at 38 of the original 75 loci used to design the library. Collectively, these

hits had strongly amplified essentiality in erythroid cell lines, included a significant proportion of

known, genetically-linked "gold standard" erythroid genes, and were enriched for red blood cell

trait-associated coding variants orthogonally identified through genetic fine-mapping.  From a

holistic  perspective,  the  network  of  interacting  gene hits  highlighted a  number  of  high-level

biological components and pathways important for erythropoiesis, including specific signaling

and transcription factors, membrane and structural components, and components involved in

mRNA translation. 

Functional follow-up on SF3A2 and TFR2, two gene hits identified in the screen, were fruitful in

elucidating mechanistic ties between alteration in mRNA splicing and EPO signaling activity,

respectively, to observed perturbation of erythroid phenotypes. In addition, our studies suggest

that at least SF3A2, and potentially other regulators such as some implicated mRNA translation

factors, may be key disease modifiers that alter the impaired erythropoiesis seen in diseases

like MDS or Diamond-Blackfan anemia. These outcomes strongly recommend this screening
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approach  as  a  rapid  means  to  access  the  genetic  mediators  underlying  human  erythroid

differentiation, with the potential to much more rapidly derive actionable biology from GWAS

studies. Moreover, since shRNA-based loss-of-function screens are readily accessible and offer

demonstrated compatibility with primary cell model systems, we believe this approach provides

a method that is portable and can be applied across a variety of lines of biological inquiry.

However, it is not a universal solution, and there are certainly a number of considerations that

must be kept in mind regarding the extent to which this type of assay can be adopted across

other diseases and traits. We acknowledge for it to be useful to a given research question, a

suitable system capable of modeling the trait/ disease of interest must first exist, and for many

cellular systems this is often challenging. Fortunately, this is a shortcoming that will diminish

over time as our understanding of human biology and our ability to faithfully recapitulate in vivo

microenvironments  and  processes  improves,  though  this  may  be  a  distant  prospect  for

exquisitely complex tissues like the brain or for traits/ diseases that involve a larger number of

cell types/ interactions. Likewise, the use of shRNAs as the vehicle for perturbation carries with

it unique challenges, chief among them the proclivity of shRNA to exert confounding off-target

effects when compared to CRISPR-based methods.  While this  is  true and unavoidable,  the

inclusion  of  appropriate  controls,  both  at  the  experimental  level  and  in  modeling  off-target

contributors to observed phenotypic effects, provide an effective means to address this issue

(Tsherniak et al., 2017). We chose to perform our screen in primary hematopoietic cells and

thus were partially limited experimentally to the use of shRNA-based suppressive approaches.

Finally, evidence has recently been published that the targets of identified non-coding variants

are occasionally not within linkage disequilibrium blocks in the genome (Whalen and Pollard,

2018). This does not necessarily conflict with our results, since we identify hits at only 38 of 75

examined loci  and  provides  an intriguing  direction  for  further  work  that  may elucidate  how
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genetic and epigenomic structural blocks in the human genome can provide complementary

information.

Our  data  shows  that  gene-centric  screens  are  valuable  for  GWAS follow-up.  They  are  not

limited to red cell traits and may be useful for other human traits/ diseases, as has begun to be

shown in disease-systems like Type II diabetes (Thomsen et al., 2016). Data from such screens

can be integrated with complementary insights gleaned from variant-centric screens. Ultimately

this  could  accelerate  our  understanding  of  human  hematopoiesis  and  other  biological

processes, and aid in the development of applicable therapies. 
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Figure 1: Design and Execution of an shRNA Screen Using Blood Cell Trait GWAS Hits to

Identify  Genetic  Actors  in  Erythropoiesis (A)  Overview of  shRNA library  design.  75  loci

associated with red blood cell  traits  (van der Harst et  al.,  2012) were used as the basis to

calculate 75 genomic windows of LD 0.8 or greater from the sentinel SNP. Genes with a start

site within 110 kb or end site within 40 kb of the LD-defined genomic windows were chosen as

candidates to target in the screen. (B) Compositional makeup of the library, depicted as number

of genes and number of hairpins for each of the four included subcategories; GWAS-nominated

genes,  erythroid  genes,  essential  genes,  and  negative  control  genes.  (C)  Primary  CD34+

hematopoietic stem and progenitor  cells  (HSPCs)  isolated from 3 independent  donors were

cultured for  a period of  16 days in  erythroid  differentiation  conditions.  At  day 2,  cells  were

infected with the shRNA library, and the abundances of each shRNA were measured at days 4,

6, 9, 12, 14, and 16 using deep sequencing.

