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ABSTRACT 53 

Florida faces the challenge of repeated introduction and autochthonous transmission 54 

of arboviruses transmitted by Aedes aegypti and Aedes albopictus. Empirically-55 

based predictive models of the spatial distribution of these species would aid 56 

surveillance and vector control efforts. To predict the occurrence and abundance of 57 

these species, we fit mixed-effects zero-inflated negative binomial regression to a 58 

mosquito surveillance dataset with records from more than 200,000 trap days, 59 

covering 73% of the land area and ranging from 2004 to 2018 in Florida. We found 60 

an asymmetrical competitive interaction between adult populations of Aedes aegypti 61 

and Aedes albopictus for the sampled sites. Wind speed was negatively associated 62 

with the occurrence and abundance of both vectors. Our model predictions show 63 

high accuracy (72.9% to 94.5%) in the validation tests leaving out a random 10% 64 

subset of sites and data from 2018, suggesting a potential for predicting the 65 

distribution of the two Aedes vectors. 66 

 67 
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INTRODUCTION 68 

Aedes mosquitoes, in particular, Aedes aegypti (Linnaeus) and Aedes albopictus 69 

(Skuse), are the primary vectors of multiple arboviruses including dengue virus 70 

(DENV), Zika virus (ZIKV), yellow fever virus, and chikungunya virus 71 

(CHIKV)(Bargielowski and Lounibos, 2016; Kotsakiozi et al., 2017; Lounibos and 72 

Kramer, 2016). The incidence of these viruses in humans is driven, in part, by the 73 

close overlapping habitats of humans and these vectors (Charrel et al., 2014). In the 74 

absence of effective vaccines, reducing contact between mosquitoes and humans 75 

through targeted mosquito control is regarded as the most effective approach to 76 

reduce risk of mosquito-borne arbovirus transmission. There have been several 77 

efforts to create large-scale estimates of the spatial presence and abundance of 78 

these vectors using a variety of collection methods and data from literature reports 79 

and entomological surveys of mosquito occurrence. Global maps have been 80 

generated using climate and socio-economic variables, relying on a strong 81 

dependence of mosquito populations to temperature and rainfall (Brady et al., 2014; 82 

Kraemer et al., 2015b; Leta et al., 2018). These efforts have uncertainty associated 83 

with publication bias and variability of collection methods. Large-scale data collected 84 

by standardized surveillance methods could improve the certainty and precision of 85 

occurrence and abundance maps. Here, we use a dataset covering around 102,000 86 

km# (73%) and more than 200,000 trap days spanning 17 years of observation (Figs 87 

1 and S7). We built a mixed-effects zero-inflated negative binomial (ZINB) model to 88 

characterize and predict the occurrence and abundance of Ae. aegypti and Ae. 89 

albopictus, simultaneously using climate and human population density data.  90 

 91 
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Florida has suffered from the introduction and autochthonous transmission of DENV 92 

(Muñoz-Jordán et al., 2013; Teets et al., 2014), CHIKV (Kendrick et al., 2014) and 93 

ZIKV (Grubaugh et al., 2017; Likos et al., 2016) and remain at high risk of 94 

transmission due to repeated pathogen introductions, high densities of Ae. aegypti 95 

and Ae. albopictus (Kraemer et al., 2015b) and favorable meteorological conditions 96 

(Grubaugh et al., 2017; Monaghan et al., 2016). Studies have shown a positive 97 

relationship between human Zika and dengue cases and larger Ae. aegypti 98 

populations in urban areas (Bowman et al., 2014; Grubaugh et al., 2017). Therefore, 99 

characterizing the population size of the two Aedes species over time and space 100 

could aid in examining the risk of local arbovirus transmission and spread in Florida 101 

and inform more effective and targeted mosquito control efforts. 102 

 103 

Although coexistence of the two Aedes vectors is reported (Lounibos et al., 2016), 104 

declining populations and displaced habitats of Ae. aegypti have been observed in 105 

several places, including Florida (Bagny et al., 2009; Kaplan et al., 2010; Lounibos 106 

and Kramer, 2016; O’Meara et al., 1995). In particular, the habitats of Ae. aegypti 107 

were restricted to urban areas while those of Ae. albopictus were found to increase 108 

in suburban and rural areas in Florida (Lounibos, 2002). The proposed mechanisms 109 

for the displacements of Ae. aegypti include species interactions such as the 110 

superiority of Ae. albopictus to compete for resources at the larval stage and 111 

asymmetric sterilization at the adult stage after interspecific mating which favors Ae. 112 

albopictus (Bargielowski and Lounibos, 2016; Juliano, 2009; Lounibos and Kramer, 113 

2016). Previous studies modelled the current spatial distribution of Ae. aegypti and 114 

Ae. albopictus by applying boosted regression trees to a comprehensive global 115 

database of Aedes occurrence (Kraemer et al., 2015a, 2015b) and characterized the 116 
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spatial and temporal abundance of the two Aedes species in a local southern Florida 117 

county (Reiskind and Lounibos, 2013). However, these studies, which estimated the 118 

distribution and abundance of Aedes, are limited because of the minimal amount of 119 

data from standardized collections of mosquito populations and failure to consider 120 

the species interactions between Ae. aegypti and Ae. albopictus (Lounibos and 121 

Juliano, 2018). Additionally, inconsistent findings on the associations between their 122 

distribution and meteorological factors were reported according to a recent 123 

systematic review (Sallam et al., 2017). 124 

 125 

The objective of this study was to simultaneously characterize the occurrence and 126 

abundance of the Ae. aegypti and Ae. albopictus mosquitoes using the routine 127 

mosquito surveillance data in Florida. To estimate if mosquitoes were present or not 128 

and if present, the number of adults in each trap location, a mixed-effects zero-129 

inflated negative binomial (ZINB) regression was performed. Different predictors or 130 

factors were examined, like climate and human population density covariates, and 131 

the potential interaction between Ae. aegypti and Ae. albopictus based on their 132 

spatial and temporal abundance. Predictions on occurrence of Ae. aegypti and Ae. 133 

albopictus from models were assessed with and without abundance information to 134 

determine if real-time predictions based solely on climate data and human population 135 

density information provided accurate predictions. 136 

RESULTS 137 

In total, the longitudinal training dataset included132,088 weekly records from 1,246 138 

unique sites for Ae. aegypti and Ae. albopictus, respectively, covering 33 out of 67 139 

counties. The dataset includes 53% of the land area in Florida and from 2004 to 140 
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2018 (Table 1, Figs. S1, S2 and S5). Traps were typically set for one day but a 141 

minority of collaborators reported counts from a trap that was set for multiple days 142 

(7.4%). Approximately 87.4% and 84.8% of trap episodes reported no adults 143 

collected for Ae. aegypti or Ae. albopictus, respectively. The majority (81.4%) of 144 

traps used were light traps, and the remaining 7.3% and 11.3% of traps used were 145 

BG Sentinel traps or other mosquito traps (Table S4), respectively (Table 1) (see 146 

more details for traps in the supplementary). A wider range and higher trap rate was 147 

reported for Ae. albopictus compared to Ae. aegypti in Florida, and as expected from 148 

previous studies, most Ae. aegypti were reported in southern Florida (Figs. 1 and 149 

S1). Both Ae. aegypti and Ae. albopictus were trapped more often between May to 150 

