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Abstract 
Motivation: Asymmetric allele expression typically indicates functional and/or structural features asso-
ciated with the underlying genetic variants. When integrated, RNA and DNA allele frequencies can 
reveal patterns characteristic for a wide-range of biological traits, including ploidy changes, genome 
admixture, allele-specific expression and gene-dosage transcriptional response. 
Results: To assess RNA and DNA allele frequencies from matched sequencing datasets, we introduce 
GeTallele: a toolpack that provides a suit of functions for integrative analysis, statistical assessment 
and visualization of Genome and Transcriptome allele frequencies. We demonstrate this functionality 
across cancer DNA and RNA sequencing sets by detecting novel relationships between encoded and 
expressed variation that can improve solving of genome composition and expression regulation. In 
addition, we explore GeTallele as a tool for preliminary assessment of large-scale genomic alterations 
from RNA-sequencing datasets. 
Availability: GeTallele is implemented as a Matlab toolbox available at: https://git.exe-
ter.ac.uk/pms210/getallele 
Contact: P.M.Slowinski@exeter.ac.uk 
Supplementary information: Supplementary data are available at Bioinformatics online. 

 
 

1 Introduction  
RNA and DNA carry and present the genetic variation in related, yet dis-
tinct, manners; the differences being informative of functional and struc-
tural traits. In diploid organisms, an important measure of genetic varia-
tion is the allele frequency, which can be measured from both genome 
(DNA) and transcriptome (RNA) sequencing data (encoded and expressed 

allele frequency, respectively). Differential DNA-RNA allele frequencies 
are associated with a variety of biological processes, such as copy number 
alterations (CNAs), genome admixture, and allele-specific transcriptional 
regulation (Ferreira, et al., 2016; Ha, et al., 2012; Han, et al., 2015; Mo-
vassagh, et al., 2016; Shah, et al., 2012). 

Most of the RNA-DNA allele comparisons from sequencing have been 
approached at nucleotide level, where it proved to be highly informative 
for determining the alleles’ functionality (Ferreira, et al., 2016; Ha, et al., 
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2012; Han, et al., 2015; Macaulay, et al., 2016; Morin, et al., 2013; Mo-
vassagh, et al., 2016; Reuter, et al., 2016; Shah, et al., 2012; Shi, et al., 
2016; Shlien, et al., 2016; The, et al., 2012; Yang, et al., 2016). Compara-
tively, integration of allele signals at the molecular level, as derived from 
linear DNA and RNA carriers, is less explored due to challenges presented 
by short sequencing length and the related within-molecule (gene or chro-
mosome) heterogeneity of the signal. The different molecular nature of 
RNA and DNA also leads to limited compatibility of the sequencing out-
put. Herein, we address some of these challenges by employing a mathe-
matical model to assess differences between RNA and DNA of allele fre-
quencies along genes and chromosomes. 

2 Methods 

2.1 Samples 
The GeTallele was developed using sequencing datasets from paired nor-
mal and tumour tissue obtained from 72 female patients with breast inva-
sive carcinoma (BRCA) from The Cancer Genome Atlas (TCGA). Each 
of the 72 datasets contains four matched sequencing datasets: normal ex-
ome (Nex), normal transcriptome (Ntr), tumour exome (Tex), and tumour 
transcriptome (Ttr). In addition, we required each tumour sample to have 
at least three of the following five purity estimates - Estimate, Absolute, 
LUMP, IHC, and the consensus purity estimate (CPE), (Supplementary 
Table 1). Finally, each sample was required to have CNA estimation (ge-
nomic segment means based on Genome-Wide-SNPv6 hybridization ar-
ray) (Aran, et al., 2015; Carter, et al., 2012; Katkovnik, et al., 2002; Pagès, 
et al., 2010; Yoshihara, et al., 2013; Zheng, et al., 2014). 

2.2 Data processing 
All the datasets were generated through paired-end sequencing on an Illu-
mina HiSeq platform. The human genome reference (hg38)-aligned se-
quencing reads (Binary Alignment Maps, .bams) were downloaded from 
the Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov/) 
and processed downstream through an in-house pipeline. After variant call 
(Li, 2011), the RNA and DNA alignments, together with the variant lists 
were processed through the read count module of the package 
RNA2DNAlign (Movassagh, et al., 2016), to produce variant and refer-
ence sequencing read counts for all the variant positions in all four se-
quencing signals (normal exome, normal transcriptome, tumour exome 
and tumour transcriptome). Selected read count assessments were visually 
examined using Integrative Genomics Viewer (Thorvaldsdóttir, et al., 
2013). 
 

2.3 Statistics 
To test statistical significance, GeTallele uses non-parametric methods 
and statistical tests (Corder and Foreman, 2014; Hollander, et al., 2013). 
Namely, to compare distributions of the VAF values we use Kolmogorov–
Smirnov test, to compare medians of the variant probability vPR values we 
use Mann-Whitney-Wilcoxon test, and to study concurrence of windows 
we use permutation/ bootstrap tests. We use Kendall’s tau (Kendall, 1938; 
Kowalski, 1972; Newson, 2002) to analyse correlations between vPR and 
admixture purity measures. We use Kendall’s tau (Kendall, 1938; Kow-
alski, 1972; Newson, 2002) to analyse correlations between vPR and ad-
mixture purity measures. 

To test relations between vPR and CNA we use Pearson’s correlation 
coefficients tested against 10000 permutations of the data. We use Pear-
son’s correlation coefficient (rather than Spearman’s or Kendall’s) be-
cause we expect the relation to be linear and we consider the high values 
of vPR and CNA to be important and informative for the analysis. We use 
a permutation test to quantify the statistical significance because the vPR 
and CNA values do not have normal distributions, and hence the analytical 
expression of the significance of the Pearson’s correlation is invalid. 

To account for multiple comparisons between VAF distributions in the 
windows we set the probability for rejecting the null hypothesis at p<1e-
5, which corresponds to Bonferroni (Dunn, 1961) family-wise error rate 
(FWER) correction against 5000 comparisons. We use a fixed value, ra-
ther than other approaches, to ensure better consistency and reproducibil-
ity of the results. When appropriate, we also apply Benjamini and 
Hochberg (Benjamini and Hochberg, 1995) false discovery rates (FDR) 
correction with a probability of accepting false positive results pFDR<0.1. 

3 Results 
GeTallele mathematically and statistically compares RNA and DNA var-
iant allele frequencies (VAFRNA and VAFDNA) at positions of interest, and 
visualizes the allele distribution at desired resolution from nucleotide to 
genome (Figure 1). VAFs are estimated from sequencing data and are 
based on the counts of the variant and reference reads (nVAR and nREF) cov-
ering each position of interest in a dataset: VAF = nVAR/(nVAR+nREF). Anal-
ysis of the VAFRNA and VAFDNA in the GeTallele is based on comparing 
probability of observing a given VAF value at various positions of interest. 
Estimation of the variant allele probability, vPR, is implemented using a 
mathematical model of distribution of the VAF values and is the core func-
tionality of the GeTallele (See section 3.1 for details of the model). We 
demonstrate the GeTallele functionality using matched normal and tumour 
DNA and RNA sequencing data (i.e. four sequencing signals per sample: 
normal exome, normal transcriptome, tumour exome and tumour tran-
scriptome); for each sample, the set of variant loci is determined based on 
the heterozygote calls in the normal exome (Li, et al., 2009). 
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Fig. 1. GeTallele and visualisation of VAF data. A Toolbox description. B Visualisation of the whole dataset on the level of genome using Circos plot (blue – normal exome, cyan – 

normal transcriptome, orange - tumour exome, yellow - tumour transcriptome). C - F show in details VAFTEX and VAFTTR values of chromosome 1; C - F Visualization of the VAF values 

with fitted variant probability (vPR – see Section 3.1 and Figure 2) values at the level of chromosome (D), custom genome region (E) and gene (F), for the chromosome level shown also are 

CNA values (C). Panel D shows that there are two segments with different VAF distributions. Panel C shows that change in the CNA is concurrent with the change in the VAF distributions. 

Tex - tumour exome (orange); Ttr - tumour transcriptome (yellow).
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3.1 Model for estimation of variant probability vpr 

3.1.1 Data segmentation 

To analyse VAF at genome-wide level, GeTallele first divides the VAF 
dataset into a set of non-overlapping windows along the chromosomes. 
Segmentation of the dataset into windows is based on a sequencing signal 
chosen out of all the available datasets in the aggregated aligned VAF da-
taset (one out of four in the presented analysis). Each window contains all 
the sequencing signals that are in the analysed dataset. 

To partition the data into the windows GeTallele uses a parametric 
global method, which detects the breakpoints in the signals using its mean, 
as implemented in the Matlab function findchangepts (Killick, et al., 
2012; Lavielle, 2005). In each window, the VAF values of the chosen sig-
nal have a mean that is different from the mean in the adjacent windows. 
Sensitivity of breakpoint detection can be controlled using parameter 
MinThreshold, in the presented analysis it was set to 0.2. For segmen-
tation and analysis (without loss of generality) we transform all the origi-
nal VAF values to VAF=|VAF-0.5|+0.5. 