Figure 2: Summary Characterization of shRNA Screen Outcomes (A) Kernel density plot

showing library representation as log2 shRNA CPM across all hairpins. (B) shRNA abundance

log2 fold changes from day 4 to day 16. Represented values are the mean of hairpin abundance

log2 fold changes across hairpins for each gene and two standard deviations. (C) Kernel density

plots representing the day 4 to day 16 log2 fold changes of hairpin abundances for each of the

subcategories  of  the  library,  including  GWAS-nominated  genes,  known  erythroid  essential

genes, essential genes to cell viability, and orthogonal genes serving as negative controls. (D)

Violin plot of day 4 and day 16 log2 CPM for known actors  GATA1  and  RPS19  and negative

controls LacZ and luciferase. (E) Log2 hairpin counts averaged for known actors  GATA1  and

RPS19 as well as negative controls LacZ and luciferase across the course of the experiment.

Gray lines depict the universe of all other gene traces in the library for context.
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Figure  3:  Statistical  Modeling  of  Gene  Effect  Accounting  for  Off-target  shRNA

Confounders (A)  Bar  graph  showing  the  38  of  75  loci  in  the  screen  with  at  least  one

corresponding statistically significant (FDR < 0.1, β > 0.1) gene effect causing either a positive

or negative log2 fold change in shRNA abundance. (B) Kernel density plot showing the expected

distributions  of  K562  essentiality  scores  using  permuted gene hit  sets  from the  library. (C)

Hairpin rank sums for permuted sets of 5 genes. The red line indicates the enriched rank sums

for 5 “gold standard” genes included in the library, CCND3, SH2B3, MYB, KIT, and RBM38, for

each which a genetic basis of action has already been established. (D) Permuted distribution of

% inclusion of predicted coding variants among the set of identified hits. (E) Heat map depicting

strength of expression (as z scores within each gene) for each of the 77 identified hit genes

across hematopoietic lineages (top) and throughout the specific stages of adult erythropoiesis

(bottom). Purple boxes highlight the cell types that were enriched for expression of hit genes.

(F)  Calculated  enrichment  of  the  identified  hit  genes  for  expression  across  hematopoietic

lineages (top) and throughout the specific stages of adult erythropoiesis (bottom). In both cases,

cellular states corresponding to those along the erythropoietic lineage had elevated probability

of expressing genes from the hit set as compared to other genes from the library.

Figure  4:  Analysis  of  interactions  among  members  of  the  hit  set  identifies

signaling/transcription, membrane, and mRNA translation-related subnetworks important

to erythropoiesis. Comparison of gene hits via the STRING database identified interacting

networks related to hematopoietic  signaling/transcription,  membrane,  and mRNA translation-

related  subnetworks.  Edges  of  the  network  are  color-coded  according  to  the  evidence

supporting the interaction.
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Figure 5:  Transferrin receptor 2 is a Negative Regulator of  Human Erythropoiesis  (A)

Quantitative RT-PCR and (B) Western blot showing the expression of TFR2 in human CD34+

cells five days post-infection with the respective lentiviral shRNAs targeting TFR2 (TFR2 sh1 &

sh2) and a control luciferase gene (shLUC). (C) Representative FACS plots of erythroid cell

surface markers CD71 (transferrin receptor) and CD235a (Glycophorin A) expression at various

time points during erythroid differentiation.  Percentages in  each quadrant  is  represented as

mean and standard deviation of 3 independent experiments (D) Hoechst staining showing more

enucleated  cells  after  TFR2  knockdown  at  day  21  of  erythroid  culture.  (E)  Representative

histogram  plots  showing  increased  expression  of  CD235a  (Glycophorin  A)  after  TFR2

knockdown (F) Enhanced pSTAT5 response after TFR2 knockdown in UT7/EPO cells. 