October (Fig. S1 and S2). The median human population density of the locations 151 

where the traps were set is 480.8 persons per km2 (Interquartile range (IQR), 112.5 152 

to 1165.2 km2) (Fig S3). The median weekly average wind speed was 5.4 meter per 153 

second (IQR, 4.5 to 6.6 m/s), and the median relative humidity was 76.7% (IQR, 73.1 154 

to 80.1 %) (Fig S3).  The minimum temperature of the trap episodes ranged from 155 

18.7 to 25.8 °C with median of 23.0 °C. The median difference of predicted 156 

maximum temperature on minimum temperature was 0 °C (IQR, -0.5 to 0.5 °C) (Fig 157 

S3).  158 

Presence and abundance of Aedes 159 

The results from ZINB regression suggested the probability of presence of Ae. 160 

aegypti and Ae. albopictus in the current week was positively associated with the 161 

previous presence of its own species and the other species (Table 2). The 162 

abundance of both Aedes species was more likely to be higher if a higher 163 

abundance was reported for its own species (e.g. Incidence rate ratio (IRR) 1.03 and 164 
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1.02 for one week prior for the two vectors, respectively) (Table 2). The abundance 165 

of Ae. aegypti was negatively associated with the abundance of Ae. albopictus in the 166 

last three weeks (IRR: 0.992, 0.994 and 0.990 for one, two and three weeks earlier, 167 

respectively), while the abundance of Ae. albopictus seemed to be not associated 168 

with the previous abundance of Ae. aegypti (Table 2).  169 

 170 

We found both the presence (Odds ratio (OR): 0.98, 0.95 to 1.01 and 0.97, 0.95 to 171 

0.99, respectively) and abundance (IRR: 0.97, 0.96 to 0.99 and 0.97, 0.95 to 0.98, 172 

respectively) of Ae. aegypti and Ae. albopictus were negatively associated with the 173 

average wind speed of the week. Minimum temperature was positively associated 174 

with the occurrence (OR: 1.01 for Ae. aegypti and 1.08 for Ae. albopictus) and the 175 

abundance (IRR: 1.13 and 1.09 respectively) of both species. Maximum temperature 176 

was found to be negatively associated with the occurrence of Ae. aegypti (OR: 0.91, 177 

0.87 to 0.95) but positively associated with the occurrence of Ae. albopictus (OR: 178 

1.04, 1.00 to 1.08) (Table 2). We found the relative humidity was negatively 179 

associated with the abundance of Ae. aegypti (IRR: 0.99, 0.98 to 1.00) and the 180 

occurrence of Ae. albopictus (IRR: 0.99, 0.98 to 0.99). Model estimates using NOAA 181 

climate data were similar with our main results, except for the positive associations 182 

between maximum temperature and the abundance and presence for both species 183 

(Table S1). Greater precipitation was positively associated with the abundance for 184 

both Ae. aegypti (IRR: 1.42, 1.26 to 1.59) and Ae. albopictus (IRR: 1.09, 0.99 to 185 

1.20), but not associated with the probability of presence (OR: 0.85, 0.69 to 1.05 and 186 

1.05, 0.94 to 1.19, respectively) (Table S1).  187 

 188 
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Both the probability of presence (OR: 0.95, 0.94 to 0.97) and abundance (IRR: 0.98, 189 

0.97 to 1.00) of Ae. albopictus were negatively associated with a higher human 190 

population density, while the probability of the presence of Ae. aegypti was positively 191 

associated with human population density (OR: 1.05, 1.03 to 1.07). We also found 192 

substantial heterogeneities of presence and abundance of these two Aedes species 193 

across trap sites and counties (Table 2). The greatest heterogeneity was found with 194 

the presence at a county level for both Ae. aegypti (random effects (RE): 12.27) and 195 

Ae. albopictus (RE: 6.592).  196 

Performance of model fits to the longitudinal training dataset 197 

We compared the predictions from the main ZINB model with observed presence 198 

and abundance from the longitudinal training datasets (Fig. 2 and Fig. S6). Overall, 199 

our model fits well with both the occurrence and abundance estimates for Ae. 200 

aegypti and Ae. albopictus (Fig. 2). We observed that 91.1% and 84.9% of the 201 

predicted presence was consistent with the observed presence of Ae. aegypti and 202 

Ae. albopictus, respectively. Similarly, 83.8% and 77.0% of the predicted abundance 203 

was correlated with the observations, while 90.1% and 86.5% of the predicted 204 

abundance differed by ±1 per trap day from the observations (Fig. 2C-D). The values 205 

of Moran’s I are 0.47 (p < 0.01) and 0.08 (p = 0.02) for Ae. aegypti and Ae. 206 

albopictus, respectively, and is -0.03 (p = 0.81) for Ae. aegypti after removing data 207 

from Miami-Dade. Temporal differences were relatively larger during May and 208 

September, when the observed average trap rates were also higher, for both species 209 

(Fig. S6).  210 
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Performance of model in validation sets 211 

For both spatial (Fig. 3A) and temporal (Fig. 43) test datasets, the model predictions 212 

are highly consistent with the observed presence of both Ae. aegypti (AUC: 0.93 and 213 

0.92 for spatial and temporal predictions, respectively) and Ae. albopictus (AUC: 214 

0.84 and 0.81 for spatial and temporal predictions, respectively). Overall, 86.2% and 215 

82.1% of the predicted abundance were consistent with the observations for the 216 

spatial prediction of Ae. aegypti and Ae. albopictus (Fig. 3B-C), respectively, while 217 

72.9% and 94.5% of the predictions were correct for the temporal predictions (Fig. 218 

3E-F). 219 

 220 

We fit another ZINB model to the longitudinal training dataset without using 221 

information on the previous presence and abundance of both species, and applied 222 

the model to predict the no abundance testing dataset, which failed on the four 223 

consecutive four-week criteria. The no abundance testing dataset has total 45,535 224 

trap episodes collected from 2,791 unique sites in 48 counties (Figs. S4 and S5). 225 

The model provided good predictions in both presence (AUC: 0.90 for Ae. aegypti 226 

and 0.85 for Ae. albopictus) and abundance (82.8% and 70.2% right predictions, 227 

respectively) for the two Aedes species (Fig. S7).  228 

 229 

Using our models, we predicted the number of Ae. aegypti and Ae. albopictus that 230 

would be expected to be found in traps in all points in the state. Fig. 4 shows 231 

predictions created using the “no abundance model” for August 1, 2018 incorporating 232 

random effects representing systematic differences in surveillance by county (Fig. 4 233 

A and B) and only incorporating fixed effects (Fig. 4 C and D). BG traps were 234 
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assumed to be used for all sites. Predictions in Fig. 4 present our estimates 235 

attempting to eliminate the impact of systematic differences in surveillance.  236 

DISCUSSION 237 

We built models using more than 132,000 routine mosquito surveillance records from 238 

33 counties in Florida collected from 2004 to 2018, to characterize and predict the 239 

occurrence and abundance of Ae. aegypti and Ae. albopictus. Our model performed 240 

well, particularly considering the stochastic nature of mosquito populations, trap 241 

efficiency and small-scale trap locations. We modelled random effects across sites 242 

and counties to account for inconsistencies and randomness and found the highest 243 

random effect was for the probability of presence at the county level, suggesting 244 

great heterogeneity of occurrence across counties possibly down to differences in 245 

surveillance and domestic mosquito control across counties.  246 

 247 

Our results suggest a broad distribution of Ae. albopictus in Florida, while Ae. 248 

aegypti was more likely to be found in counties in southern Florida, a pattern similar 249 

to reports during the past two decades (Lounibos et al., 2016). This is also consistent 250 

with previous observations about the declining population of Ae. aegypti after the 251 

invasion of Ae. albopictus in the Southern United States (Bonizzoni et al., 2013; 252 

