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Abstract 
 

Polygenic scores (PS) are becoming a useful tool to identify individuals with high genetic risk for 

complex diseases and several projects are currently testing their utility for translational applications. 

It is also tempting to use PS to assess whether genetic variation can explain a part of the geographic 

distribution of a phenotype. However, it is not well known how population genetic properties of the 

training and target samples affect the geographic distribution of PS. Here, we evaluate geographic 

differences, and related biases, of PS in Finland with geographically well-defined sample of 2,376 

individuals from the National FINRISK study. First, we detect geographic differences in PS for 

coronary artery disease (CAD), rheumatoid arthritis, schizophrenia, waits-hip ratio (WHR), body-

mass index (BMI) and height, but not for Crohn’s disease or ulcerative colitis. Second, we use 

height as a model trait to thoroughly assess the possible population genetic biases in PS and apply 

similar approaches to the other phenotypes. Most importantly, we detect suspiciously large 

accumulation of geographic differences for CAD, WHR, BMI and height, suggesting bias arising 

from population genetic structure rather than from a direct genotype-phenotype association. This 

work demonstrates how sensitive the geographic patterns of current PS are for small biases even 

within relatively homogenous populations and provides simple tools to identify such biases. A 

thorough understanding of the effects of population genetic structure on PS is essential for 

translational applications of PS.  
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Introduction 
 

Understanding the causes behind geographic health differences can help to optimally target the 

limited health care resources and improve public health. Geographic health differences can be 

partially explained by life style and environmental factors but also by genetic differences that affect 

health both through population specific genetic diseases, e.g. the Finnish disease heritage (The 

Finnish Disease Heritage), and through variation in the polygenic components of many complex 

diseases (Fuchsberger et al. 2016; Hartiala et al. 2017; O'Connell et al. 2018). In particular, recent 

discoveries from genome-wide association studies (GWAS) (Visscher et al. 2017) have enabled 

improved polygenic prediction of complex diseases and traits and raised expectations for their 

future translation to clinical use (Mavaddat et al. 2015; Abraham et al. 2016; Khera et al. 2018; 

Stocker et al. 2018). An open question is to which extent the geographic distribution of phenotypes 

could be explained by their polygenic predictions. 

 

A standard way to estimate a polygenic score (PS) of an individual is to select a set of independent 

variants identified by a GWAS, to weight the number of copies of each variant by its effect size 

estimate from the GWAS, and to sum these quantities over the variants. PS have turned out to be a 

useful tool for identifying high risk individuals in many diseases such as breast cancer (Mavaddat et 

al. 2015), prostate cancer (Schumacher et al. 2018) and Alzheimer’s disease (Stocker et al. 2018). 

As an example, a PS for coronary artery disease (CAD) can characterize individuals with risk 

equivalent to carrying a monogenic variant of familial hypercholesterolemia (Khera et al. 2018). At 

the same time, two recent studies have raised concerns about comparing PS between populations 

with varying demographic histories (Martin et al. 2017; Reisberg et al. 2017). Both studies showed 

that when a PS was built on a GWAS conducted in European populations and then applied to 

populations from Africa or East Asia, the differences in the PS were inconsistent with the actual 

phenotypic differences between the populations. Exact reasons for this inconsistency are unclear, 

but it has been speculated that a complex interplay of population genetic differences, including 

varying linkage-disequilibrium patterns and allele frequency differences, between the target sample 

and the GWAS data can limit generalizability across populations (Martin et al. 2017; Reisberg et al. 

2017). Can similar problems appear also within a much more genetically and environmentally 

homogeneous setting than between populations from different continents? This is a crucial question 

for the public health care systems in countries that have the growing potential to implement 

polygenic scores as part of their population-wide practice.  
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In this work, we evaluate the geographic distribution of PS of several complex diseases and traits in 

Finland and demonstrate how the effect of genetic population structure needs to be assessed before 

PS can become a robust tool for population-wide use. The data resources available in Finland 

provide several favorable characteristics for this study. First, on a world-wide scale, Finland has a 

demographically and socially homogeneous population and a top-level public health care system 

(GBD 2016 Healthcare Access Quality Collaborators 2018), which together reduce many possible 

environmental effects contributing to geographic variation in health. Second, some notable 

geographic differences in phenotypes and general health still occur in Finland. A good example is 

the incidence rate of CAD that is 1.6 times higher in eastern Finland than in western Finland (THL) 

(Figure 1). In fact, even larger differences in CAD incidence were observed in the 1970s and 

despite the extensive and successful public health campaign to reduce these rates through the 

Northern Karelia project (Puska et al. 2009), differences between east and west still remain today. 