Figure  6:  SF3A2  is  a  Key  regulator  of  Human  Erythropoiesis  and  Modulates

Erythropoiesis Defects in a Murine Model of MDS (A) Quantitative RT-PCR and (B) Western

blot showing the expression of SF3A2 in human CD34+ cells five days post-infection with the

respective  lentiviral  shRNAs  targeting  SF3A2  (sh1  &  sh2)  and  a  control  luciferase  gene

(shLUC). (C)  Growth curves showing that downregulation of SF3A2 results in reduced total cell

numbers during erythroid differentiation from 3 independent experiments. (D) Representative

FACS  plots  of  erythroid  cell  surface  markers  CD71  (transferrin  receptor)  and  CD235a

(Glycophorin A) expression at various time points during erythroid differentiation. Percentages in

each quadrant is represented as mean and standard deviation of 3 independent experiments

(E) Altered splicing events identified by RNA-Seq analysis  of  stage matched erythroid cells

(shSF3A2 vs. shLUC). Overlapping changes observed in  SF3B1  mutant BM cells from MDS

patients  (Obeng  et  al).  (F)  Lineage  negative  bone  marrow  cells  from  wildtype  (WT)  and

Sf3b1K700E  mice  were  infected  with  shRNAs  targeting  murine  Sf3a2  gene  co-expressing  a

reporter GFP gene. Percentage of Ter119+ CD71+ erythroid cells within the GFP compartment
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after 48hrs in erythroid differentiation. (G) Total cell numbers of GFP+ erythroid cells after 48hrs

in erythroid differentiation. 
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Materials and Methods:

Design of the shRNA Library

Ensembl assembly GRCh37p9 was utilized to expand 75 SNPs previously identified in a RBC

trait GWAS to include a genomic region in linkage disequilibrium with r2 ≥ 0.8. Each of these

regions  was  then further  expanded  to  the  nearest  recombination  hotspot.  All  genes  in  the

genome were expanded to include 110 kb upstream and 40 kb downstream of the transcription

start  and  end sites,  respectively, to  maximize  capture  of  non-coding regulatory  interactions

based  upon previously  published observations.  Genes with  windows calculated in  this  way

found to be overlapping with any of the SNP windows were flagged for inclusion in the screen.

In addition,  each locus was examined individually, and in  cases of  gene deserts,  unusually

proximal  recombination hotspots,  or  other unusual  genomic structures,  the SNP region was

expanded to include additional genes nearby. This resulted in a total of 389 test genes, which

were each targeted by 4-7 distinct shRNAs. Also included in the library were shRNAs targeting a

set of 8 validated erythroid genes (GATA1, RPL5, RPS19, EPOR, ALAS2, CDAN1, SEC23B,

ZFPM1). A pooled library of 2803 TRC clones was produced from the sequence-validated TRC

shRNA library (Moffat et al., 2006) and included shRNAs targeting control genes and essential

genes.

Pooled shRNA Screening

Mobilized peripheral blood CD34+ cells from three separate donors (7~11 * 106 cells per donor)

were differentiated into erythroid cells  using a three-stage system that  has been previously

described (Hu et al., 2013). Cells were cultured using IMDM containing 2% human plasma, 3%

25

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/500579doi: bioRxiv preprint 

https://doi.org/10.1101/500579
http://creativecommons.org/licenses/by-nd/4.0/


human AB serum, 200 µg/ml human holo-transferrin, 3 IU/mL heparin, and 10 mg/mL insulin

(base medium). During days 0 to 7, cells were supplemented with IL-3 (1 ng/mL), SCF (10

ng/ml),  and EPO (3 IU/ml).  On day 2 of this culture, cells were transduced with the pooled

lentiviral shRNA library prepared by Broad Institute Genetic Perturbation Platform (1ml of virus

per 0.75 * 106 cells) by spinfection at 2000 rpm for 90 minutes with 6 µg/ml polybrene. During

days  7  to  13,  cells  were  supplemented  with  SCF and  EPO only. After  day  13,  cells  were

supplemented with EPO alone and the holo-transferrin concentration was increased to 1 mg/ml.