Lounibos, 2002). However, there is some evidence to suggest limited local 253 

recoveries of Ae. aegypti in relation to Ae. albopictus, in part, attributable to evolution 254 

of resistance to satyrization (Bargielowski et al., 2013; Bargielowski and Lounibos, 255 

2016; Hopperstad and Reiskind, 2016; Lounibos et al., 2016). Our findings on the 256 

positive association between the probability of presence of adult mosquitoes of the 257 

two Aedes species suggest their niches have some overlap particularly in urban 258 
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areas (Lounibos and Juliano, 2018). This is supported by the observed coexistence 259 

of Ae. aegypti and Ae. albopictus in Florida (Bonizzoni et al., 2013; Lounibos and 260 

Kramer, 2016; Reiskind and Lounibos, 2013) and the similar breeding behavior of 261 

the two species (Hashim et al., 2018). We also found evidence of competitive 262 

interactions between the two species. The abundance of Ae. aegypti was negatively 263 

associated with the previous abundance of Ae. albopictus, with the greatest effect 264 

size observed for the abundance of Ae. albopictus during the previous three-week 265 

period. A previous study revealed the breeding preference of Ae. aegypti in habitats 266 

without Ae. albopictus (Hashim et al., 2018). Our findings support the hypothesis that 267 

the two Aedes species can coexist but the abundance of adult Ae. aegypti are 268 

suppressed due to its failure to outcompete at the larval stage and/or the impact of 269 

interspecific mating (Bargielowski et al., 2013; Juliano, 2009; Lounibos and Kramer, 270 

2016). Evolution of resistance to interspecific mating (i.e., satyrization-resistance) in 271 

Ae. aegypti populations is likely to promote coexsistence.(Bargielowski and 272 

Lounibos, 2016) Future control efforts targeting the Aedes species, especially Ae. 273 

albopictus, need to take into account the risk of resurgence of Ae. aegypti, which has 274 

been documented in Brazil (Kotsakiozi et al., 2017) , and can be possible in Florida 275 

considering recent reports of the rapid evolution of satyrization-resistant aegypti 276 

(Bargielowski and Lounibos, 2016), coupled with an observed increased in 277 

insecticide resistance as compared to Ae. albopictus (Estep, et al., unpublished) 278 

(“Distribution Maps – Florida Mosquito Information,” n.d.). 279 

 280 

We found the presence and abundance of Ae. albopictus are negatively associated 281 

with human population density, while the presence of Ae. aegypti was positively 282 

associated with the human population density, which matches with reports that 283 
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anthropophilic Ae. aegypti are more likely to be found in urban areas and the Ae. 284 

albopictus has wider range of habitats including peri-urban, vegetated and rural 285 

areas (Lounibos and Kramer, 2016; Metzger et al., 2017), mostly due to its wide 286 

range of host preference and a greater adaptation to different climates (Bonizzoni et 287 

al., 2013). Land cover status, which is an important predictor of distribution of these 288 

species by other reports (Kraemer et al., 2015b; Rey et al., 2006), was not included 289 

in our main analysis as it may be associated with the human population density and 290 

the vast majority of the Ae. aegypti were collected in developed areas with a large 291 

human presence, consistent with other studies (Rodrigues et al., 2015; Tsai and 292 

Teng, 2016). The observed positive association between human and Ae. aegypti 293 

density has practical implications for targeted mosquito control because these areas 294 

represent the greatest risk for arboviral infections (e.g., dengue(Padmanabha et al., 295 

2012)).   296 

 297 

Major presence of both species between May to October has also been reported 298 

previously and corresponds to Florida’s rainy season and associated availability of 299 

breeding sites, and abiotic factors such as temperature (Reiskind and Lounibos, 300 

2013). Related to this, the negative association between wind speed and the 301 

presence and abundance of both species analysis can include some explanations 302 

such as high wind speed hindering the effective trapping of the mosquitoes; 303 

therefore, traps are more likely to have no or fewer collections of mosquitoes during 304 

windy days. Also, mosquito activity and therefore host-seeking have been shown to 305 

be affected by higher wind speeds; presumably due to the combined effect of 306 

affected flight distance and pattern as well as the poor dispersal of the CO2 plume for 307 

both short and long distances.   308 
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 309 

Our results suggest positive associations between temperature and observed 310 

abundance of adult Ae. aegypti and Ae. albopictus when using the NOAA data, while 311 

inconsistent findings on the association between maximum temperature and the 312 

abundance of Ae. aegypti was found when using the NASA data. A study suggested 313 

higher tolerance of low temperature in adult Ae. aegypti compared to Ae. albopictus, 314 

leading to a relatively lower mortality of adult Ae. aegypti in low temperature and a 315 

milder effect of temperature on the presence of Ae. aegypti (Brady et al., 2013). One 316 

previous study observed that Ae. albopictus prefer to live in cooler areas in Florida 317 

(Bonizzoni et al., 2013). However, different local adaptations by these Aedes species 318 

to climatic changes were also reported both in and outside Florida (Lounibos and 319 

Kramer, 2016; Muttis et al., 2018). Despite these discussions with relation to habitat 320 

and mortality of the two Aedes vectors and temperature, seasonality can be used to 321 

predict the patterns of presence and abundance of these two Aedes species and the 322 

incidence of diseases transmitted by the these mosquito vectors (Monaghan et al., 323 

2016; Reiskind and Lounibos, 2013; Xu et al., 2017). 324 

 325 

We find a negative correlation between relative humidity the abundance of Ae. 326 

aegypti and the presence of Ae. albopictus. These findings support laboratory and 327 

field observations showing climate-driven egg mortality, with greater desiccation 328 

resistance of Ae. aegypti than Ae. albopictus, and species-specific responses in 329 

occupancy of containers with drier conditions favoring Ae. aegypti (Juliano et al., 330 

2002; Lounibos et al., 2010; Mogi et al., 1996). Previous field studies have shown 331 

that dry periods are associated with disproportionately greater mortality of Ae. 332 

albopictus eggs than Ae. aegypti eggs in Florida (Juliano et al., 2002). Previous 333 
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laboratory studies revealed desiccation stress on survival of adult Ae. aegypti and 334 

Ae. albopictus with mortality increasing non-linearly with decreasing relative humidity 335 

(Hylton, 1967; Lucio et al., 2013; Schmidt et al., 2018). The complex relation 336 

between adult survival and relative humidity and the observed disproportional 337 

distribution of higher relative humidity in Florida could drive the negative association 338 

(Fig S3). In addition, higher relative humidity was usually associated with greater 339 

precipitation, which was found to be positively correlated with the abundance of both 340 

vectors, but not the probability of occurrence of the two species in the sensitivity 341 

analysis (Table S2). The effect of precipitation on the abundance of these two Aedes 342 

species was considered to be mediated by induced egg hatching in containers upon 343 

flooding and promotion of vegetation after raining (Reiskind and Lounibos, 2013; 344 

Sallam et al., 2017). Larger effect of precipitation on the abundance of Ae. aegypti 345 

than of Ae. albopictus could be because the preference of the former to use breeding 346 

in artificial containers for development of the immature stages, which are prone to 347 

have more obvious influence from precipitation compared to vegetation.   348 

 349 

The probability and efficacy of capturing Ae. aegypti and Ae. albopictus by a BG-350 

sentinel trap was found to be greater compared to light traps (Table 2), which is 351 

consistent with previous findings (Li et al., 2016; Williams et al., 2006). We 352 

performed a sensitivity analysis by fitting a ZINB model to data collected by BG 353 

sentinel traps only and found the robustness of our main results are seemly 354 

unaffected not to be affected by the spatial distribution of BG sentinel traps (Fig. S8). 355 