Third, the genetic structure in Finland is well-characterized (Lappalainen et al. 2006; Jakkula et al. 

2008; Salmela et al. 2008; Neuvonen et al. 2015; Kerminen et al. 2017; Martin et al. 2018b) (Figure 

1), which enables a detailed comparison between the geographic distribution of PS and the overall 

genetic population structure within the country.  

 

In our analyses, we observe clear geographic structure in PS distributions for most phenotypes 

considered. Furthermore, the spatial pattern is similar across the phenotypes and resembles the 

population genetic east-west division of Finland (see comparison for CAD in Figure 1). While a 

population genetic difference can well result in such patterns, a major goal of this work was to 

thoroughly assess whether these geographic patterns could alternatively result from some bias 

emerging when the GWAS estimates of tens of thousands of variants are accumulated into PS. We 

do this by generating many versions of PS with different inclusion criteria of variants and by 

monitoring how the geographic structure accumulates across these PS.  

 

To demonstrate our approach, we consider the adult height (HG) as a model trait. In addition to HG, 

we apply our approach to two additional quantitative traits: body-mass index (BMI) and waist-hip 

ratio (WHR) and five diseases: coronary artery disease (CAD), rheumatoid arthritis (RA), 

schizophrenia (SCZ), Crohn’s disease (CD) and ulcerative colitis (UC). The results suggest that 

polygenic components of CAD, RA, SCZ, WHR, BMI and HG show differences along the east-

west direction, while only HG and WHR also show differences in the north-south direction. PS for 

CD and UC do not show significant regional differences in either direction. Last, we discuss the 
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credibility of the observed geographic differences. In particular, we report possible population 

stratification-related biases in PS for CAD, WHR, BMI and HG. Our results raise concerns about 

how to reliably interpret geographic variation in PS even within relatively homogeneous 

populations.  

 
Figure 1. A) Main genetic population structure, B) incidence rate for age adjusted coronary artery 

disease (CAD), 2013-2015 (THL, Sepelvaltimotauti-indeksi) C) distribution of polygenic score 

(PS) for CAD in Finland. Population structure was estimated by clustering 2,376 samples into two 

groups (Kerminen et al. 2017). Incidence rate is scaled to have a mean = 100. PS distribution is 

shown in unit of standard deviation. 

 

Results 

Polygenic scores show geographic differences in Finland 

We estimated PS across Finland using a geographically well-defined sample of 2,376 individuals 

from the National FINRISK Study 1997 survey (Borodulin et al. 2017).  Each of these 2,376 

individuals had his/her parents born within 80 km from each other and the mean of the parents’ 

coordinates were used as the individual’s location. We derived PS for the individuals using 

summary statistics from publicly available GWAS meta-analyses by applying linkage 

disequilibrium pruning (r2 < 0.1), minor allele frequency filtering (MAF > 0.01) and P-value 

thresholding (P < 0.05) (Methods).  To visualize the results on the map of Finland (Figure 2), we 

estimated the score at each map point by averaging individuals’ PS inversely weighted by the 

individuals’ squared distance from the point (Methods).  
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We applied our approach to five diseases: coronary artery disease (CAD), rheumatoid arthritis 

(RA), Crohn’s disease (CD), ulcerative colitis (UC) and schizophrenia (SCZ), as well as for three 

quantitative traits: body-mass index (BMI) waist-hip ratio adjusted for BMI (WHR) and height 

(HG).  We observe that the PS patterns for CAD, RA, SCZ, BMI, HG and WHR closely resemble 

the main population structure in Finland (Figure 1A). CD and UC do not show clear geographic 

differences between any parts of the country. 

 

 
Figure 2. Distribution of polygenic scores for A) Coronary Artery Disease, B) Rheumatoid 

Arthritis C) Crohn’s Disease, D) Ulcerative Colitis, E) Schizophrenia, F) Body-Mass Index G) 

Waist-Hip Ratio adjusted for body-mass index and H) Height. P-values correspond to the 

association with longitude presented in Table 1. 