A minimum of  10 *  106 cells  was re-plated at  each time point  to ensure appropriate library

representation and prevent bottlenecks among the infected cells. Cell pellets were made from

20~80 * 106 cells  at  days 4,  6,  9,  12,  14,  and 16.  At  the conclusion of  the pooled screen,

genomic DNA (gDNA) was extracted from the cell pellets using NucleoSpin Blood XL-Maxi kit

(Clonetech) according to kit specifications. The shRNA-containing region was PCR amplified

from the  purified  gDNA and  barcoded  using  the  following  conditions:  0.5 μl  P5  primer  mix 

(100μM), 10 μl P7 primer mix (5μM), 8 μl dNTP mix, 1x ExTaq buffer, 1.5 μl of ExTaq DNA   

polymerase (Takara), and up to 10 μg genomic DNA in a total reaction volume of 100 μl. A total   

of  40~87.5 μg  gDNA  was  used  as  template  from  each  conditions.  Thermal  cycler  PCR 

conditions consisted of heating samples to 95 °C for 5 min; 28 cycles of 95 °C for 30 s, 53 °C for         

30 s, and 72 °C for 20 s; and 72 °C for 10 min. Equal amounts of samples were then mixed and         

purified using AMPure XP for PCR purification (Beckman Coulter). Samples were sequenced

using a custom sequencing primer using standard Illumina conditions by the Broad Institute

Genetic Perturbation Platform. Sequencing reads were deconvolved and hairpin counts were

quantified for subsequent analysis by counting against the barcode reference using PoolQ

(https://portals.broadinstitute.org/gpp/public/dir/download?dirpath=software&filename=poolq-

2.2.0-manual.pdf).
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P5 primer 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT[s]TC

TTGTGGAAAGG*A*C*G*A

A mix of P5 primers with stagger regions [s] of different length was used to maintain

sequence diversity across the flow-cell.

 

P7 primer

CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTC

CGATCTTCTACTATTCTTTCCCCTGCA*C*T*G*T

Independently barcoded P7 primers was used for each condition.

NNNNNNNN – barcode region

Analysis of the shRNA Screen

Three separate donor primary CD34+ cells populations were run as replicates in the shRNA

screen.  A pseudocount  of  1 was added to all  shRNA-encoding DNA count  totals and these

counts were subsequently normalized to counts per million (CPM) and log2 transformed. A linear

mixed model was constructed to fit fixed effects for each gene (g) using the log2  fold change

from initial hairpin counts as the response variable (y). A random effect was included to capture

variations in efficacy and off-target effects for each shRNA (h) used to target a given gene. The

resulting model,  y ~ g + (0 + h|g), was fit in R-3.4 using the lme4 package. Genes hits were

called from the set of genes with β coefficient effect size > 0.1 and the Wald chi-square test

adjusted q value < 0.1. Enrichment of erythroid essential genes within the hit set was calculated

by running 1 million permutations against  the distribution of  K562 essentiality  for  all  genes

included in the library, panels of genes nominated by sets of significant GWAS-associated lipid

trait SNPs  (Willer et al.,  2013), and against all genes in the genome (Ensembl GRCh37p9).
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Enrichment for identification of the included 5 "gold standard" genes and for red blood cell trait-

associated  coding  variants  were  each  accomplished  using  identical  permutation  schemes.

Expression of the hit genes in various cell states/ stages of differentiation were derived from the

cited datasets and permuted across all unique stages to determine stage-specific enrichment.

The interaction network surrounding the 77 hits identified in the screen was generated in the

latest version of STRING (10.5) and filtered for the purposes of display to only those nodes with

at least one edge to another node among the hits.

RNA-Seq

Stage matched CD71+/ CD235a+ cells derived from CD34+ HSPCs infected with SF3A2 sh3, sh4

and shLUC were FACS sorted at day 8 of erythroid differentiation. RNA was isolated using a

RNAqueous Micro kit (Invitrogen) according to the manufacturer’s instructions. DNase digestion

was performed before RNA was quantified using a Qubit RNA HS Assay kit (Invitrogen). 1-10 ng

of RNA were used as input to a modified SMART-seq2 (Picelli et al., 2014) protocol and after

reverse transcription, 8-9 cycles of PCR were used to amplify transcriptome library. Quality of

whole  transcriptome  libraries  was  validated  using  a  High  Sensitivity  DNA  Chip  run  on  a

Bioanalyzer 2100 system (Agilent),  followed by library preparation using the Nextera XT kit

(Illumina) and custom index primers according to the manufacturer’s instructions. Final libraries

were quantified using a Qubit dsDNA HS Assay kit (Invitrogen) and a high sensitivity DNA chip

run on a Bioanalyzer 2100 system (Agilent). All libraries were sequenced using Nextseq High

Output Cartridge kits and a Nextseq 500 sequencer (Illumina). Libraries were sequenced using

2x38bp paired end reads.