In addition, we were not able to assess the role of attractants due to limited data 356 

available, which are believed to increase the capture efficacy of mosquitoes (de 357 

Ázara et al., 2013). 358 
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 359 

Our model which incorporates the previous abundance of heterospecific and 360 

conspecific Aedes species at a trap site demonstrates high accuracy in predicting 361 

the presence and abundance of Ae. aegypti and Ae. albopictus (Fig. 2 and Fig. S6). 362 

Analysis of long-term mosquito surveillance data is challenged by the excessive zero 363 

counts, which may be real absence, absence due to trap failure or adverse 364 

environmental conditions. The ZINB regression can model the two scenarios of 365 

absence simultaneously. However, variability in trap placement, efficiency of specific 366 

traps and other sources of variation in mosquito trapping practices may reduce our 367 

model performance. Performance tended to be lower when trapping rates were 368 

higher, while 97.1% (Ae. aegypti) and 96.8% (Ae. albopictus) of the differences 369 

between predicted and observed trap rate were within 5 per trap-day. A larger rate of 370 

inaccurate predictions was observed during months when trap rates of both 371 

mosquito species were higher, corresponding to the more dispersed variance of a 372 

higher trap rate. In addition, spatial autocorrelation was found for the model of Ae. 373 

aegypti, which was mainly due to the high autocorrelation between observations in 374 

Miami-Dade. The estimates and predictions are however not affected by the spatial 375 

autocorrelation, as suggested by the model fit to the longitudinal training dataset but 376 

removing data from Miami-Dade (Fig. S9 and Table S3). 377 

 378 

Our model can be applied to predict spatial and temporal presence and abundance 379 

of Ae. aegypti and Ae. albopictus with good accuracy (Fig. 3). Although great 380 

variance was observed across counties and sites, we found that temporal prediction 381 

was more challenging for both species. Several sites first reported the occurrence or 382 
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resurgence of Ae. aegypti in 2017, indicating the dynamic niches of the mosquitoes, 383 

which hinders the distribution forecasting of the two vectors. 384 

 385 

We found that our model performed well in external validation even without recent 386 

data on each species (“no abundance model”). This suggests that accurate real-time 387 

forecasts could be generated without gathering and collating abundance data in real-388 

time, giving timely predictions of the occurrence of Ae. aegypti and Ae. albopictus 389 

using only site-specific meteorological and human population density data. Results 390 

from the “no abundance model” incorporating fixed effects only provide homogenous 391 

predictions, which are largely informed by the human population density, while the 392 

empirical data however suggested great variations in the abundance captured 393 

across the counties (Fig. 1). This is could be partially due to the systematic 394 

differences in trapping practices and surveillance across counties and can be 395 

captured by the model incorporating random effects. 396 

 397 

Many efforts have been made to map the distribution of Ae. aegypti and Ae. 398 

albopictus at broad regional scales, which were highly dependent on vegetation and 399 

meteorological factors (Brady et al., 2014; Kraemer et al., 2015b; Leta et al., 2018). 400 

Our study observes suppression of adult population of Ae. aegypti by Ae. albopictus, 401 

highlighting the importance of including species interactions in future mapping work 402 

as underscored by recent studies, especially when considering predictions at high 403 

spatial resolution (Lounibos and Juliano, 2018). Otherwise, the distribution of Ae. 404 

aegypti would likely be overestimated since the two Aedes vectors shared many 405 

common abiotic conditions. The median changes of predicted trap rate of Ae. aegypti 406 

in Miami-Dade are -17.0% (IQR: -21.0 to 19.3%) and -24.6% (IQR: -28.2 to 8.3%) 407 
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when the trap rate for Ae. albopictus was 1 and 100 per trap-night, respectively. In 408 

addition, predictions from standardized longitudinal mosquito surveillance could aid 409 

to refine the distribution maps of these vectors by incorporating the seasonal pattern 410 

and real-time invasion activity. Finally, our empirical surveillance data can be used to 411 

validate and refine the local performance of large-scale maps. Integrating 412 

longitudinal surveillance could provide valuable information on absence and 413 

abundance, therefore reducing the sampling bias and disproportional weighting 414 

caused by presence only data (Wisz and Guisan, 2009). 415 

 416 

There are several limitations to our study. First, our data has relatively more trap 417 

episodes during April to November, when the trap rate for these two vectors was 418 

often high. The estimated impact of low temperature on the presence and 419 

abundance of these two Aedes vectors may therefore be affected. Second, more 420 

than half of the records included in the main analysis are from Miami-Dade, St. 421 

Johns, Polk and Pinellas counties (Table S5). We have modelled the random effects 422 

across both sites and counties to account for the potential spatial variations of 423 

surveillance, which may improve the generalization capability of our conclusions. We 424 

were not able to characterize specific details of trap locations or other aspects of 425 

sites such as details of the built environment. These details might further improve 426 

forecasts. 427 

 428 

Our models demonstrate potential for predicting the occurrence of Ae. aegypti and 429 

Ae. albopictus, to better inform targeted mosquito control efforts. Model predictions 430 

produced with and without the benefit of recent surveillance data were of high 431 
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accuracy suggesting that real-time forecasts could be produced with just climate 432 

data alone. 433 

MATERIALS AND METHODS 434 

Mosquito surveillance data 435 

Statewide surveillance data on 16 Aedes species was obtained by networking with 436 

Florida’s mosquito control districts, Clarke Scientific, the Florida Department of 437 

Agriculture Consumer Services, and the Florida Department of Health. Each control 438 

district is required to trap mosquitoes prior to conducting their control efforts by 439 

Florida Statutes 388 and 482. The traps were placed to acquire a representative 440 

sampling of the district including baseline traps placed in the same location annually, 441 

at risk areas due to environmental factors like increased standing water, locations 442 

within areas of known arbovirus transmission, and frequent areas of complaint. 443 

Information collected from these traps includes the speciated count and life phase of 444 

the trapped mosquitoes, date and duration of collection, type of trap, and coordinates 445 

of the trap sites. The collected mosquitoes were speciated according to standardized 446 

mosquito keys (Darsie and Morris, 2003). For missing data, the duration of collection 447 

was assumed to be one day, according to the common trapping practices, and 448 

coordinates were extracted from Google Maps based on the address of the site. The 449 

full dataset was aggregated to include data on adult Ae. aegypti and Ae. albopictus, 450 

two vectors related with arboviruses, on a week basis. The longitudinal training 451 

dataset for the zero-inflated negative binomial (ZINB) regression was extracted from 452 

the full dataset and included only data collected from sites with at least four 453 

consecutive weeks of surveillance and no missing explanatory variables.  454 
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Abiotic variables 455 

To examine the potential effects of meteorological factors on the trap rate of the two 456 

Aedes species, temperature (℃), wind speed (meter per second) and relative 457 

humidity (%) were included in the model. We obtained the daily meteorological data 458 

for Florida from the NASA Prediction of Worldwide Energy Resources(“NASA 459 

Prediction of Worldwide Energy Resources.,” n.d.) and applied the inverse distance 460 

weighting method (Pebesma and Gräler, 2014) to interpolate the daily weather raster 461 

of Florida with a 5 km ×5 km resolution. We also conducted a sensitivity analysis by 462 

using meteorological data from National Oceanic and Atmospheric Administration 463 