3.1.2 Variant probability 

In each window, separately for each sequencing signal, GetAllele esti-
mates variant probability, vPR - probability of observing a variant allele. 
The vPR is a parameter that describes the genomic event that through the 
sequencing process was transformed into a specific distribution of VAF 
values found in the signal. For example, in VAFDNA from a diploid ge-
nome, variant probability vPR=0.5 (meaning that both alleles are equally 
probable) corresponds to a true allelic ratio of 1:1 for heterozygote sites. 
For heterozygote sites in the normal DNA, the corresponding tumour 
VAFDNA is expected to have the following interpretations: vPR=1 or vPR=0 
corresponds to a monoallelic status resulting from a deletion, and vPR=0.8, 
0.75, 0.67 correspond to allele-specific tetra-, tri-, and duplication of the 
variant-bearing allele, respectively. 

The vPR of the VAFRNA is interpreted as follows. In positions corre-
sponding to DNA heterozygote sites, alleles not preferentially targeted by 
regulatory traits are expected to have expression rates with variant proba-
bility vPR=0.5, which (by default) scale with the DNA allele distribution. 
Differences between VAFDNA and VAFRNA values are observed in special 
cases of transcriptional regulation where one of the alleles is preferentially 
transcribed over the other. In the absence of allele-preferential transcrip-
tion, VAFDNA and VAFRNA are anticipated to have similar vPR across both 
diploid (normal) and aneuploid (affected by CNAs) genomic regions. 
Consequently, VAFDNA and VAFRNA are expected to synchronously switch 
between allelic patterns along the chromosomes, with the switches indi-
cating break points of DNA deletions or amplifications. 

To estimate vPR in the signals, GeTallele first generates model VAF dis-
tributions and then uses the earth mover’s distance (EMD) (Kantorovich 
and Rubinstein, 1958; Levina and Bickel, 2001) to fit them to the data. To 
generate a model VAF distribution that correspond to a genomic event 
with a given variant probability, vPR, GeTallele, bootstraps 10000 values 
of the total reads (sum of the variant and reference reads; nVAR + nREF) from 
the analysed signal in dataset. It then uses binomial pseudorandom number 
generator to get number of successes for given number of total reads and 
a given value of vPR (implemented in the Matlab function binornd). The 
vPR is the probability of success and generated number successes is inter-
preted as an nVAR. 

Since we observed that DNA and RNA signals have different distribu-
tions of total reads, GeTallele generates the model VAF distributions sep-
arately for each of the four sequencing signals in the datasets. GeTallele 
generates the models separately for each dataset because the distributions 

of total reads vary between participants. Analysis presented in the paper 
uses 51 model VAF distributions with vPR values that vary from 0.5 to 1 
with step 0.01. The model VAF distributions are parametrized using only 
vPR>=0.5, however to generate them we use vPR and its symmetric coun-
terpart 1-vPR. Examples of model VAF distributions with different values 
of vPR are shown in Figure 2. 

Fig. 2. Model and real VAF distributions. A - E Model VAF distributions for different 

values of vPR. Panels A and D show additionally distributions of VAFTEX for the two win-

dows shown in Figure 1D. 

3.1.3 Earth mover’s distance 

EMD is a mathematical metric for quantifying differences between prob-
ability distributions (Kantorovich and Rubinstein, 1958; Levina and 
Bickel, 2001) and for univariate distributions can be computed as 

!"#(%#&', %#&)) = 	- |/#&1(1)– 	/#&2(1)|41
	

5
. 

Here, PDF1 and PDF2 are two probability density functions and CDF1 and 
CDF2 are their respective cumulative distribution functions. Z is the sup-
port of the PDFs (i.e. set of all the possible values of the random variables 
described by them). Because VAFs are defined as simple fractions with 
values between 0 and 1, their support is given by a Farey sequence (Hardy, 
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et al., 2008) of order n; n is the highest denominator in the sequence. For 
example Farey sequence of order 2 is 0, 1/2, 1 and Farey sequence of order 
3 is 0, 1/3, 1/2, 2/3, 1. GeTallele uses a Farey sequence of order 1000 for 
all the EMD computations. 

To estimate vPR, GeTallele computes EMD between the distribution of 
the VAF values of each signal in the window and the 51 model VAF dis-
tributions (i.e. observed vs modelled VAF), the estimate is given by the 
vPR of the model VAF distribution that is closest to the VAF distribution 
in the window. Examples of VAF distributions with fitted model VAF 
distributions are shown in Figure 2A and D. Dependence of the confidence 
intervals of the estimation on the number of VAF values in a window is 
presented in Figure 3. 

Fig. 3. Confidence intervals for samples with different numbers of VAFs. Each confi-
dence interval is based on estimation of vPR in 1000 randomly generated samples with set 
vPR (True value). Light grey bar is 95% confidence interval (950 samples lay within this 
interval), dark grey bar is 50% confidence interval (500 samples lay within this interval), 
red cross is median value. 

3.2 Analysis 
GetAllele is readily applicable to assess RNA-DNA relationships between 
normal and tumour sequencing signals derived from the same sample/in-
dividual (matched datasets). As a proof of concept, we assessed matched 
normal and tumour exome and transcriptome sequencing data of 72 breast 
carcinoma (BRCA) datasets with pre-assessed copy-number and genome 
admixture estimation acquired through TCGA (Supplementary Table 1). 
For these datasets, purity and genome admixture has been assessed using 
at least three of the following five approaches: ESTIMATE, ABSOLUTE, 
LUMP, IHC, and the Consensus Purity Estimation (CPE)(Aran, et al., 
2015; Carter, et al., 2012; Katkovnik, et al., 2002; Pagès, et al., 2010; Yo-
shihara, et al., 2013; Zheng, et al., 2014). In addition, on the same datasets 
we applied THetA – a popular tool for assessing CNA and admixture from 
sequencing data (Oesper, et al., 2013; Oesper, et al., 2014). 

3.2.1 Segmentation results 

Segmentation of the data, based on the tumour exome signal, resulted in 
2699 windows across the 72 datasets. We excluded from further analysis 
289 windows where either tumour exome or transcriptome had vPR>=0.58 
but their VAF distribution could not be differentiated from the model VAF 
distributions with vPR=0.5 (p>1e-5, Kolmogorov Smirnov test, equivalent 
to Bonferroni FWER correction for 5000 comparisons). The 289 excluded 
windows correspond to 4% of the data in terms of number of base pairs in 

the windows and 4% of all the available data points; i.e. they are short and 
contain only few VAF values. In the remaining 2410 windows, we sys-
tematically examined the similarity between corresponding VAFTEX (tu-
mour exome), VAFTTR (tumour transcriptome) and CNA. We documented 
several distinct patterns of coordinated RNA-DNA allelic behaviour as 
well as correlations with CNA data. 

In 65% of all analysed windows the distributions of VAFTEX and 
VAFTTR were concordant (had the same vPR and p>1e-5, Kolmogorov 
Smirnov test), and in 35% they were discordant (p<1e-5, Kolmogorov 
Smirnov test). In 1% of all windows VAFTEX and VAFTTR had the same 
vPR but had statistically different distributions (p<1e-5, Kolmogorov 
Smirnov test), we consider such windows as concordant; Kolmogorov-
Smirnov test is very sensitive for differences between distributions, vPR 
fitting is more robust. In the vast majority of the discordant windows vPR 
of the VAFTTR, vPR,TTR, was higher than vPR of the VAFTEX, vPR,TEX, (only 
in 21 out of 944 windows vPR,TTR was lower than vPR,TEX). 

3.2.2 Correlation with purity 

In windows with discordant VAFTEX and VAFTTR distributions, we ob-
served significant negative correlation between the difference (vPR,TTR-
vPR,TEX) and the samples’ purity estimates (ESTIMATE: τ=-0.16, 
p=0.0005; ABSOLUTE: τ =-0.33, p=1.2e-13; LUMP: τ =-0.6, p=9.3e-29; 
IHC: τ=-0.13, p=0.003; CPE: τ=-0.3, p=5.5e-11, Kendall’s tau; see also 
Figure 4).  

Fig. 4. Illustration of correlations between estimates of sample purity and vPR,TTR-

vPR,TEX in windows where VAFTEX and VAFTTR are statistically discordant (p<1e-5, Kolmo-

gorov Smirnov test). 