RNA-seq Differential Expression Analysis 
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For  differential  expression  analysis,  paired  end  sequencing  reads  from  our  SF3A2  shRNA

knockdown experiments and obtained from the SF3B1 mutant datasets  (Obeng et al., 2016)

were quantified using Salmon version 0.11.1 (Patro et al., 2017) with default parameters and an

index constructed from Gencode annotations version 28. Differential expression of quantified

counts were calculated using DESeq2 (Love et al., 2014) in R-3.4. Enrichment for functions and

components  of  the cell  among the differentially  expressed gene sets were quantified  using

GOrilla (Eden et al., 2007; Eden et al., 2009).

RNA-seq Differential Splicing Analysis

Paired end sequencing reads from our SF3A2 shRNA knockdown experiments and obtained

from the cited  SF3B1 mutant  datasets were aligned using STAR version 2.5.2 in  two-pass

mode. Differential  splicing was quantified using MISO version 0.5.4 in Python 2.7 using the

instructions and annotation files provided with the package (Katz et al., 2010).

Analysis of Hemoglobin Levels for MDS Patients with or without SF3A2 Mutations

Genotyped MDS patient hemoglobin level measurements were obtained from the laboratory of

J. Maciejewski. 1000GENOMES phase 3 data was used to find a SNP encoded in whole-exome

sequencing data (rs25672) in high LD (r2 = 0.737675) with the SF3A2-associated sentinel SNP

(rs2159213). An ordinary least squares linear regression was used to fit the patient hemoglobin

levels to the number of SF3A2 minor alleles present in each patient (log likelihood ratio test p =

0.140).

Phosphorylated STAT5 assessment with Intracellular Flow Cytometry

UT-7/EPO cells were cultured in DMEM medium supplemented with 10% Fetal Bovine Serum

and 2 U/mL EPO. 5 days post-infection with TFR2 shRNAs, UT-7/EPO cells  were cytokine
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starved overnight. On the next day, cells were treated with EPO in a dose dependent manner

((0 U/mL, 0.002 U/mL, 0.02 U/mL, 0.2 U/mL, 2 U/mL, 20 U/mL and 200 U/mL) and incubated 37

°C for 30 min. Alternatively the cells were treated with 2U/ml EPO in a time dependent manner

(15, 30, 60, 120,180 min). Treated cells were gently mixed with pre-warmed Fixation Buffer (BD

Bioscience) at 37°C for 10 min to fix cells. To permeabilize cells for intracellular staining, cells

were resuspended in pre-chilled Perm Buffer III (BD Bioscience) for 30 min at 4°C. After three

washes with 3% FBS in PBS, samples were stained either with Alexa Fluor-647 Mouse Anti-

phospho-STAT5 (pY694; 1:20 dilution) for 1 hr in the dark at room temperature. A BD Accuri C6

Cytometer (BD Bioscience) was used to acquire mean fluorescent intensity (MFI) of phospho-

STAT5-Alexa Fluor 647. The MFI of phospho-STAT5-Alexa Fluor 647 of gated single cells was

calculated  using  FlowJo  (version  10.0.8r1).  Unstimulated  UT7/EPO  cells  were  used  as  a

negative control.

May-Grünwald-Giemsa staining

Approximately  50,000 – 200,000 cells  were harvested,  washed once at  300 x g for  5 min,

resuspended in 200 µL FACS buffer and spun onto poly-L-lysine coated glass slides (Sigma

Aldrich) with a Shandon 4 (Thermo Fisher) cytocentrifuge at 300 rpm for 4 min. Visibly dry

slides were stained with May-Grünwald solution for 5 min, rinsed 4 times for each 30 s in H2O,

transferred to Giemsa solution for 15 min and washed as described above. Slides were dried

overnight and mounted with coverslip. All images were taken with AxioVision software (Zeiss)

at 100 x magnification.  