  

To evaluate statistically whether the PS show geographic differences, we quantified the patterns 

using a linear model for correlated data, where we explained individuals' PS with either longitude or 

latitude and accounted for genetic relatedness of the samples (Methods). The strongest differences 
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were observed for longitude on HG (P = 2.1e-60) and WHR (P = 4.7e-12) and lower but non-zero 

differences on CAD, RA, SCZ and BMI (all with P<0.05) (Table 1, see Table S1 for results based 

on the standard linear model without accounting for genetic relatedness). HG and WHR showed 

differences also for latitude while CD and UC did not show differences either for longitude or 

latitude. Table 1 also shows that the difference in PS between Eastern Finland (EF) and Western 

Finland (WF) subpopulations is the largest in HG (-1.51 standard deviation units) and in WHR 

(1.16). In general, we observed stronger PS differences between east and west than between north 

and south, which is in line with the main population structure in Finland. 
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Table 1. Results from the linear model for correlated data where polygenic score (PS) is explained by latitude or longitude. SNPs=number of 

variants in PS. Difference in PS between Eastern Finland (EF) and Western Finland (WF) subpopulations is given in the standard deviation unit 

of PS. *marks a P-value < 0.05. 

 
  

Latitude Longitude  

Trait Study  SNPs Estimate P-val Estimate P-val EF-WF Difference (95% CI) 

CAD CARDIoGRAMplusC4D  

(Nikpey et al. 2015) 
19,597 -6.3e-4 0.97 0.05 1.6e-4* 0.63 (0.55, 0,71) 

RA Okada et al. 2014 32,736 0.03 0.12 0.06 5.5e-5* 0.63 (0.55, 0.63) 

CD IIBDGC  

(Liu et al. 2015) 

21,771 0.03 0.18 -0.002 0.87 -0.10 (-0.19, -0.01) 

UC IIBDGC  

(Liu et al. 2015) 

23,513 0.03 0.23 0.02 0.22 0.26 (0.18, 0.35) 

SCZ PGC 

(Ripke et al. 2014) 

30,311 0.04 8.7e-2 0.04 4.0e-3* 0.35 (0.26, 0.43) 

BMI GIANT 

(Locke et al. 2015) 

12,742 0.03 9.4e-2 0.04 1.8e-3* 0.53 (0.44, 0.61) 

WHR GIANT  

(Shungin et al. 2015) 

13,727 0.10 1.0e-9* 0.08 4.7e-12* 1.16 (1.09, 1.23) 

HG GIANT  

(Wood et al. 2014) 

27,066 -0.18 1.1e-40* -0.15 2.1e-60* -1.51 (-1.58, -1.45) 
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Recently, it has been reported that PS differences between populations are prone to technical and 

confounding biases arising especially from population genetic differences (i.e. genetic divergence) 

or relatedness structure between the GWAS discovery and the target data (Martin et al. 2017; 

Reisberg et al. 2017; Berg et al. 2018; Curtis 2018; Sohail et al. 2018). To assess whether some of 

the results in Figure 2 and Table 1 might be affected by these problems, we next concentrate on 

evaluating our PS in several ways. We use HG as a model trait for developing the methodology. 

  

Height PS in three independent cohorts 

Adult height (HG) is a highly heritable and polygenic trait (Silventoinen et al. 2003; McEvoy and 

Visscher 2009; Wood et al. 2014), and shows clear phenotypic differences in Finland; Western 

Finns are on average 1.6 cm taller than Eastern Finns (Methods; Figure 3A). Furthermore, HG is a 

quantitative trait that makes it possible to compare geographic differences between the observed 

phenotype and the predictions based on PS. For such comparisons, we regressed out effects of sex, 

age and age2 from HG using residuals from a standard linear model. 

 

We calculated HG-PS using summary statistics from three independent GWAS, including results 

from the GIANT consortium (meta-analysis from a heterogeneous set of European samples) (Wood 

et al. 2014), UK Biobank (single cohort of uniformly genotyped and phenotyped white British 

samples) and the National FINRISK study (Finnish samples genotyped with two different chips) 

using our standard pipeline (Methods). Table 2 summarizes the performance of these three scores.  