(NOAA).(National Oceanic and Atmospheric Administration, 2016) The weekly 464 

average of weather conditions was calculated as the mean of the weather conditions 465 

on the days the traps were collected. To account for the collinearity of the maximum 466 

and minimum temperature, we used the residuals of the linear regression of 467 

maximum temperature on minimum temperature as a proxy of the maximum 468 

temperature in the model, which was calculated as 𝛥𝑇()* 	= 	𝑇()*	–	(𝛼	 + 	𝛽𝑇(23), 469 

where 𝑇()* and 𝑇(23 denoting the observed maximum and minimum temperature, 470 

respectively, while 𝛼 and 𝛽 were estimated from the linear regression. The 471 

urbanization was modelled by including data on human population density, which 472 

was obtained from Center for International Earth Science Information Network with a 473 

5 km ×5 km resolution (SEDAC and CIESIN, 2015). If the value was missing for a 474 

site, we extracted the corresponding environmental variables based on its coordinate 475 

and used the average drawn from a 5km buffer around the site. 476 

Statistical methods 477 
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We applied a ZINB regression model to the weekly abundance of Ae. aegypti and 478 

Ae. albopictus from the longitudinal training dataset, respectively, to account for the 479 

excessive zeros in the abundance data and the over-dispersed count of trapped 480 

mosquitoes, simultaneously. The ZINB model comprises a binary component 481 

(corresponding to the absence/presence of mosquitoes), and a negative binomial 482 

competent (corresponding to the abundance of mosquitoes). The estimates from the 483 

binary component (presented as odds ratio, OR) and the negative binomial 484 

component (presented as incidence rate ratio, IRR) represent the associations 485 

between the potential factors and the occurrence and abundance of these Aedes 486 

vectors, respectively. The potential factors included in the ZINB model for both 487 

species are: the previous abundance of Ae. aegypti and Ae. albopictus up to three 488 

weeks prior, weekly site-specific meteorological factors (i.e. wind speed, maximum 489 

and minimum temperature and relative humidity), human population density and type 490 

of mosquito traps. We examined the potential interaction between Ae. aegypti and 491 

Ae. albopictus by examining the relationship between the current abundance of one 492 

species with the previous abundance of another species. We used counts of each 493 

species detected in recent weeks to predict future weeks. To do this, we only 494 

considered records when data was available for four consecutive weeks prior. Trap 495 

type was included as an explanatory covariate as each of the traps used has a 496 

different effectiveness in trapping each species. We also included the random effects 497 

at both site level and county level, which were modelled for both components of 498 

ZINB model simultaneously. The detailed equations used for ZINB model are 499 

provided in the Supplementary information. Parameters were estimated by 500 

maximizing the likelihood using “glmmTMB” package (Brooks et al., 2017) in R 501 

version 3.5.0 (R Foundation for Statistical Computing, Vienna, Austria).  502 
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 503 

The model fitting was tested by comparing the observations with the predictions of 504 

occurrence and abundance from the longitudinal dataset. We assessed the spatial 505 

pattern by calculating the site-specific mean of residuals. The absence and presence 506 

were assigned as 0 and 1 respectively for calculation purposes. Moran’s I was 507 

calculated to assess the spatial autocorrelation (Bivand and Piras, 2015). We 508 

examined the temporal pattern of the model fitting by assessing the monthly 2.5% 509 

and 97.5% quantiles of the difference between the predicted and observed 510 

abundances for the two Aedes species. 511 

 512 

We tested the prediction performance of the model both spatially and temporally. 513 

Prediction of a test set was based on a model fit from a training set and comparing 514 

the predicted and observed occurrence and abundance. In the spatial prediction, we 515 

randomly selected records from 127 (around 10% of total) sites to be the spatial 516 

testing set and used the records from the remainder of the sites as a spatial 517 

validation training set (Fig. S5). In the temporal prediction, we used data up to the 518 

year of 2017 as the temporal validation training set to predict data after 2017 (Fig. 519 

S5). The area under the receiver operating characteristic (AUC) was used to 520 

measure the performance of prediction on the mosquito occurrence. In addition, we 521 

also fit a ZINB model to the longitudinal training dataset without using information on 522 

the previous presence and abundance of Ae. aegypti and Ae. albopictus (“no 523 

abundance model”) and applied the “no abundance model” to an external no 524 

abundance testing dataset comprised of the surveillance records in the full dataset 525 

and failed on the four consecutive four-week criteria (Fig. S5). 526 

 527 
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TABLES 757 

Table 1. Characteristics of surveillance of Aedes aegypti and Aedes albopictus in 758 
Florida, 2004-2018. 759 
 760 

Characteristic 

Number (%) 

Longitudinal training 

dataset 

No abundance 

testing dataset 

Number of Counties 33 48 

Number of Sites 1,246 2,791 

Number of Trap-days 235,677 57,469 

Records 132,088 45,535 

Aedes aegypti   

Absence 115,447 (87.4%) 39,384 (86.5%) 

Presence 16,641 (12.6%) 6,151 (13.5%) 

Aedes albopictus   

Absence 112,021 (84.8%) 35,667 (78.3%) 

Presence 20,067 (15.2%) 9,868 (21.7%) 

Trap Types   

Light trap  107,571 (81.4%) 31,176 (68.5%) 

BG Sentinel 9,518 (7.2%) 5,648 (12.4%) 

Other trap types 14,999 (11.4%) 8,711 (19.13%) 

 761 
 762 
 763 
  764 
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Table 2. Estimates of odds ratio (OR) and incidence rate ratio (IRR) from mixed-765 
effects zero-inflated negative binomial analysis Aedes aegypti and Aedes albopictus 766 
in Florida, 2004-2018. 767 
 768 

Variables 
Aedes aegypti Aedes albopictus 

OR  
(95% CrI†) 

IRR  
(95% CrI†) 

OR  
(95% CrI†) 

IRR  
(95% CrI†) 

Previous Ae. aegypti 
abundance/presence         

Trap rate in week t-1 2.46 (2.19, 2.76)* 1.03 (1.02, 1.03)* 1.21 (1.10, 1.34)* 1.00 (1.00, 1.01) 

Trap rate in week t-2 2.36 (2.11, 2.65)* 1.03 (1.03, 1.03)* 1.42 (1.28, 1.57)* 1.00 (0.99, 1.00) 

Trap rate in week t-3 1.84 (1.64, 2.07)* 1.02 (1.01, 1.02)* 1.04 (0.94, 1.15) 1.00 (1.00, 1.01) 

Previous Ae. albopictus 
abundance/presence     

Trap rate in week t-1 1.30 (1.16, 1.47)* 0.99 (0.99,1.00)*† 2.48 (2.32, 2.65)* 1.02 (1.02, 1.03)* 

Trap rate in week t-2 1.44 (1.29, 1.62)* 0.99 (0.99,1.00)*† 2.19 (2.05, 2.35)* 1.02 (1.01, 1.02)* 

Trap rate in week t-3 1.28 (1.14, 1.44)* 0.99 (0.99,1.00)*† 1.68 (1.57, 1.80)* 1.02 (1.01, 1.02)* 

Human population density  
(𝟏𝟎𝟎	𝒑𝒆𝒓𝒔𝒐𝒏𝒔/𝒌𝒎𝟐) 1.05 (1.03, 1.07)* 1.00 (0.99, 1.02) 0.95 (0.94, 0.97)* 0.98 (0.97,1.00)*† 

Meteorology     

Average wind speed (𝑚/𝑠) 0.98 (0.95, 1.01) 0.97 (0.96, 0.99)* 0.97 (0.95, 0.99)* 0.97 (0.95, 0.98)* 

Minimum temperature (℃) 1.01 (0.99, 1.02) 1.13 (1.12, 1.14)* 1.08 (1.07, 1.09)* 1.09 (1.08, 1.10)* 

Maximum temperature (℃) 1.12 (1.03, 1.21)* 0.91 (0.87, 0.95)* 1.01 (0.95, 1.06) 1.04 (1.00,1.08)*† 

Relative humidity (%) 1.01 (1.00, 1.02) 0.99 (0.98,1.00)*† 0.99 (0.98, 0.99)* 1.00 (0.99, 1.00) 

Trap type     

BG sentinel Ref. Ref. Ref. Ref. 