3.2.3 Concurrence of segmentation based on DNA and RNA 

We next analysed the concurrence between windows resulting from inde-
pendent segmentations of the dataset based on the tumor exome and tran-
scriptom signals in the datasets (2699 and 3603 windows, respectively, 
across all the samples). We first assessed chromosome-wise alignment of 
the start and end points of the windows. In 45% of the chromosomes both 
VAFTEX and VAFTTR signals produce a single window that contains the 
whole chromosome. In 33% of chromosomes both signals produced mul-
tiple windows. These windows are well aligned, with 90% of the break 
points within 7% difference in terms of number of data points in the chro-
mosome (Q50=0.02%, Q75=2% of data points in the chromosome). Prob-
ability of observing such an alignment by chance is smaller than p=1e-5 
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(100,000 bootstrap samples with breaking points assigned randomly in all 
the individual chromosomes where both signals produced multiple win-
dows). In 22% of the chromosome windows based on VAFTEX and VAFTTR 
signals were positionally discordant – one signal produced a single win-
dow containing whole chromosome while the other produced multiple 
windows. 

To compare the vPR values in the 55% of chromosomes where at least 
one signal produced single window, we computed chromosome-wise 
mean absolute error (MEA) between the vPR in two sets of windows. To 
account for different start and end points of the windows we interpolated 
the vPR values (nearest neighbour interpolation) at each data point in the 
chromosome. We separately compared the vPR,TEX and vPR,TTR values. The 
alignment in terms of MEA is very good, vPR,TEX agreed perfectly in 8% 
of the chromosomes and had the percentiles of MEA equal to Q50= 0.013, 
Q75= 0.02 and Q97.5= 0.05, while vPR,TTR also agreed perfectly in 8% but 
had slightly higher percentiles of MEA Q50= 0.02, Q75= 0.033 and 
Q97.5= 0.068. vPR,TEX and vPR,TTR values had MEA=0 simultaneously in 
4% of the chromosomes. Probability of observing such values of MEA by 
chance is smaller than p=1e-3 (1000 random assignments of vPR,TEX and 
vPR,TTR values to windows in the 873 chromosomes where at least one sig-
nal had more than one window). It is noteworthy that MEA Q97.5<0.07 is 
comparable with the confidence interval of single vPR estimate; compare 
Figure 3. In other words, both signals in a sample (Tex and Ttr) give very 
similar results in terms of windows’ segmentation and estimated values of 
the vPR. Albeit, segmentation of VAFTTR generates higher number of win-
dows. Figure 5 shows examples of concurrence between windows based 
on VAFTEX and VAFTTR signals in a positionally concordant chromosome 
(both signals produced multiple windows). 

Fig. 5. Illustration of concurrence between windows resulting from independent seg-

mentations of the dataset based on the VAFTEX and VAFTTR signals. A yellow dots, 

VAFTTR; grey circles, vPR,TTR interpolated at all data points in windows based on VAFTEX; 

yellow crosses, vPR,TTR interpolated at all data points in windows based on VAFTTR. B bar 
plot of the absolute difference between the vPR values in the two kinds of windows. C or-

ange dots, VAFTEX; grey crosses, vPR,TEX interpolated at all data points in windows based on 

VAFTEX; orange dots vPR,TEX interpolated at all data points in windows based on VAFTTR. D 

bar plot of the absolute difference between the vPR values in the two kinds of windows. 

3.2.4 Correlation between vPR and CNA 

Finally, we analysed the correlations between vPR and CNA in the individ-
ual datasets. We separately computed correlations for deletions and am-
plifications. In order to separate deletions and amplifications, for each data 
set we found CNAMIN, value of the CNA in the range -0.25 to 0.25 that 
had the smallest corresponding vPR,TEX. To account for observed variability 
of the CNA values near the CNAMIN, we set the threshold for amplifica-
tions to CNAA = CNAMIN-0.05, and for deletions we set it to CNAD = 
CNAMIN+0.05. For VAFTEX we observed significant correlations with neg-
ative trend between vPR,TEX and CNA ≤ CNAD in 58 datasets and with pos-
itive trend between vPR,TEX and CNA ≥ CNAA in 39 datasets (pFDR<0.05, 
Pearson’s correlation with Benjamini Hochberg FDR correction). For 
VAFTTR we observed significant correlations with negative trend between 
vPR,TTR and CNA ≤ CNAD in 65 datasets and with positive trend between 
vPR,TTR and CNA ≥ CNAA in 32 datasets (pFDR<0.05, Pearson correlation 
with Benjamini Hochberg correction). Such strong correlations indicate 
that vPR accurately captures information contained in CNA. Although, it 
does not differentiate between positive and negative values of the CNA. 

Fig. 6. Illustration of the correlations between vPR and CNA. Orange squares vPR,TEX, 

yellow circles vPR,TTR. Lines, least-squares fitted trends for significant correlations (orange 

correlation with vPR,TEX, yellow correlation with vPR,TTR). Black, vPR for CNAMIN±0.05. Cor-

relations for all the datasets are shown in Supplementary Figure 1. A there are no significant 

correlations, all the values of CNA are close to CNAMIN=0. B relationship between CNA 

and vPR is noisy, only some correlations are statistically significant. C all the correlations 

are statistically significant, vPR,TTR values (circles) follow closely the vPR,TEX (squares) indi-

cating concordance of the VAFTEX and VAFTTR distributions. D only correlations for CNA 

≤ CNAD are statistically significant. 

Figure 6 shows four typical patterns of correlation between the CNA 
and vPR values observed in the data. In Figure 6A there are no significant 
correlations, all the values of CNA are close to CNAMIN. In Figure 6B 
relationship between CNA and vPR is noisy, only correlation between 
vPR,TTR and CNA ≤ CNAD are statistically significant. In Figure 6C all the 
correlations are statistically significant, vPR,TTR values (circles) follow 
closely the vPR,TEX (squares) indicating that in most of the windows distri-
butions of the VAFTEX and VAFTTR are concordant. In Figure 6D correla-
tions between vPR,TEX, vPR,TTR and CNA ≤ CNAD are statistically signifi-
cant, but there is big difference (with median of 0.18) between vPR,TEX and 
vPR,TTR values, indicating that in most of the windows the distributions of 
the VAFTEX and VAFTTR in this dataset are discordant. Visual inspection 
of the data reveals that for many datasets the correlations are visible, but 
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they do not reach statistical significance due to small number of points or 
strong outliers. This further, indicates that vPR and CNA measures are con-
cordant in terms of information that they contain. 

4 Discussion 
Integrative analysis of RNA and DNA sequence data is facilitated by the 
growing availability of RNA and DNA sequencing datasets and by the 
technological advances now enabling simultaneous RNA and DNA se-
quencing from the same source (Macaulay, et al., 2016; Reuter, et al., 
2016; The, et al., 2012). However, RNA and DNA integrative analyses are 
challenged by limited compatibility between RNA and DNA datasets and 
high technical variance of the sequencing-produced signals. Our approach 
– GeTallele – addresses the compatibility restricting the analyses within 
confidently co-covered DNA and RNA regions, and the high variability - 
through computing the distance between the two distributions. 

Using GeTallele, we detected several intriguing relationships between 
DNA-RNA allele frequencies and biological processes. First, in chromo-
somes affected by deletions and amplifications, VAFRNA and VAFDNA 
showed highly concordant break point calls. This indicates that VAFRNA 
alone can serve as preliminary indicator for deletions and amplifications, 
which can facilitate the applications of RNA-sequencing analysis on the 
large and constantly growing collections of transcriptome sequencing 
data. Second, higher difference between VAFTTR and VAFTEX distribu-
tions (vPR,TTR-vPR,TEX), indicative for higher level of allele-specific expres-
sion, correlated with low sample purity (see Figure 4). Biologically, this 
observation likely implicates higher level of imprinting (transcription 
from one of the DNA alleles) in samples with low genome integrity, which 
is generally aligned with the increased number of CNAs and the fast rep-
lication cycle in advances tumour samples.  

Based on our results, variant probability vPR can serve as a dependable 
indicator to assess gene and chromosomal allele asymmetries and to aid 
calls of genomic events. Importantly, GeTallele allows to visualize the ob-
served patterns, with the ability to magnify regions of interest to desired 
resolution, including chromosome, gene, or custom genome region, along 
with statistical measures of the modes, for all the modes in the examined 
segment. 
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Supplementary Fig. 1. Illustration of the correlations between vPR and CNA. Orange squares vPR,TEX, yellow circles vPR,TTR. Lines, least-squares fitted trends 
for significant correlations (orange correlation with vPR,TEX, yellow correlation with vPR,TTR). Black, vPR for CNAMIN±0.05. Title format Number of the dataset: #sig 
cr number of significant correlations in the dataset.  
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Supplementary Table 1. Datasets, signals and purity estimates. 