 

The GIANT consortium height GWAS is a meta-analysis of 250,000 samples from multiple 

European populations, and it includes about 30,000 Finnish samples (Wood et al. 2014). The 

GIANT-PS included 27,000 variants, explained 14% of the variance of height and showed dramatic 

geographic differences in Finland (Figure 3B). The GIANT-PS was 1.5 SD units larger in Western 

Finland (WF) than in Eastern Finland (EF) and we estimated that this difference would correspond 

to 3.5 cm predicted height difference between WF and EF by regressing height on this PS in the 

target sample of 2,376 Finnish individuals (Methods). This difference is over twice the observed 

phenotypic difference between the subpopulations. Note that even if we assumed that all variation 

in height were genetic, we would expect our GIANT-PS (that has R2 < 15%) to explain only a part 

of the actual 1.6 cm WF-EF height difference. This raises concerns that GIANT-PS produces 

geographically biased results in our target sample that cannot be interpreted directly on the 

phenotypic scale. The predictions were even larger for GIANT-PS if the HG-on-PS regression was 
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done within the WF subpopulation (4.7 cm) or within EF subpopulation (6.4 cm) alone (Table S5), 

indicating challenges of interpretability for absolute differences among subpopulations.   

 

Second, we built a PS based on over 330,000 samples of British ancestry from the UK Biobank 

analyzed by the team led by Benjamin Neale (Churchhouse and Neale 2017). Using the same 

pipeline as with GIANT-PS, this UKBB-PS contained considerably more variants and gave 

qualitatively similar geographic results to GIANT-PS but quantitatively showed much smaller WF-

EF differences (Figure 3C). UKBB-PS explained 22% of the variation of height in the target sample 

and corresponded to 0.6 cm predicted WF-EF difference in height.  

 

Third, we built a PS based on the Finnish population-specific summary statistics from the National 

FINRISK Study (Borodulin et al. 2017). This FINRISK GWAS included nearly 25,000 samples and 

excluded all our 2,376 target individuals. This FINRISK-PS (50,000 SNPs) explained 15% of the 

variance of height and showed significant WF-EF differences that corresponded to 1.4 cm 

difference in predicted height (Figure 3D). For FINRISK-PS and UKBB-PS the predictions were 

robust to whether the regression was done in the whole target sample or in its WF or EF subset 

alone (Table S5). 

 

Table 2. Summary of the results in HG-PS comparison. Adjusted R2 is the variance explained by the 

PS in the target set. 

Source 

GWAS Ancestry GWAS N 

Finnish 

samples 

Variants 

in PS 

Adjusted 

R2 

GIANT European 253,288 ~35,000 27,066 14 % 

UK Biobank British 337,199 0 113,079 22 % 

FINRISK Finnish 24,919 24,919 50,536 15 % 

 

Source 

GWAS 

Observed WF-EF HG-PS 

difference (SD unit; 95%CI) 

Predicted WF-EF HG 

difference (cm; 95%CI) 

GIANT 1.51 (1.45, 1.5) 3.52 (3.14, 3.90) 

UK Biobank  0.23 (0.14, 0.32) 0.64 (0.39, 0.89) 

FINRISK  0.59 (0.51, 0.67) 1.35 (1.14, 1.58) 
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These results show a consistent direction in predicted height differences between Eastern and 

Western Finland based on three independent GWAS that have different relationships to the target 

sample. The predicted direction is also consistent with the observed phenotypic difference. 

However, the results show considerable, and concerning, variation in the predicted geographic 

difference of genetic component of height. 

 

 
Figure 3. A) Distribution of sex, age and age2 adjusted adult height and polygenic score (PS) 

distributions of B) GIANT-PS, C) UKBB-PS and D) FINRISK-PS for height in Finland. The values 

are in standard deviation unit. 

 

Evaluating possible biases in polygenic score for height 

 

PS from GIANT accumulates geographic differences 

An accumulation of small biases may be a substantial risk in PS of thousands of variants. These 

small biases can arise, for example, from unadjusted population structure in the underlying GWAS 

or from overlapping samples between GWAS and target data (Freedman et al. 2004; Marchini et al. 

2004). To understand whether the differences in our PS and the unrealistic predictions of 

geographic height differences may be due to a bias accumulation, we generated additional PS by 

varying inclusion criteria of variants.  

 

First, we used variants from the initial PS but applied different P-value thresholds. Even though 

these scores included different numbers of variants, the variance explained did not vary strongly 
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across the thresholds for GIANT-PS or UKBB-PS (Figure 4A), which replicates the behavior of PS 

reported earlier by Wood et al. 2014 for other target populations. For FINRISK, the variance 

explained increased considerably with more liberal P-value threshold due to the smaller sample size 

of the study; specifically, the FINRISK-PS included only a handful of variants for the smallest P-

value thresholds and thus had only a little predictive power there (Figure 4A). Conversely, the 

predicted east-west height differences in the GIANT-PS decreased considerably as more stringent 

P-value cutoffs were used, while the variance explained for height by the PS increased 

simultaneously (Figure 4B). The decrease was much subtler for the other two PS. To confirm the 

effect of the number of variants in the predicted height differences, we randomly sampled 1000 

variants from each of the different P-value thresholds in GIANT-PS and calculated the 

corresponding scores. These PS showed similar levels of predicted WF-EF height difference (about 

1 cm) independent of the P-value threshold, which suggests that the number of variants is a more 

important factor behind the geographic structure of GIANT-PS than the actual phenotypic variance 

explained by the variants (Figure S1).  