Light trap 0.00 (0.00, 0.01)* 0.40 (0.31, 0.51)* 0.77 (0.60,1.00)*† 0.29 (0.24, 0.36)* 

Other 0.01 (0.00, 0.02)* 0.20 (0.14, 0.29)* 1.77 (1.28, 2.44)* 0.25 (0.19, 0.33)* 

Random effects     

Site 1.34   1.67  1.40 0.90 

County 12.27 2.82 6.59 1.56 

Dispersion parameter  -- 1.46 (1.42, 1.51) -- 1.13 (1.10, 1.17) 

* P < 0.05. † Credible interval. † The values with three effective digits for these estimates are (from 769 
right to left by row): 0.992 (0.987, 0.998), 0.994 (0.988, 0.999), 0.990 (0.985, 0.996), 0.984 (0.969, 770 
0.998), 1.041 (1.001, 1.083), 0.986 (0.979, 0.994) and 0.775 (0.600, 0.999). 771 
 772 

773 
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FIGURE LEGENDS 774 

Figure 1. Locations of traps and geographic variation in abundance of Aedes 775 

aegypti (A) and Aedes albopictus (B) in Florida. Color (red for Ae. aegypti, blue 776 

for Ae. albopictus) indicates mean abundance per trap day in each county. Diagonal 777 

lines indicate counties without data. Inset (C) shows the location of Florida (orange) 778 

in the contiguous US. Plot (D) shows Ae. aegypti versus Ae. albopictus abundances 779 

in each county. 780 

 781 

Figure 2. Geographic variation in model predictions in occurrence and 782 

abundance of Aedes aegypti and Aedes albopictus. (A) Occurrence of Ae. 783 

aegypti. (B) Occurrence of Ae. albopictus. (C) Abundance of Ae. aegypti . (D) 784 

Abundance of Ae. albopictus. Average difference between predictions and 785 

observations was calculated for each trap site.   786 

 787 

Figure 3. The performance of predictions in occurrence and abundance of 788 

Aedes aegypti and Aedes albopictus. (A-C) Records from 10% of trap sites were 789 

randomly selected as the test set and records from the rest traps were the train set. 790 

(D-F) Records from 2003 to 2016 were selected as the test set and records on and 791 

after 2017 were in the train set. The model was fit to the training set and predicted 792 

the test set.  793 

 794 

Figure 4. Maps of predicted counts of Aedes aegypti (red, A and C) and Aedes 795 

albopictus (blue, B and D) in August 1, 2018 in Florida. Predictions are derived 796 

from “no abundance model”. Parts A and B show results incorporating random 797 
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effects representing differences in trapping counts by county. Parts C and D show 798 

results only incorporating fixed effects.  799 

 800 

Supplementary Figure S1. Spatial and temporal distribution of mosquito 801 

surveillance records. A, Aedes aegypti. B, Aedes albopictus. Trap sites and 802 

counties were ordered from north (upper) to south (lower). Heatmaps show weekly 803 

trap rate of each trap site. The sidebars indicate whether Aedes aegypti or Aedes 804 

albopictus had ever been reported by each site. 805 

 806 

Supplementary Figure S2. Weekly presence and absence of Aedes aegypti and 807 

Aedes albopictus in Florida. 808 

 809 

Supplementary Figure S3. Relations between occurrence and abundance of 810 

Aedes aegypti and Aedes albopictus with abiotic variables. Values at x axis are 811 

the minimum, 25th quantile, median, 75th quantile and maximum value of the 812 

variable. Colored bar charts represent the proportion of occurrence reported by trap 813 

episodes. Colored box plots represent the median and interquartile range of the trap 814 

rate amongst traps where the vector occurred.  815 

 816 

Supplementary Figure S4. Comparison of trap locations by longitudinal 817 

training dataset and external no abundance testing dataset.  818 

 819 

Supplementary Figure S5. Comparison of five datasets used in the study. 820 

 821 
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Supplementary Figure S6. Temporal variation in model predictions in 822 

abundance of Aedes aegypti (A) and Aedes albopictus (B). Points are the 823 

median difference between predicted and observed abundance of Aedes aegypti 824 

and Ae. albopictus from the main analysis. Intervals are the 2.5% and 97.5% 825 

quantile of difference between predicted and observed abundance of the two Aedes 826 

species. Histograms are the monthly average of observed trap rates. 827 

 828 

Supplementary Figure S7. Weekly predictions of occurrence of Aedes aegypti 829 

and Aedes albopictus from no abundance model in Florida. 830 

 831 

Supplementary Figure S8. Geographic distribution of mosquito trap types in 832 

the longitudinal training dataset. 833 

 834 
Supplementary Figure S9. Correlation between predicted trap rate for Aedes 835 

aegypti using longitudinal data with and without data from Miami-Dade. 836 

 837 

Figure S10. Maps on predicted abundance of Aedes aegypti (red) and Aedes 838 

albopictus (blue) in Florida, 2018. Predictions are derived from “no abundance 839 

model”. 840 
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Figure 1842 

 843 

 844 

  845 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 17, 2018. ; https://doi.org/10.1101/498238doi: bioRxiv preprint 

https://doi.org/10.1101/498238


38 

Figure 2 846 
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Figure 3 850 
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Figure 4 853 
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Supplement Table S1. Odds ratio (OR) and incidence rate ratio (IRR) estimate from 856 

mixed-effects zero-inflated negative binomial analysis of covariates of Aedes trap 857 

rates in Florida using data from NOAA, from 2004 to 2018. 858 

Variables 
Aedes aegypti Aedes albopictus 

OR  
(95% CrI†) 

IRR  
(95% CrI†) 

OR  
(95% CrI†) 

IRR  
(95% CrI†) 

Previous Ae. aegypti 
abundance/presence         

Trap rate in week t-1 2.44  
(2.18, 2.74)* 

1.03  
(1.02, 1.03)* 

1.22  
(1.11, 1.35)* 

1.00  
(1.00, 1.01) 

Trap rate in week t-2 2.42  
(2.16, 2.71)* 

1.03  
(1.03, 1.03)* 

1.43  
(1.29, 1.58)* 

1.00  
(0.99, 1.00) 

Trap rate in week t-3 1.81  
(1.61, 2.03)* 

1.02  
(1.01, 1.02)* 

1.05  
(0.95, 1.16) 

1.00  
(1.00, 1.01) 

Previous Ae. albopictus 
abundance/presence     

Trap rate in week t-1 1.30  
(1.16, 1.46)* 

0.99  
(0.99, 1.00)* 

2.51  
(2.35, 2.68)* 

1.02  
(1.02, 1.03)* 

Trap rate in week t-2 1.46  
(1.30, 1.64)* 

0.99  
(0.99, 1.00)* 

2.23  
(2.08, 2.38)* 

1.02  
(1.01, 1.02)* 

Trap rate in week t-3 1.28 
(1.14, 1.43)* 

0.99  
(0.99, 1.00)* 

1.70  
(1.59, 1.82)* 

1.02  
(1.01, 1.02)* 

Human population 
density (𝟏𝟎𝟎/𝒌𝒎𝟐) 