Mouse erythroid differentiation culture

Bone marrow cells were isolated from SF3B1K700E +/- mice and littermate controls were lineage

depleted using Lineage Cell Depletion Kit, mouse (Miltenyi Biotech) according to manufacturer’s
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protocols. Lineage negative cells were immediately transduced with lentiviral shRNAs targeting

SF3A2 or controls (MOI -90) by spinfection at 2000rpm for 90 min. The cells were cultured in

erythroid maintenance medium (StemSpan-SFEM; StemCell Technologies) supplemented with

100 ng/mL recombinant mouse stem cell factor (SCF) (R&D Systems), 40 ng/mL recombinant

mouse  IGF1 (R&D Systems),  100  nM dexamethasone  (Sigma),  and  2  U/mL erythropoietin

(Amgen) and cultured at 37°C for 36 hours. Following this the cells were cultured for another 48

hours in erythroid differentiation medium (Iscove modified Dulbecco’s medium containing 15%

(vol/vol)  FBS (Stemcell),  1% detoxified  BSA (Stemcell),  500 μg/mL holo-transferrin  (Sigma-

Aldrich), 0.5 U/mL Epoetin (Epo; Amgen), 10 μg/mL recombinant human insulin (Sigma-Aldrich),

and 2 mM L-glutamine (Invitrogen)) at 37 °C.

Flow cytometry analyses and antibodies

All flow cytometry data was acquired using either using LSR II SORP or LSR Fortessa flow

cytometers (BD Biosciences). All staining was carried out in FACS buffer (2% FBS in PBS) for

30 minutes on ice unless otherwise described. The following antibodies were used anti-human

CD235a-APC (eBioscience, Clone HIR2), anti-human CD71-FITC (eBioscience, Clone OKT9),

anti-human CD71-PEcy7 (eBioscience, Clone OKT9), ant-human CD49d-PE (Miltenyi,  Clone

MZ18-24A9),  anti-human  CD41a-PE  (eBioscience,  Clone  HIP8),  anti-human  CD11b-PE

(eBioscience,  Clone  ICRF44),  anti-mouse  Ter119-APC  (eBioscience,  Clone  TER119),  anti-

mouse  CD71-PE  (eBioscience,  Clone  R17217)  and  Alexa  Fluor-647  anti-phospho  STAT5

(pY694) (BD Bioscience Cat#: 612599). Hoechst 33342 (Life Technologies, H1399) was used to

visualize nuclei.

shRNA sequences
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The  following  lentiviral  shRNA constructs  were  generated  in  Polymerase  III  based  shRNA

backbone pLKO.1-puro (Sigma Aldrich).

shLUC

5’-CCGGCGCTGAGTACTTCGAAATGTCCTCGAGGACATTTCGAAGTACTCAGCGTTTTTG-3’

TFR2 sh1

5'-CCGGGCCAGATCACTACGTTGTCATCTCGAGATGACAACGTAGTGATCTGGCTTTTTG-3

TFR2 sh2

5'-CCGGCAACAACATCTTCGGCTGCATCTCGAGATGCAGCCGAAGATGTTGTTGTTTTTG-3'

SF3A2 sh1 (human)

5'-CCGGCTACGAGACCATTGCCTTCAACTCGAGTTGAAGGCAATGGTCTCGTAGTTTTT-3

SF3A2 sh2 (human)

5'-CCGGCCTGGGCTCCTATGAATGCAACTCGAGTTGCATTCATAGGAGCCCAGGTTTTT-3'

SF3A2 sh3 (human)

5'-CCGGCAAAGTGACCAAGCAGAGAGACTCGAGTCTCTCTGCTTGGTCACTTTGTTTTT-3

SF3A2 sh4 (human)

5'-CCGGACATCAACAAGGACCCGTACTCTCGAGAGTACGGGTCCTTGTTGATGTTTTTT-3'

The following lentiviral shRNA constructs were generated in Polymerase II based mir30 shRNA

backbone developed in the lab SFFV-Venus-mir30 shRNA backbone.

shNT(non-targeting)

5’_TGCTGTTGACAGTGAGCGATCTCGCTTGGGCGAGAGTAAGTAGTGAAGCCACAGATGTA
CTTACTCTCGCCCAAGCGAGAGTGCCTACTGCCTCGGA_3’