# TCGA BRCA datasets EST ABS LUMP IHC CPE 

1 001_Nex_BRCA_TCGA-BH-A1FC-11A_413b80f6-f6cf-4992-804a-f045e38cbe6f 0.7615 0.49 0.6693 0.9 0.6517 
 001_Ntr_BRCA_TCGA-BH-A1FC-11A_086db136-f3f2-42fa-aca1-63847de6ccb9      
 001_Tex_BRCA_TCGA-BH-A1FC-01A_1a2187a6-aea8-4096-8c3f-208a8467cd5a      
 001_Ttr_BRCA_TCGA-BH-A1FC-01A_b5e2f568-e6fc-4192-a3ab-da956e5bfa4c      
       
2 002_Nex_BRCA_TCGA-BH-A0B5-11A_c724807c-d80d-4582-8238-8339397b6aec 0.7539 0.5 0.8944 0.575 0.6566 
 002_Ntr_BRCA_TCGA-BH-A0B5-11A_f478930d-216a-40ec-b434-bfc3a7b2f62b      
 002_Tex_BRCA_TCGA-BH-A0B5-01A_803de3d6-895f-4ad1-a86c-6f72d6ea8430      
 002_Ttr_BRCA_TCGA-BH-A0B5-01A_37175dfe-e34e-4f97-88b1-c0ba4bd5d093      
       
3 003_Nex_BRCA_TCGA-BH-A0BJ-11A_a9988fbb-090a-4363-bf73-7505e1710623 0.7386 0.37 0.8453 0.7 0.7458 
 003_Ntr_BRCA_TCGA-BH-A0BJ-11A_2ced85bc-852a-4056-ad11-2e88ec6d2d82      
 003_Tex_BRCA_TCGA-BH-A0BJ-01A_58ec1111-c932-49ea-9327-1c64dfc2afa6      
 003_Ttr_BRCA_TCGA-BH-A0BJ-01A_73442f2d-3453-42ee-b57a-86871e2e2fd9      
       
4 004_Nex_BRCA_TCGA-E2-A158-11A_58fe3067-8198-486e-b0b2-286dc4451c39 0.9534 NaN NaN 0.8 0.7799 
 004_Ntr_BRCA_TCGA-E2-A158-11A_323eb80d-71e2-4223-b471-a83ee42e6e08      
 004_Tex_BRCA_TCGA-E2-A158-01A_0329fa7e-d768-4bbe-940e-36f0b9829d7c      
 004_Ttr_BRCA_TCGA-E2-A158-01A_9d31f395-85e7-4ad8-95a3-0cc796c4b81d      
       
5 005_Nex_BRCA_TCGA-A7-A13E-11A_bd7e6f8f-7213-4ded-a8ca-3c73c7b8d918 0.909 0.83 0.9772 0.85 0.9184 
 005_Ntr_BRCA_TCGA-A7-A13E-11A_99c08ce4-6526-4982-9bc7-b9c07972bcdb      
 005_Tex_BRCA_TCGA-A7-A13E-01A_28b8b84b-ca69-4c6a-860c-989777b18d32      
 005_Ttr_BRCA_TCGA-A7-A13E-01A_148d5aec-6026-46b5-b40c-38a1198175ab      
       
6 006_Nex_BRCA_TCGA-BH-A208-11A_645b786f-1942-4cce-973b-4a75956265f5 0.5951 0.31 0.6877 0.6 0.5642 
 006_Ntr_BRCA_TCGA-BH-A208-11A_a6dd96f4-f194-4c8d-8757-9e8b35465a9f      
 006_Tex_BRCA_TCGA-BH-A208-01A_5bdbd7db-ced4-4446-9069-c44c9c1f0ae0      
 006_Ttr_BRCA_TCGA-BH-A208-01A_794bcf95-8e66-4f91-a49c-ab10defe73c5      
       
7 007_Nex_BRCA_TCGA-BH-A1FU-11A_db7e821b-a2b6-40e1-9fbc-c72231b703a4 0.6835 0.25 0.667 0.6 0.6121 
 007_Ntr_BRCA_TCGA-BH-A1FU-11A_c051b92b-8e11-4623-b11b-3a0d52710663      
 007_Tex_BRCA_TCGA-BH-A1FU-01A_cb37bb7f-8fb6-432a-a58a-f8178d5baa64      
 007_Ttr_BRCA_TCGA-BH-A1FU-01A_7ea95c3a-b1a6-4658-b4c2-f35f3f48394e      
       
8 008_Nex_BRCA_TCGA-BH-A0AY-11A_2ecc0325-3973-48b3-b53b-bb52aea5a9bc 0.6376 0.42 NaN 0.7 0.5612 
 008_Ntr_BRCA_TCGA-BH-A0AY-11A_1b2877ac-94a0-464c-b58b-9ce2f16aff37      
 008_Tex_BRCA_TCGA-BH-A0AY-01A_357ccb95-03e5-49f6-ab18-38d4c8d4d820      
 008_Ttr_BRCA_TCGA-BH-A0AY-01A_a19a60e7-e5ca-4f66-96fe-c9add702177d      
       
9 009_Nex_BRCA_TCGA-BH-A18U-11A_bf3d62cb-f3a6-45d6-b9c3-416e58f1d319 0.7949 0.68 NaN 0.75 0.8077 
 009_Ntr_BRCA_TCGA-BH-A18U-11A_9d4c1d7e-dd77-41d1-b1df-144e7afb2141      
 009_Tex_BRCA_TCGA-BH-A18U-01A_a80933e5-3b07-41dc-b7f0-499d63c071a9      
 009_Ttr_BRCA_TCGA-BH-A18U-01A_ff89e0d9-7e6c-4b6b-a1c3-f800aaa414a1      
       
10 010_Nex_BRCA_TCGA-AC-A2FF-11A_714e11fb-be71-4bbd-9327-457883a07ef0 0.5705 NaN 0.6868 0.8 0.6667 
 010_Ntr_BRCA_TCGA-AC-A2FF-11A_4d32c4fa-959e-41cf-b837-104290bab9fa      
 010_Tex_BRCA_TCGA-AC-A2FF-01A_5c6fe1fc-839c-422a-89e7-4a54dcfad6c2      
 010_Ttr_BRCA_TCGA-AC-A2FF-01A_37bf962c-b180-4cc2-8e0b-fde78b4f99f4      
       
11 011_Nex_BRCA_TCGA-BH-A0BQ-11A_a5bdd116-8c1b-4787-be01-4c0f96709cc5 0.6814 0.4 NaN 0.5 0.5779 
 011_Ntr_BRCA_TCGA-BH-A0BQ-11A_45e17d22-fbed-418b-97fc-7104e1deeac1      
 011_Tex_BRCA_TCGA-BH-A0BQ-01A_27138381-1865-4a6a-bd70-58725c92cb49      
 011_Ttr_BRCA_TCGA-BH-A0BQ-01A_8879454d-b803-40b6-b3d7-fbc295de9df6      
       
12 012_Nex_BRCA_TCGA-BH-A0BA-11A_9dbc7f19-30bd-48fd-8d5a-ca67dc26c5b1 0.7944 0.48 0.8945 0.87 0.7278 
 012_Ntr_BRCA_TCGA-BH-A0BA-11A_2cc17895-0a6e-4703-8164-7034f5c2e1a8      
 012_Tex_BRCA_TCGA-BH-A0BA-01A_b4c0df66-54c1-4bbf-9a3c-d2fd28d5bb4b      
 012_Ttr_BRCA_TCGA-BH-A0BA-01A_a9f9701c-6b4b-48ed-af83-94804fb098a8      
       
13 013_Nex_BRCA_TCGA-BH-A0B8-11A_ef67ace2-01d6-4e8b-92c7-7c4e1e5ca327 0.8571 0.87 0.9827 0.85 0.9342 
 013_Ntr_BRCA_TCGA-BH-A0B8-11A_3a833d6d-75c7-4381-8cef-699c633b64e6      
 013_Tex_BRCA_TCGA-BH-A0B8-01A_54972439-f9da-497d-a605-24e9670021ad      
 013_Ttr_BRCA_TCGA-BH-A0B8-01A_9c7776d0-33df-4bd7-a720-807c650fdbc5      
       
14 014_Nex_BRCA_TCGA-BH-A0AU-11A_15483d36-ad24-4771-a991-8a8435effc6a 0.765 0.46 0.8525 0.775 0.652 
 014_Ntr_BRCA_TCGA-BH-A0AU-11A_7f667d91-04aa-48e8-b675-9d99b64b2058      
 014_Tex_BRCA_TCGA-BH-A0AU-01A_e7a641f3-cc31-4319-a04b-75c42e991711      
 014_Ttr_BRCA_TCGA-BH-A0AU-01A_23e09239-bfc3-4c2e-b690-db940d5292f7      
       