1.05  
(1.03, 1.07)* 

1.01  
(0.99, 1.02) 

0.95  
(0.94, 0.97)* 

0.98  
(0.97, 1.00)* 

Meteorology     

Average wind speed  
(𝑚/𝑠) 

0.98  
(0.95, 1.00)* 

0.97  
(0.96, 0.98)* 

0.97  
(0.96, 0.98)* 

0.96  
(0.95, 0.97)* 

Minimum temperature 
(℃) 

1.01  
(1.00, 1.02) 

1.11  
(1.10, 1.11)* 

1.07  
(1.06, 1.07)* 

1.08  
(1.07, 1.08)* 

Maximum temperature 
 (℃) 

1.00  
(0.96, 1.03) 

1.08  
(1.06, 1.11)* 

1.09  
(1.06, 1.11)* 

1.06  
(1.04, 1.08)* 

Precipitation 
(𝑚𝑚) 

0.85  
(0.69, 1.05) 

1.42  
(1.26, 1.59)* 

1.05  
(0.94, 1.19) 

1.09  
(0.99, 1.19) 
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Trap type 

    

BG sentinel Ref. Ref. Ref. Ref. 

Light trap 0.00  
(0.00, 0.01)* 

0.40  
(0.31, 0.52)* 

0.78  
(0.60, 1.01) 

0.30  
(0.24, 0.37)* 

Other 0.01  
(0.00, 0.02)* 

0.20  
(0.14, 0.29)* 

1.76  
(1.28, 2.43)* 

0.26  
(0.20, 0.33)* 

Random effects     

Site 1.32 1.66 1.38 0.90 

County 12.24 2.82 6.57 1.63 

Dispersion parameter -- 1.45  
(1.41, 1.50) -- 1.13  

(1.10, 1.17) 

* P < 0.05. † Credible interval 859 
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Supplement Table S2. Odds ratio (OR) and incidence rate ratio (IRR) estimate from 861 

mixed-effects zero-inflated negative binomial analysis of covariates of Aedes aetypti 862 

and Aedes albopictus collected from BG traps. 863 

Variables 
Aedes aegypti Aedes albopictus 

OR  
(95% CrI†) 

IRR  
(95% CrI†) 

OR  
(95% CrI†) 

IRR  
(95% CrI†) 

Previous Ae. aegypti 
abundance/presence         

Trap rate in week t-1 5.16  
(2.45, 10.87)* 

1.04  
(1.03, 1.04)* 

0.99  
(0.59, 1.67) 

1.00  
(0.99, 1.02) 

Trap rate in week t-2 6.61  
(3.48, 12.54)* 

1.02  
(1.02, 1.03)* 

1.10  
(0.64, 1.89) 

1.01  
(0.99, 1.03) 

Trap rate in week t-3 8.58  
(4.13, 17.85)* 

1.02  
(1.01, 1.02)* 

0.65  
(0.40, 1.08) 

1.00  
(0.98, 1.02) 

Previous Ae. 
albopictus 
abundance/presence 

    

Trap rate in week t-1 0.42  
(0.22, 0.80)* 

1.02  
(1.00, 1.03)* 

3.27  
(1.98, 5.41)* 

1.06  
(1.04, 1.07)* 

Trap rate in week t-2 0.96  
(0.49, 1.90) 

0.99  
(0.98, 1.01) 

1.12  
(0.70, 1.79) 

1.06  
(1.04, 1.07)* 

Trap rate in week t-3 0.78  
(0.41, 1.50) 

0.99  
(0.98, 1.01) 

3.00  
(1.89, 4.77)* 

1.04  
(1.02, 1.05)* 

Human population 
density (𝟏𝟎𝟎/𝒌𝒎𝟐) 

1.12  
(1.03, 1.23)* 

0.99  
(0.98, 1.01) 

0.94  
(0.90, 0.97)* 

0.99  
(0.96, 1.02) 

Meteorology     

Average wind speed  
(𝑚/𝑠) 

1.16  
(0.99, 1.35) 

0.97  
(0.96, 0.99)* 

1.02  
(0.92, 1.12) 

0.91  
(0.87, 0.96)* 

Minimum temperature 
(℃) 

1.02  
(0.93, 1.13) 

1.12  
(1.11, 1.13)* 

1.02  
(0.97, 1.07) 

1.10  
(1.07, 1.12)* 

Maximum 
temperature 

 (℃) 

1.25  
(0.92, 1.70) 

1.07  
(1.04, 1.10)* 

1.02  
(0.86, 1.21) 

1.07  
(0.99, 1.16) 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 17, 2018. ; https://doi.org/10.1101/498238doi: bioRxiv preprint 

https://doi.org/10.1101/498238


44 

Relative humidity 
(%) 

0.31  
(0.06, 1.53) 

1.58  
(1.32, 1.89)* 

0.39  
(0.18, 0.83)* 

1.27  
(0.93, 1.73) 

Random effects     

Site 0.30 0.60 0.87 0.57 

County 2.36 0.81 4.30 1.19 

Dispersion parameter -- 1.35  
(1.31, 1.40) -- 1.10  

(0.98, 1.23) 
 864 

* P < 0.05. † Credible interval 865 
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Supplementary Table S3. Odds ratio (OR) and incidence rate ratio (IRR) estimate 867 

from mixed-effects zero-inflated negative binomial analysis of covariates of Aedes 868 

aegypti after removing data from Miami-Dade county. 869 

Variables 
Aedes aegypti 

OR (95% 
CrI†) IRR (95% CrI†) 

Previous Ae. Aegypti abundance  
 
 

Trap rate of Ae. aegypti in week t-1 2.79  
(2.41, 3.23)* 

1.03  
(1.03, 1.04)*  

Trap rate of Ae. aegypti in week t-2 2.26  
(1.95, 2.61)* 

1.03  
(1.03, 1.04)*  

Trap rate of Ae. aegypti in week t-3 2.12  
(1.83, 2.46)* 

1.02  
(1.01, 1.03)*  

Previous Ae. Albopictus abundance  
 
 

Trap rate of Ae. albopictus in week t-
1 

1.45  
(1.27, 1.66)* 

1.00  
(0.99, 1.00)  

Trap rate of Ae. albopictus in week t-
2 

1.48  
(1.29, 1.70)*  

0.99  
(0.98, 1.00)*† 

Trap rate of Ae. albopictus in week t-
3 

1.41  
(1.23, 1.62)*  

1.00  
(0.99, 1.00) 

Human population density (100/𝒌𝒎𝟐) 1.12  
(1.09, 1.16)*  

1.08  
(1.04, 1.12)* 

Meteorology   

Average wind speed (𝑚/𝑠) 1.03  
(0.99, 1.08)  

0.90  
(0.88, 0.93)* 

Minimum temperature (℃) 
1.03  

(1.01, 1.04)* 
 

1.09  
(1.08, 1.10)* 

Maximum temperature (℃) 1.02  
(0.92, 1.13)  

1.03  
(0.96, 1.10) 

Relative humidity (𝑚𝑚) 1.00  
(0.98, 1.01)  