Sf3a2 sh1 (mouse)

5’_TGCTGTTGACAGTGAGCGCGGAGGTGAAGAAGTTTGTGAATAGTGAAGCCACAGATGTA
TTCACAAACTTCTTCACCTCCATGCCTACTGCCTCGGA_3’

Sf3a2 sh2 (mouse)
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5’_TGCTGTTGACAGTGAGCGACCACCGTTTCATGTCTGCTTATAGTGAAGCCACAGATGTAT
AAGCAGACATGAAACGGTGGCTGCCTACTGCCTCGGA_3’

Sf3a2 sh3 (mouse)

5’_TGCTGTTGACAGTGAGCGATCCTGCCTTGAGCCTATTAAATAGTGAAGCCACAGATGTAT
TTAATAGGCTCAAGGCAGGACTGCCTACTGCCTCGGA_3’

Sf3a2 sh4 (mouse)

5’_TGCTGTTGACAGTGAGCGACCACTGGAACAGAGAAACCAATAGTGAAGCCACAGATGTA
TTGGTTTCTCTGTTCCAGTGGGTGCCTACTGCCTCGGA_3’

Sf3a2 sh5 (mouse)

5’_TGCTGTTGACAGTGAGCGATGGAGGTGAAGAAGTTTGTGATAGTGAAGCCACAGATGTA
TCACAAACTTCTTCACCTCCACTGCCTACTGCCTCGGA_3’

qPCR primers

TFR2 Fwd: 5'-ATCCTTCCCTCTTCCCTCCC-3'

TFR2 Rev: 5'-CCATCCAGCCACATGGTTCT-3

SF3A2 Fwd: 5'-CCTGAGAAGGTCAAGGTGGA-3'

SF3A2 Rev: 5'-CTCCGAGTCTCTCTGCTTGG-3'

Western Blot antibodies

Anti-GAPDH (Santa Cruz Biotechnology, sc-32233); anti-TFR2 (Santa Cruz Biotechnology, sc-

sc-32271); anti-SF3A2 (Santa Cruz Biotechnology, sc-390444)
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Supplemental Information

Supplementary Figure Legends

Supplementary  Figure  S1:  Summary  Characteristics  of  Designed  shRNA  Library (A)

Counts of loci from among the original 75 annotated with linkage to each of the six RBC traits,

hemoglobin  (Hb),  mean  corpuscular  hemoglobin  (MCH),  mean  corpuscular  hemoglobin

concentration (MCHC), mean corpuscular volume (MCV), packed cell volume (PCV), and red

blood cell count (RBC). Some loci were associated with multiple traits. (B) Kernel density plot

showing the log10 sizes in  bp of  the LD-defined genomic windows used to find overlapping

genes. (C) Histogram showing distribution of number of genes selected using the LD window

method at  each locus.  A median of  4 genes were present  at  each.  (D) Histogram showing

distribution  of  number  of  independent  hairpins  included  in  the  library  to  target  each  of  the

candidate’s  genes.  (E)   Representative  FACS plots  of  erythroid cell  surface markers CD71

(transferrin  receptor)  and CD235a (Glycophorin A)  expression at  various  time points  during

erythroid differentiation in  uninfected (Mock)  or  CD34+ cells  infected with the shRNA library

(Pool).  Percentages in  each quadrant  is  represented as mean and standard deviation  of  3

experiments from independent donors.

Supplementary  Figure  S2:  Additional  Metrics  of  Library  Performance (A)  shRNA

abundance log2  fold changes from day 4 to each of the other time points. Represented values

are the mean of hairpin abundance log2 fold changes across hairpins for each gene and two

standard  deviations.  (B)  Scatter  plots  showing  agreement  of  replicate  observations  across

independent CD34+ donor populations.
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Supplementary  Figure  S3:  Additional  Characterization  of  Modeling  Outcomes (A)

Histogram showing the number of gene hits identified at each of the 40 loci with at least one

significant gene effect detected. (B) Bar graph showing the number of gene hits identified for

each of the 6 red blood cell traits used in the original GWAS to identify the studied loci. (C)

Permuted enrichment of essentiality among the set of hit genes vs. randomly chosen sets of

genes from the human genome. (D) Permuted enrichment of essentiality among the set of hit

genes vs.  genes implicated by a  separate GWAS for  LDL cholesterol  levels.  (E)  Permuted

enrichment of essentiality among the set of hit genes vs. genes implicated by a separate GWAS

for HDL cholesterol levels. (F) Permuted enrichment of essentiality among the set of hit genes

vs. genes implicated by a separate GWAS for blood triglyceride levels. (G) Heat map depicting

strength of expression (as z scores within each gene) for each of the 77 identified hit genes

throughout the specific stages of fetal erythropoiesis. Purple boxes highlight the cell types that

were enriched for expression of hit genes.