15 015_Nex_BRCA_TCGA-BH-A18S-11A_9e6d6a2d-ce9e-4d44-9603-f843ffa06c63 0.8948 0.89 NaN 0.85 0.8676 
 015_Ntr_BRCA_TCGA-BH-A18S-11A_b54a0f88-21be-4c6d-a27a-1c1b8959652c      
 015_Tex_BRCA_TCGA-BH-A18S-01A_d4746397-9268-460a-954b-e5b5921138f9      
 015_Ttr_BRCA_TCGA-BH-A18S-01A_e0a3ea3a-ffce-4e30-9f42-cb047a7644a1      
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16 016_Nex_BRCA_TCGA-BH-A0HK-11A_d256dce0-d74b-4f8f-bf47-40b1b953fc7f 0.7649 0.78 0.9163 0.925 0.8357 
 016_Ntr_BRCA_TCGA-BH-A0HK-11A_438650e8-0ee2-4c74-8432-88b5c8006187      
 016_Tex_BRCA_TCGA-BH-A0HK-01A_944b4c29-bf72-4eec-b277-badc237730de      
 016_Ttr_BRCA_TCGA-BH-A0HK-01A_fe04f368-0a73-4f97-9d6b-2986f9b2b052      
       
17 017_Nex_BRCA_TCGA-A7-A0D9-11A_dda70534-0d4d-4c30-9c6a-fb3c39396fb0 0.8911 0.8 1 0.775 0.8921 
 017_Ntr_BRCA_TCGA-A7-A0D9-11A_17cf6364-e228-4ee9-bffa-d1ad75f4152b      
 017_Tex_BRCA_TCGA-A7-A0D9-01A_821d7a33-77fb-496e-be9c-0552b12cbbee      
 017_Ttr_BRCA_TCGA-A7-A0D9-01A_c0ecd314-9d99-48ec-83f1-5a0c1ed656aa      
       
18 018_Nex_BRCA_TCGA-BH-A0BV-11A_56dfc492-2b1f-4494-9ba9-14a70601ae21 0.6895 0.54 NaN 0.725 0.6749 
 018_Ntr_BRCA_TCGA-BH-A0BV-11A_20459115-d7be-4d04-896f-c5ff6923ec4c      
 018_Tex_BRCA_TCGA-BH-A0BV-01A_beb9e4cf-1f76-4a26-acee-e88d0936e60b      
 018_Ttr_BRCA_TCGA-BH-A0BV-01A_d037d3c2-e316-473d-9970-d4fb43615d95      
       
19 019_Nex_BRCA_TCGA-E2-A1LH-11A_61558dd3-8f6c-4f70-8717-7676580fa5a7 0.5948 0.32 0.5637 0.8 0.4633 
 019_Ntr_BRCA_TCGA-E2-A1LH-11A_c7e02b93-465f-47da-81d7-ec9a8cb1e52b      
 019_Tex_BRCA_TCGA-E2-A1LH-01A_f54770bb-5dd0-48cf-ac5a-3f023a6aef95      
 019_Ttr_BRCA_TCGA-E2-A1LH-01A_169c390c-a211-4db0-a983-9bf5d6eee16e      
       
20 020_Nex_BRCA_TCGA-BH-A0DD-11A_e9fe9b97-f7c7-40dc-ae31-17bb15c9fd8b 0.8677 0.79 0.9459 0.625 0.8714 
 020_Ntr_BRCA_TCGA-BH-A0DD-11A_5482cdd0-3698-455b-97c1-b10c69d67ae9      
 020_Tex_BRCA_TCGA-BH-A0DD-01A_99ca9706-f2bf-430b-9b23-e0947c0f8593      
 020_Ttr_BRCA_TCGA-BH-A0DD-01A_90cbc532-1ca8-46d6-977c-72b6d01e9c34      
       
21 021_Nex_BRCA_TCGA-BH-A0H5-11A_adfb1a86-fbb1-4b71-9c04-f99399f20d70 0.4399 NaN NaN 0.475 0.1632 
 021_Ntr_BRCA_TCGA-BH-A0H5-11A_896d76a1-bae8-495a-9e12-e82e16bd8b16      
 021_Tex_BRCA_TCGA-BH-A0H5-01A_6cc3c90e-c77c-4609-ada5-9b78c659dc34      
 021_Ttr_BRCA_TCGA-BH-A0H5-01A_778c9326-998d-4081-b148-0eede2b94e29      
       
22 022_Nex_BRCA_TCGA-A7-A0DB-11A_91081819-79c8-4de6-bfdb-742df760c08b 0.7341 0.44 NaN 0.85 0.6494 
 022_Ntr_BRCA_TCGA-A7-A0DB-11A_a8ed2ec3-0285-4028-9698-710a148ce11b      
 022_Tex_BRCA_TCGA-A7-A0DB-01A_37a9daca-9d53-4ec4-8de2-dc2c140a5d8f      
 022_Ttr_BRCA_TCGA-A7-A0DB-01A_1f62e969-d05d-4a4d-a163-cb06e4958f71      
       
23 023_Nex_BRCA_TCGA-BH-A1FN-11A_e1c0d95f-949c-4cec-9cf8-f91c3b90b8d9 0.8367 0.7 0.8509 0.75 0.8313 
 023_Ntr_BRCA_TCGA-BH-A1FN-11A_d5e5f3c9-4129-4c92-87f3-6f86577a7584      
 023_Tex_BRCA_TCGA-BH-A1FN-01A_8d715491-6943-4d58-92f6-88cce7b463e2      
 023_Ttr_BRCA_TCGA-BH-A1FN-01A_8e7dc738-8a8f-45b2-bd82-4125a07d7373      
       
24 024_Nex_BRCA_TCGA-BH-A0AZ-11A_9bbae9a0-9f12-48cf-9aa7-d070c6627ea5 0.6505 0.53 0.8696 0.7 0.6655 
 024_Ntr_BRCA_TCGA-BH-A0AZ-11A_693bf8e4-b266-4b58-b812-f579179efb65      
 024_Tex_BRCA_TCGA-BH-A0AZ-01A_664528b7-b511-4627-8464-0702263434c5      
 024_Ttr_BRCA_TCGA-BH-A0AZ-01A_07f377f4-0bd1-4647-bf06-ff6ed553c44a      
       
25 025_Nex_BRCA_TCGA-BH-A0HA-11A_c61bb1ab-688f-4d58-8388-60ae77c28840 0.6418 0.74 0.9258 0.725 0.7386 
 025_Ntr_BRCA_TCGA-BH-A0HA-11A_09e07a68-a443-4c16-a0de-78cd8aea59c0      
 025_Tex_BRCA_TCGA-BH-A0HA-01A_2c144eba-6490-4d64-9446-085d6edc8308      
 025_Ttr_BRCA_TCGA-BH-A0HA-01A_6d483def-2d91-4afc-991a-4a29804a6f3a      
       
26 026_Nex_BRCA_TCGA-A7-A0CE-11A_eee8d4d0-d524-47f5-b076-6ad6216de1a3 0.9035 0.73 NaN 0.835 0.8551 
 026_Ntr_BRCA_TCGA-A7-A0CE-11A_548cad87-ec95-47e2-890e-7c8284ea5b88      
 026_Tex_BRCA_TCGA-A7-A0CE-01A_4288da4e-7e77-434b-a092-9450b0cb7833      
 026_Ttr_BRCA_TCGA-A7-A0CE-01A_14201682-0c8d-49c7-a5e1-7026e1a07b69      
       
27 027_Nex_BRCA_TCGA-BH-A0DK-11A_3f4400a1-84ab-4198-b9a1-67b2ffc5ef36 0.5384 0.53 0.7316 0.7 0.6837 
 027_Ntr_BRCA_TCGA-BH-A0DK-11A_ae67044f-62c9-405f-bfc1-f0b8f1bc66d3      
 027_Tex_BRCA_TCGA-BH-A0DK-01A_e3e2053a-3ca2-4527-9b94-209def68dcc3      
 027_Ttr_BRCA_TCGA-BH-A0DK-01A_a3df35ec-a8d2-44ad-8ba6-eaba504261e0      
       
28 028_Nex_BRCA_TCGA-BH-A0E1-11A_f6fed4ed-a853-40aa-bf7b-e627efd402d6 0.8676 0.75 0.9742 0.825 0.8524 
 028_Ntr_BRCA_TCGA-BH-A0E1-11A_52441de4-e26b-42b3-b061-94907c049501      
 028_Tex_BRCA_TCGA-BH-A0E1-01A_3c7e6a59-08b8-4903-932a-99946a96b746      
 028_Ttr_BRCA_TCGA-BH-A0E1-01A_f412f8d8-9e35-41d9-b44a-131186cb4bb0      
       
29 029_Nex_BRCA_TCGA-BH-A0DG-11A_c99b1fb3-17e3-4472-86ee-7fda358a92c2 0.6358 0.42 0.7804 0.775 0.5386 
 029_Ntr_BRCA_TCGA-BH-A0DG-11A_bfdaf242-1e97-450d-9983-2cbb4e99305d      
 029_Tex_BRCA_TCGA-BH-A0DG-01A_721e2f71-60ae-4d63-9f05-113bce56c672      
 029_Ttr_BRCA_TCGA-BH-A0DG-01A_865afd6b-84a7-4dde-aa23-0b925c0b9d50      
       