1.01  
(1.00, 1.02)*† 

Random effects   
Site 1.03 

 
2.28 

County 10.90 
 

3.39 

Dispersion parameter -- 1.89 (1.78, 2.00) 
* P < 0.05. † Credible interval. † The values with three effective digits for these 870 
estimations are: 0.991 (0.984, 0.998) and 1.013 (1.003, 1.023). 871 
 872 
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Supplementary Table S4. Summary of other trap types included in the longitudinal 874 

training dataset. 875 

Trap types Number of records 

BG sentinel trap 9,518 (7.2%) 

Light trap 107,571 (81.4%) 

CDC light traps 95,554 (88.8%) 

New Jersey light traps 8,451 (7.9%) 

Non-specific light traps 3,566 (3.3%) 

Other trap types 14,999 (11.4%) 

Mosquito magnet 3,545 (23.6%) 

Suction trap 3,372 (22.5%) 

Propane 2,676 (17.8%) 

ABC 1,920 (12.8%) 

Gravid trap 1,827 (12.2%) 

Exit 1,178 (7.9%) 

Route 268 (1.8%) 

Unknown 139 (0.9%) 

Fay prince 64 (0.4%) 

Wilton trap 10 (0.1%) 

 876 
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Supplementary Table S5. Surveillance data by county 878 

County Full ZINB Spatial 
Training 

Temporal 
Training 

No 
Abundance 

Testing 
Hillsborough 24854  

(14.0%) 
16475 

(12.5%) 
14861 

(12.5%) 
16475 

(12.7%) 
8379  

(18.4%) 
Pinellas 22335 

(12.6%) 
20058 

(15.2%) 
18607 

(15.7%) 
19673 

(15.2%) 
2277  

(5.0%) 
St. Johns 21872 

(12.3%) 
17751 

(13.4%) 
15954 

(13.4%) 
17751 

(13.7%) 
4121  

(9.1%) 
Polk 20751 

(11.7%) 
15543 

(11.8%) 
12528 

(10.5%) 
15543 

(12.0%) 
5208  

(11.4%) 
Dade 18634 

(10.5%) 
14980 

(11.3%) 
14129 

(11.9%) 
14158 

(10.9%) 
3654  

(8.0%) 
Lee 13812 (7.8%) 8045 (6.1%) 6613 (5.6%) 8045 (6.2%) 5767 (12.7%) 
Citrus 8471 (4.8%) 6959 (5.3%) 6695 (5.6%) 6959 (5.4%) 1512 (3.3%) 
Walton 8380 (4.7%) 6186 (4.7%) 5890 (5.0%) 6106 (4.7%) 2194 (4.8%) 
Palm Beach 7864 (4.4%) 7008 (5.3%) 6551 (5.5%) 6912 (5.3%) 856 (1.9%) 
Pasco 5722 (3.2%) 3468 (2.6%) 2922 (2.5%) 3468 (2.7%) 2254 (5.0%) 
Osceola 4522 (2.5%) 2203 (1.7%) 1989 (1.7%) 2203 (1.7%) 2319 (5.1%) 
St. Lucie 3717 (2.1%) 2746 (2.1%) 2527 (2.1%) 2493 (1.9%) 971 (2.1%) 
Flagler 3715 (2.1%) 3150 (2.4%) 2880 (2.4%) 3118 (2.4%) 565 (1.2%) 
Martin 2660 (1.5%) 2561 (1.9%) 2453 (2.1%) 2350 (1.8%) 99 (0.2%) 
Alachua 2015 (1.1%) 1538 (1.2%) 1194 (1.0%) 1538 (1.2%) 477 (1.0%) 
Hernando 1868 (1.1%) 1526 (1.2%) 1299 (1.1%) 1526 (1.2%) 342 (0.8%) 
Hendry 1052 (0.6%) 437 (0.3%) 337 (0.3%) 437 (0.3%) 615 (1.4%) 
Sarasota 1004 (0.6%) 268 (0.2%) 249 (0.2%) 268 (0.2%) 736 (1.6%) 
Bay 933 (0.5%) 137 (0.1%) 105 (0.1%) 137 (0.1%) 796 (1.7%) 
Orange 724 (0.4%) 35 (0%) 35 (0%) 35 (0%) 689 (1.5%) 
Okaloosa 324 (0.2%) 216 (0.2%) 216 (0.2%) 132 (0.1%) 108 (0.2%) 
Santa Rosa 324 (0.2%) 168 (0.1%) 168 (0.1%) 108 (0.1%) 156 (0.3%) 
Brevard 176 (0.1%) 30 (0%) 25 (0%) 30 (0%) 146 (0.3%) 
Holmes 156 (0.1%) 84 (0.1%) 84 (0.1%) 0 (0%) 72 (0.2%) 
Liberty 150 (0.1%) 84 (0.1%) 77 (0.1%) 0 (0%) 66 (0.1%) 
Madison 149 (0.1%) 44 (0%) 40 (0%) 0 (0%) 105 (0.2%) 
Bradford 137 (0.1%) 0 (0%) 0 (0%) 0 (0%) 137 (0.3%) 
Wakulla 132 (0.1%) 82 (0.1%) 82 (0.1%) 0 (0%) 50 (0.1%) 
Indian River 130 (0.1%) 0 (0%) 0 (0%) 0 (0%) 130 (0.3%) 
Washington 130 (0.1%) 38 (0%) 26 (0%) 0 (0%) 92 (0.2%) 
Taylor 120 (0.1%) 84 (0.1%) 84 (0.1%) 0 (0%) 36 (0.1%) 
Gadsden 108 (0.1%) 48 (0%) 44 (0%) 0 (0%) 60 (0.1%) 
Jackson 108 (0.1%) 56 (0%) 53 (0%) 0 (0%) 52 (0.1%) 
Jefferson 108 (0.1%) 41 (0%) 33 (0%) 0 (0%) 67 (0.1%) 
Calhoun 99 (0.1%) 39 (0%) 31 (0%) 0 (0%) 60 (0.1%) 
Collier 91 (0.1%) 0 (0%) 0 (0%) 0 (0%) 91 (0.2%) 
Gulf 65 (0%) 0 (0%) 0 (0%) 0 (0%) 65 (0.1%) 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 17, 2018. ; https://doi.org/10.1101/498238doi: bioRxiv preprint 

https://doi.org/10.1101/498238


48 

Charlotte 57 (0%) 0 (0%) 0 (0%) 0 (0%) 57 (0.1%) 
Escambia 40 (0%) 0 (0%) 0 (0%) 0 (0%) 40 (0.1%) 
Okeechobee 31 (0%) 0 (0%) 0 (0%) 0 (0%) 31 (0.1%) 
Union 15 (0%) 0 (0%) 0 (0%) 0 (0%) 15 (0%) 
Leon 13 (0%) 0 (0%) 0 (0%) 0 (0%) 13 (0%) 
Baker 10 (0%) 0 (0%) 0 (0%) 0 (0%) 10 (0%) 
Dixie 10 (0%) 0 (0%) 0 (0%) 0 (0%) 10 (0%) 
Gilchrist 10 (0%) 0 (0%) 0 (0%) 0 (0%) 10 (0%) 
Marion 10 (0%) 0 (0%) 0 (0%) 0 (0%) 10 (0%) 
Suwannee 10 (0%) 0 (0%) 0 (0%) 0 (0%) 10 (0%) 
Nassau 5 (0%) 0 (0%) 0 (0%) 0 (0%) 5 (0%) 
Total 177623 132088 118781 129465 45535 
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Figure S1 880 
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Figure S2 883 
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Figure S3 885 
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Figure S4 888 
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Figure S5 891 
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Figure S6 894 
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Figure S7 897 
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Figure S8 899 
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Figure S9 902 
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Figure S10 905 
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