Supplementary  Figure  S5:  Transferrin  Receptor  2  is  a  Negative  Regulator  of  Human

Erythropoiesis  (A)  Representative  FACS  plots  of  alternate  erythroid  cell  surface  markers

CD49d (α4 integrin)  and  CD235a (Glycophorin  A)  expression  at  various  time points  during

erythroid  differentiation.  (B)  May-Grunwald  Giemsa  staining  showing  more  differentiated

erythroid cells after TFR2 knockdown at day 18 of erythroid culture. (C) Western blot showing

downregulation of TFR2 in UT7/EPO cells. (D) Time dependent absolute value of MFI of STAT5

in UT7/ Epo cells after TFR2 knockdown.

Supplementary Figure S6: SF3A2 is Required for Human Erythropoiesis and Modulates

Erythropoiesis  Defects  in  a  Murine  Model  of  MDS (A)  shRNAs  targeting  SF3A2  co-

expressing  a  reporter  GFP  gene  was  infected  into  CD34+ cells  and  cultured  in  erythroid
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conditions. GFP expression at various time points from three independent experiments show

that downregulation of SF3A2 results in reduced cell numbers. (B) Representative FACS plots

of erythroid (CD235a) and non-erythroid cell surface markers (CD11b / CD41a) and at various

time points showing an increase in non-erythroid lineages upon SF3A2 downregulation. Cells

were gated on the GFP positive population.  (C)  Knockdown efficiency of  shRNAs targeting

SF3A2 in murine erythroleukemia (MEL) cells by western blot. (D) Total cell numbers of GFP+

cells at the start of murine erythroid differentiation. (E) Percentage of Ter119+ CD71+ erythroid

cells within GFP compartment and (F) Total cell numbers of GFP+ erythroid cells after 24hrs in

erythroid differentiation. (G) Growth curves of GFP+ erythroid cells during erythroid culture. (H)

Putative but insignificant interaction between SF3A2 variant alleles (rs25672) and hemoglobin

levels in MDS patients with SF3B1 mutations.
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Supplemental Tables

Table  S1: Table  containing  annotations  and  information  for the  75  SNPs used  to  seed  the

shRNA library. 

Table  S2: Table  containing  annotations  and  information  for  all  hairpins,  as  well

as shRNA counts for each time point and replicate. 

Table S3: Table containing the R model output for each gene.

Table  S4: Table  containing  the  DESeq2  output  for  differentially  expressed  genes  in  cells

undergoing SF3A2 knockdown or control shRNA treatment.

Table  S5: Table  containing  the  DESeq2  output  for  differentially  expressed  genes  in  MDS

patients with and without mutations in SF3B1.

Tables  S6,  S7:  Tables  containing  the  GO  component  (S6)  and  function  (S7)  enrichments

calculated using GOrilla for cells undergoing SF3A2 knockdown or control shRNA treatment.

Tables  S8,  S9:  Tables  containing  the  GO  component  (S8)  and  function  (S9)  enrichments

calculated using GOrilla for MDS patient samples with and without mutations in SF3B1.

Tables S10-S14: Tables containing the differential splicing analysis for cells undergoing SF3A2

knockdown or control shRNA treatment. Categories of splice mutations presented in each table

are alternative 3’ splice sites,  alternative 5’ splice sites,  mutually  exclusive exons,  retrained

introns, and skipped exons, respectively.

Tables S15-S19: Tables containing the differential  splicing analysis  for  MDS patient  patient

samples with and without mutations in SF3B1. Categories of splice mutations presented in each

table are alternative 3’ splice sites, alternative 5’ splice sites, mutually exclusive exons, retrained

introns, and skipped exons, respectively.
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