30 030_Nex_BRCA_TCGA-AC-A2FB-11A_552279ea-d7b1-496d-8170-ca30f5b62b5a 0.5372 0.23 0.5493 0.7 0.4436 
 030_Ntr_BRCA_TCGA-AC-A2FB-11A_56cd7da0-2c47-4986-91ce-07db2bb87369      
 030_Tex_BRCA_TCGA-AC-A2FB-01A_de000c35-8bf4-470a-9656-1b5da0deebe6      
 030_Ttr_BRCA_TCGA-AC-A2FB-01A_35aa5078-e07f-4a0f-84c1-01a0e566e97c      
       
31 031_Nex_BRCA_TCGA-BH-A0H7-11A_abfca562-d328-40d2-83bb-e584123b0f28 0.7939 0.63 0.9561 0.725 0.7534 
 031_Ntr_BRCA_TCGA-BH-A0H7-11A_d969d9b2-9d8b-4594-95d4-87e6ce1236fc      
 031_Tex_BRCA_TCGA-BH-A0H7-01A_e8daad78-39fc-4835-b1c4-8807653d9c9a      
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 031_Ttr_BRCA_TCGA-BH-A0H7-01A_0d37f87a-760a-472a-acba-bbc255422fbe      
       
32 032_Nex_BRCA_TCGA-BH-A1EU-11A_38e87966-9605-4454-a4d1-28f96b7689f7 0.5387 0.33 0.6869 0.65 0.4299 
 032_Ntr_BRCA_TCGA-BH-A1EU-11A_3b00c121-17f2-461e-8873-08d15c9ec9f4      
 032_Tex_BRCA_TCGA-BH-A1EU-01A_4bccbb0f-2641-44df-b89a-42f020b4c08f      
 032_Ttr_BRCA_TCGA-BH-A1EU-01A_86e3dba1-48fb-44cc-b046-8bc35963ce99      
       
33 033_Nex_BRCA_TCGA-BH-A0DP-11A_27543260-52ac-444b-8214-e62dca2cc8fe 0.7037 0.42 0.8565 0.7 0.655 
 033_Ntr_BRCA_TCGA-BH-A0DP-11A_30f4e5d8-a13d-4ef2-88e0-a01e07c2e142      
 033_Tex_BRCA_TCGA-BH-A0DP-01A_0326975a-2e56-404a-8776-92c5c5678853      
 033_Ttr_BRCA_TCGA-BH-A0DP-01A_7ff8a7a0-5235-4de0-bb9f-b811230b5bda      
       
34 034_Nex_BRCA_TCGA-BH-A18N-11A_6c8aae77-5f43-41ec-a139-81f3ba02f6ea 0.8685 0.76 NaN 0.9 0.832 
 034_Ntr_BRCA_TCGA-BH-A18N-11A_0738f1b2-aa50-4921-82e1-d3614b40f98d      
 034_Tex_BRCA_TCGA-BH-A18N-01A_b6f89799-9070-4fbc-b10c-53cbe515eccc      
 034_Ttr_BRCA_TCGA-BH-A18N-01A_4b7b8eb8-d939-411c-be5e-cf41a5521963      
       
35 035_Nex_BRCA_TCGA-BH-A0BC-11A_6359db46-f8dd-4dc8-a3a9-8725d8f6958a 0.6221 0.6 0.8221 0.8 0.7727 
 035_Ntr_BRCA_TCGA-BH-A0BC-11A_2cb50d4a-d6df-4b64-acfb-7a7db5ddd1de      
 035_Tex_BRCA_TCGA-BH-A0BC-01A_73b9208d-336c-4990-a27d-0164a77dd165      
 035_Ttr_BRCA_TCGA-BH-A0BC-01A_92e26b53-f540-428a-a3c5-848a36b31171      
       
36 036_Nex_BRCA_TCGA-BH-A0BZ-11A_2b4e3d99-07cd-4b06-ad97-82a19ac0eb5d 0.5788 0.37 0.7363 0.6 0.5138 
 036_Ntr_BRCA_TCGA-BH-A0BZ-11A_3aa16a4b-4e35-4530-84fb-0cb204290b08      
 036_Tex_BRCA_TCGA-BH-A0BZ-01A_74414845-839f-4885-b13d-3f2e17781f84      
 036_Ttr_BRCA_TCGA-BH-A0BZ-01A_efefcc2f-72e9-4634-b943-d26083e1a312      
       
37 037_Nex_BRCA_TCGA-BH-A0DL-11A_2d495f9c-4ffa-4169-b583-6786612e9606 0.6944 0.53 NaN 0.65 0.6655 
 037_Ntr_BRCA_TCGA-BH-A0DL-11A_bd8b100a-8391-4046-847f-c3fdd3830eeb      
 037_Tex_BRCA_TCGA-BH-A0DL-01A_dfd355e4-478a-47cb-9aab-8ce22b6f936c      
 037_Ttr_BRCA_TCGA-BH-A0DL-01A_11d77ef2-b3f9-4af9-8490-71f9a8c599e0      
       
38 038_Nex_BRCA_TCGA-BH-A0BT-11A_32430467-5215-4738-86a3-5bbe11fbba86 0.8096 0.67 0.9054 0.75 0.7751 
 038_Ntr_BRCA_TCGA-BH-A0BT-11A_cbef4196-5f3b-40d9-b26f-5b2bb82fbe9b      
 038_Tex_BRCA_TCGA-BH-A0BT-01A_e78b9962-7bc2-4238-806a-5933ac07de99      
 038_Ttr_BRCA_TCGA-BH-A0BT-01A_aae75165-efa0-46b3-8a8d-82dc7d82aecd      
       
39 039_Nex_BRCA_TCGA-BH-A18Q-11A_b58d4f69-a4ea-489b-9d25-e5cfdc465adb 0.8117 0.73 NaN 0.9 0.836 
 039_Ntr_BRCA_TCGA-BH-A18Q-11A_76575097-374b-4fb2-8054-2a31b4204165      
 039_Tex_BRCA_TCGA-BH-A18Q-01A_1f2c90ef-a05d-494c-9232-e705691f46b9      
 039_Ttr_BRCA_TCGA-BH-A18Q-01A_f0173e28-7fe4-411f-a187-57fd94a7935a      
       
40 040_Nex_BRCA_TCGA-E2-A1LB-11A_e2d7a695-b0bf-4432-8f98-1843bb49efba 0.8415 0.68 0.8192 0.9 0.815 
 040_Ntr_BRCA_TCGA-E2-A1LB-11A_6eb518ab-f174-45ae-8d65-74086ecb1125      
 040_Tex_BRCA_TCGA-E2-A1LB-01A_3ddbc444-ee1b-43be-bab5-b0f67d5eb339      
 040_Ttr_BRCA_TCGA-E2-A1LB-01A_d7d566a0-b6d0-4a4f-8211-9309b27b0ade      
       
41 041_Nex_BRCA_TCGA-BH-A0DH-11A_a7a7e0f6-100f-4145-9599-693e6c14e903 0.8317 0.76 0.8955 0.85 0.8597 
 041_Ntr_BRCA_TCGA-BH-A0DH-11A_5a0374e5-cee9-4952-9df0-4ff125196478      
 041_Tex_BRCA_TCGA-BH-A0DH-01A_eb680f8c-4ba1-45ef-8b94-e58b68922f2f      
 041_Ttr_BRCA_TCGA-BH-A0DH-01A_71a3c27c-0982-4da6-b260-cf16a4868a19      
       
42 042_Nex_BRCA_TCGA-BH-A0B7-11A_d9aca915-ea30-4939-af59-edaef8872396 0.6207 0.2 NaN 0.575 0.4954 
 042_Ntr_BRCA_TCGA-BH-A0B7-11A_8db8b247-05b8-46ca-8791-ecf846da2c7f      
 042_Tex_BRCA_TCGA-BH-A0B7-01A_e3b9eb8a-93f3-4668-a54b-fa8b15be5667      
 042_Ttr_BRCA_TCGA-BH-A0B7-01A_0fdae4ee-ca68-4ba4-ba58-76058409b02f      
       
43 043_Nex_BRCA_TCGA-E2-A15I-11A_36024763-f828-4496-8fdc-46d5c3de569b 0.7689 0.62 0.768 0.8 0.7565 
 043_Ntr_BRCA_TCGA-E2-A15I-11A_ffa9ace8-9253-4775-9ad2-2a8a50c0f9c9      
 043_Tex_BRCA_TCGA-E2-A15I-01A_8c627466-eb99-4a7e-87e6-314ae8ed32a1      
 043_Ttr_BRCA_TCGA-E2-A15I-01A_3a4e3785-fb2e-4ffc-9644-91c78a9a9ebe      
       
44 044_Nex_BRCA_TCGA-BH-A0DV-11A_79a92eab-c87c-4209-819e-193d653c0df6 0.6021 0.31 0.7631 0.7 0.4856 
 044_Ntr_BRCA_TCGA-BH-A0DV-11A_e87e7e3e-9059-47cf-9f45-8959250b037f      
 044_Tex_BRCA_TCGA-BH-A0DV-01A_105290eb-b626-4318-9b8a-42f477e2cec6      
 044_Ttr_BRCA_TCGA-BH-A0DV-01A_7bad3f4c-6065-4245-8119-c25596f38829      
       
45 045_Nex_BRCA_TCGA-BH-A0DZ-11A_aebf04d4-4a1b-4a50-b5f1-0f9e2c273121 0.6572 0.65 NaN 0.885 0.7792 
 045_Ntr_BRCA_TCGA-BH-A0DZ-11A_80b4d43d-9e7d-4ab8-b05a-0eb51faa9d12      
 045_Tex_BRCA_TCGA-BH-A0DZ-01A_4e7d62f5-4be9-4b9c-9b7c-aec4567dded2      
 045_Ttr_BRCA_TCGA-BH-A0DZ-01A_8b1982a0-315c-47e1-8de0-a1e5ec51dd74      
       
46 046_Nex_BRCA_TCGA-BH-A18R-11A_b32b2067-a79e-42c5-ae78-135c845253fe 0.8685 0.53 NaN 0.85 0.7466 
 046_Ntr_BRCA_TCGA-BH-A18R-11A_f82099ae-9d74-44d8-ba5b-cd10eeb09807      
 046_Tex_BRCA_TCGA-BH-A18R-01A_c518bc34-50dc-4265-824f-a954e4d19f0b      
 046_Ttr_BRCA_TCGA-BH-A18R-01A_fc65ff2e-9808-4c1e-a16b-8285fd0d27df      
       
47 047_Nex_BRCA_TCGA-E2-A15K-11A_6299f114-932a-42c0-8cab-bebb12c996fc 0.7425 0.7 0.724 0.9 NaN 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 9, 2018. ; https://doi.org/10.1101/491209doi: bioRxiv preprint 

https://doi.org/10.1101/491209


 047_Ntr_BRCA_TCGA-E2-A15K-11A_c2ab9488-d9a4-479c-b9e2-6f9b0cdbaacb      
 047_Tex_BRCA_TCGA-E2-A15K-01A_80019ec7-b0d8-4573-b5d6-a5d9f2745ab2      
 047_Ttr_BRCA_TCGA-E2-A15K-01A_7e3a600b-edd8-428e-b88d-af4c63dcaad9      
       
48 048_Nex_BRCA_TCGA-BH-A1EN-11A_a6259119-3d8a-4749-a517-c675efbc8215 0.8518 0.7 0.9612 0.85 0.8179 
 048_Ntr_BRCA_TCGA-BH-A1EN-11A_488f1b69-c2a3-429b-a972-31edfd615a67      
 048_Tex_BRCA_TCGA-BH-A1EN-01A_72e4cb26-911c-4804-9e4f-ed5b51024cd1      
 048_Ttr_BRCA_TCGA-BH-A1EN-01A_96360e75-26b6-4647-b974-9e31ae6de00c      
       
49 049_Nex_BRCA_TCGA-BH-A0H9-11A_d8b452e5-010a-4fec-80a4-770a5a492090 0.8872 0.35 0.7934 0.7 0.747 
 049_Ntr_BRCA_TCGA-BH-A0H9-11A_1337ceba-db77-4b31-ac20-1c6a8bb5f546      
 049_Tex_BRCA_TCGA-BH-A0H9-01A_ac4899fe-f56d-4b98-9a54-73ffd0c90652      
 049_Ttr_BRCA_TCGA-BH-A0H9-01A_a97d281f-235f-481b-b26b-169b96e0e65f      
       
50 050_Nex_BRCA_TCGA-E2-A153-11A_1c3f2e11-952a-4e47-a8b9-25f4fe4bf205 0.6589 0.61 NaN 0.6 0.5474 
 050_Ntr_BRCA_TCGA-E2-A153-11A_bd0ab51c-c114-40e3-a6a1-4b8f576a41d3      
 050_Tex_BRCA_TCGA-E2-A153-01A_85258fb2-26ab-4a66-b8a5-5a58bf9275e0      
 050_Ttr_BRCA_TCGA-E2-A153-01A_091a54cd-e3b3-4af2-828f-a80e64504f5e      
       
51 051_Nex_BRCA_TCGA-BH-A0BW-11A_ab130f7f-4070-436e-ac7b-c1b7aecb9dc6 0.6784 0.54 NaN 0.6 0.6749 
 051_Ntr_BRCA_TCGA-BH-A0BW-11A_2581c95b-1b57-4407-bbc4-a65c89bfd136      
 051_Tex_BRCA_TCGA-BH-A0BW-01A_7661179f-df6c-4a57-adca-224b62d98348      
 051_Ttr_BRCA_TCGA-BH-A0BW-01A_a15d171e-ac82-4712-94a9-b4799e7b2915      
       
52 052_Nex_BRCA_TCGA-BH-A18J-11A_3aa5b173-17b2-425f-b5c7-395614d6bfa2 0.8066 0.51 NaN 0.7 0.7243 
 052_Ntr_BRCA_TCGA-BH-A18J-11A_307eb339-a781-45cc-9597-da0be7e5438a      
 052_Tex_BRCA_TCGA-BH-A18J-01A_f639a485-8ebb-4dcc-9f2e-a8d7ad05564f      
 052_Ttr_BRCA_TCGA-BH-A18J-01A_0e985713-0492-4191-918b-fef6c23389b1      
       
53 053_Nex_BRCA_TCGA-BH-A204-11A_98e5c1d8-5c14-4416-8437-31d0098dd341 0.8763 0.89 0.9364 0.85 0.9601 
 053_Ntr_BRCA_TCGA-BH-A204-11A_2afdc0cf-2723-42dd-89f7-fa03c6ba218c      
 053_Tex_BRCA_TCGA-BH-A204-01A_970600ce-9486-4641-8555-533132f7a414      
 053_Ttr_BRCA_TCGA-BH-A204-01A_893fcf87-8baa-424e-8866-bcf8cfa26cf9      
       
54 054_Nex_BRCA_TCGA-BH-A18K-11A_502ee86f-829e-4b6e-a8f1-be082c445310 0.8058 0.58 NaN 0.8 0.7468 
 054_Ntr_BRCA_TCGA-BH-A18K-11A_375bcdd8-8628-4047-948a-fa98bfa3dba5      
 054_Tex_BRCA_TCGA-BH-A18K-01A_7e8c2ea7-04ce-47c5-b848-229f96563015      
 054_Ttr_BRCA_TCGA-BH-A18K-01A_12473f59-359c-4306-ade3-2156e458cd05      
       
55 055_Nex_BRCA_TCGA-BH-A0C3-11A_9fedd2f4-d2c8-4d24-987b-69edf55e15f1 0.6289 0.39 0.7847 0.45 0.528 
 055_Ntr_BRCA_TCGA-BH-A0C3-11A_a49fa48d-efc4-4b99-a42e-7019236af6c8      
 055_Tex_BRCA_TCGA-BH-A0C3-01A_866d9cb0-a299-46c1-a787-2e73fd758fbe      
 055_Ttr_BRCA_TCGA-BH-A0C3-01A_164f86df-dec9-44ef-b1c7-2ee5d33617be      
       
56 056_Nex_BRCA_TCGA-BH-A0C0-11A_9778035c-19ff-4a89-bba2-fa83e51d9add 0.6223 0.27 0.5586 0.85 0.5068 
 056_Ntr_BRCA_TCGA-BH-A0C0-11A_52a72824-0b41-4b8e-86f0-41ee5e00c989      
 056_Tex_BRCA_TCGA-BH-A0C0-01A_568a2363-b7e5-48f6-9242-328950eebf39      
 056_Ttr_BRCA_TCGA-BH-A0C0-01A_f5fe9655-f5b4-413b-882c-43b872e4ec23      
       
57 057_Nex_BRCA_TCGA-BH-A0E0-11A_59fa57c8-7435-4499-bd09-bf969596c18d 0.9013 0.57 0.7391 0.875 0.7486 
 057_Ntr_BRCA_TCGA-BH-A0E0-11A_a3e5f7bd-3ab0-4ea6-9de1-742de1a2ed78      
 057_Tex_BRCA_TCGA-BH-A0E0-01A_72436fcd-21fd-46bd-bd36-7f514edb51de      
 057_Ttr_BRCA_TCGA-BH-A0E0-01A_b98d2a16-974c-4728-9648-81dc4314f225      
       
58 058_Nex_BRCA_TCGA-BH-A18M-11A_8e0cb775-9fc9-4001-973c-ef6cec2a38b6 0.7363 0.45 NaN 0.85 0.6525 
 058_Ntr_BRCA_TCGA-BH-A18M-11A_3e02aa37-30ee-4663-bba1-280e5127f302      
 058_Tex_BRCA_TCGA-BH-A18M-01A_69ccc418-264c-4e8e-a034-39607c07fa59      
 058_Ttr_BRCA_TCGA-BH-A18M-01A_aea8fff8-dbc9-4a1b-9a3a-ca1882432c57      
59 059_Nex_BRCA_TCGA-E2-A1BC-11A_45b8b995-c477-4358-8050-6d41c267b467 0.8083 0.56 0.8676 0.85 0.7707 
 059_Ntr_BRCA_TCGA-E2-A1BC-11A_205007dd-4bc1-4e1f-9fdb-115b0e7c9836      
 059_Tex_BRCA_TCGA-E2-A1BC-01A_f969cce4-0fcd-47bb-91f1-37ba0f314994      
 059_Ttr_BRCA_TCGA-E2-A1BC-01A_ea3bd91d-520b-4198-b011-a0f578eadc3e      
       
60 060_Nex_BRCA_TCGA-BH-A203-11A_f08939ed-a218-4688-b419-a91333d0267b 0.7637 0.37 0.6872 0.75 0.5905 
 060_Ntr_BRCA_TCGA-BH-A203-11A_8c2d82aa-0b36-488f-8cf1-f82795b831c5      
 060_Tex_BRCA_TCGA-BH-A203-01A_55a9b84d-ca9f-402c-8d93-15aef2fde988      
 060_Ttr_BRCA_TCGA-BH-A203-01A_8986bdd8-2be5-41ed-9596-59ca1f95e1c0      
       
61 061_Nex_BRCA_TCGA-BH-A1F2-11A_d6eb2d94-1234-46b3-9403-958f3b340fd0 0.7507 0.52 0.8661 0.6 0.754 
 061_Ntr_BRCA_TCGA-BH-A1F2-11A_210014fa-f161-4799-a1c0-6f93d4b631f6      
 061_Tex_BRCA_TCGA-BH-A1F2-01A_91aeda5a-ed5a-4175-b19e-408219b980fc      
 061_Ttr_BRCA_TCGA-BH-A1F2-01A_ceb5a503-e107-4721-9283-714406cdd914      
       
62 062_Nex_BRCA_TCGA-BH-A1EO-11A_90308930-e3c5-47bb-bcee-58eaae7d3dfa 0.5849 0.48 0.8854 0.9 0.7493 
 062_Ntr_BRCA_TCGA-BH-A1EO-11A_a426d9c2-86b1-4db1-b49c-eceaa01273a9      
 062_Tex_BRCA_TCGA-BH-A1EO-01A_7787e3e2-f604-4b4d-a3bc-60c795d4177b      
 062_Ttr_BRCA_TCGA-BH-A1EO-01A_e31bd4a4-ecda-49b4-83b0-7f1496c2f9ae      
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63 063_Nex_BRCA_TCGA-BH-A18V-11A_353e7fa1-08c5-400a-b352-b5325e40d66c 0.6941 0.56 NaN 0.75 NaN 
 063_Ntr_BRCA_TCGA-BH-A18V-11A_e3c5cba8-e3ba-4e0b-929b-280708e0a855      
 063_Tex_BRCA_TCGA-BH-A18V-01A_abcf2a8e-6f4c-4668-9ef9-41d95d16e8e6      
 063_Ttr_BRCA_TCGA-BH-A18V-01A_286394db-7d5e-4de2-b386-581352164350      
       
64 064_Nex_BRCA_TCGA-BH-A0DT-11A_6dde640a-1d79-4e7d-9491-c500b8183d9a 0.7462 0.42 NaN 0.55 0.6659 
 064_Ntr_BRCA_TCGA-BH-A0DT-11A_71aa4cd6-75ea-4e10-b16c-ea9adbf31a98      
 064_Tex_BRCA_TCGA-BH-A0DT-01A_9d93c6fb-336a-4cb4-9f33-8557456753b1      
 064_Ttr_BRCA_TCGA-BH-A0DT-01A_61ad7408-dacd-4913-a479-c456e8b03191      
       
65 065_Nex_BRCA_TCGA-GI-A2C9-11A_454dbdba-da53-4e99-9670-dff1e5bbb77c 0.8062 0.51 0.8386 0.8 0.6969 
 065_Ntr_BRCA_TCGA-GI-A2C9-11A_d8aa0349-d74e-4891-8398-6476eb1935f0      
 065_Tex_BRCA_TCGA-GI-A2C9-01A_2f2b0909-488b-4fa3-8251-2ef6e7d5869e      
 065_Ttr_BRCA_TCGA-GI-A2C9-01A_01ea694e-989b-4a35-9397-5e508656d1d8      
       
66 066_Nex_BRCA_TCGA-BH-A209-11A_c580c610-832d-45be-9963-06bb918ede73 0.5979 0.24 0.6243 0.6 0.4645 
 066_Ntr_BRCA_TCGA-BH-A209-11A_b8b48554-ca2f-466d-85b0-9d473cca8ca7      
 066_Tex_BRCA_TCGA-BH-A209-01A_7b85ca36-2fe9-4156-99eb-f79463dbc572      
 066_Ttr_BRCA_TCGA-BH-A209-01A_b2cf947a-5ed1-4e24-8752-bf2a6eca895a      
       
67 067_Nex_BRCA_TCGA-BH-A1EV-11A_f4d30842-7873-46d3-8f25-ae7d05909175 0.8435 0.61 0.9517 0.8 0.817 
 067_Ntr_BRCA_TCGA-BH-A1EV-11A_73e296db-9eec-4060-97c9-80a98dbb9fb6      
 067_Tex_BRCA_TCGA-BH-A1EV-01A_fb502696-cb13-487a-a70a-6ceefcf20ca0      
 067_Ttr_BRCA_TCGA-BH-A1EV-01A_93ab3adf-7ab9-455e-9007-9f51443352fe      
       
68 068_Nex_BRCA_TCGA-GI-A2C8-11A_836e4482-11c7-4422-a2e5-cac9b846ea71 0.601 0.48 0.7846 0.85 0.6998 
 068_Ntr_BRCA_TCGA-GI-A2C8-11A_580d9a3d-e198-4e7b-aa1f-419d868bb0b5      
 068_Tex_BRCA_TCGA-GI-A2C8-01A_146c0ba4-6761-446c-be7c-7e56c0ffa37b      
 068_Ttr_BRCA_TCGA-GI-A2C8-01A_c0ee6e25-02b9-4b2f-9f23-fd61eedf9945      
       
69 069_Nex_BRCA_TCGA-BH-A0BM-11A_92faafbd-6a76-4116-80fc-a15767aa81d0 0.796 0.61 0.9189 0.84 0.7886 
 069_Ntr_BRCA_TCGA-BH-A0BM-11A_ae127be2-5e4c-4b7e-9cf8-3aa9e529baaa      
 069_Tex_BRCA_TCGA-BH-A0BM-01A_c513ed81-255f-43b0-b8aa-984326201745      
 069_Ttr_BRCA_TCGA-BH-A0BM-01A_006b2b95-7069-4cb6-bfe8-7edb80056add      
       
70 070_Nex_BRCA_TCGA-BH-A18L-11A_7a010ccd-f780-45f0-98da-cc738e87b6d3 0.927 0.81 NaN 0.8 0.9113 
 070_Ntr_BRCA_TCGA-BH-A18L-11A_ef4660c0-c177-4d46-90f9-56e3dc47b59e      
 070_Tex_BRCA_TCGA-BH-A18L-01A_0d4aca9c-c11e-4f78-a250-08d45ce4828e      
 070_Ttr_BRCA_TCGA-BH-A18L-01A_1af43803-7afa-4d2b-aa78-2dec84c1e702      
       
71 071_Nex_BRCA_TCGA-A7-A13F-11A_471d1e10-7c79-44f9-a373-bd3e510b6155 0.8478 0.65 0.9236 0.7 0.7915 
 071_Ntr_BRCA_TCGA-A7-A13F-11A_4e4cd9e5-27bb-4ea7-9328-0b267373ec1c      
 071_Tex_BRCA_TCGA-A7-A13F-01A_d8fad6b2-66b8-4d6f-b018-653998675921      
 071_Ttr_BRCA_TCGA-A7-A13F-01A_75898a6d-75e4-4dca-a7ed-c11056e0c9c4      
       
72 072_Nex_BRCA_TCGA-E2-A15M-11A_b2138cda-519f-4691-bf1c-0f863b55d888 0.4911 0.28 NaN 0.8 0.4285 
 072_Ntr_BRCA_TCGA-E2-A15M-11A_bf873756-8ee8-49bd-b2ca-17223c7ef962      
 072_Tex_BRCA_TCGA-E2-A15M-01A_1ccf392d-7959-4bb9-8ca8-4298409f4951      
 072_Ttr_BRCA_TCGA-E2-A15M-01A_b2569032-6147-4a1c-973f-d5985127e9f4      
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