 

Concerned about the accumulation of WF-EF differences in GIANT-PS, we tested whether similar 

accumulation occurred even over random, non-associated variants. We randomly sampled different 

numbers of independent variants whose P-values were over 0.5 in GWAS (suggesting a negligible 

association to height) and calculated PS for them (we call these “random PS”). This test showed 

considerable geographic differences in random PS based on GIANT GWAS and these differences 

increased with the number of variants (Figure 4C-D). Similar but weaker behavior was detected for 

FINRISK variants but not for UKBB.  
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Figure 4. Comparison of PS constructed from height-associated versus random SNPs demonstrates 

differences in stratification effects by GWAS summary statistics. Top row: A) Height variance 

explained by PS and B) predicted East-West difference in height by PS, as a function of P-value 

threshold in GWAS data.  

Bottom row:  C) Height variance explained by PS and D) predicted East-West difference in height 

by PS, as a function of the number of independent variants in PS when all variants have P-value > 

0.5 in GWAS. Variance explained is given as adjusted R2. 

 

One potential explanation for the observed behavior of GIANT-PS is that the effect size estimates 

have a consistent directional bias that is aligned with the main population structure in Finland. 

Indeed, GIANT-PS is highly correlated with the leading principal component (PC1) of population 

structure in our target sample (r = 0.80) and when we removed the linear effect of PC1 from the 

GIANT-PS (Methods), the residuals explained more variance (19%) of height than the original 

GIANT-PS (14%). This suggests that in the effect size estimates of GIANT-PS, a part of the true 
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height association is masked by a strong component aligned with PC1 in Finland. For neither 

FINRISK-PS nor UKBB-PS did the removal of the linear effect of PC1 improve the variance 

explained in our target sample (Table S2). To further test the possible bias in GIANT effect 

estimates, we took the overlapping HG variants between the GIANT-PS and the UKBB data 

(overlap was 26,853 out of 27,066 variants) and made a new GIANT-UKBB-PS (i.e. using GIANT 

variants but UKBB effects). We observed that this GIANT-UKBB-PS explained 26% of the height 

variance in the target sample and, contrary to GIANT-PS, its predictive power was not masked by 

PC1 (R2 dropped from 26% to 24% after regressing out PC1 from GIANT-UKBB-PS). Multiple 

regression unequivocally showed that GIANT-PS was not predictive of HG (P = 0.25) when 

GIANT-UKBB-PS was simultaneously included in the model (P = 3e-84). These observations 

confirm that while the variants in GIANT-PS are useful for predicting HG in Finnish samples, their 

estimates reported in GIANT are unrealistically strongly associated with the population structure in 

Finland and that the UKBB effect size estimates considerably improve the predictive power of the 

corresponding PS. However, we also observed that, despite more accurate effect estimates, the 

GIANT-UKBB-PS predicted surprisingly large WF-EF difference (2.5 cm [2.0, 2.8]). This suggests 

that it is not only the bias in effect estimates that drives the geographic difference but also the 

choice of the variants. We speculate that the variant that has the smallest HG P-value in GIANT in 

any one genomic region tends to be one of the most geographically stratified variants among all HG 

associated variants in that region. This could lead to a PS that is enriched with geographically 

stratified variants and therefore emphasize geographic differences in PS even when the effect 

estimates were unbiased for HG. 

 

Together, these analyses suggest that the geographic distribution of PS based on the GIANT 

summary statistics consistently exaggerates height differences between the main Finnish 

subpopulations, whereas much less confounding from population stratification is seen in FINRISK-

PS, and almost none is observed in UKBB-PS. A few possible reasons for this bias accumulation 

could be inadequate adjustment for population structure in GWAS (Sohail et al. 2018, Berg et al. 

2018) or partially overlapping or related samples between GWAS samples and test data. Next, we 

consider the effect of overlapping and related samples.  

 

Effect of overlapping samples 

Our target data originate from the National FINRISK Study that is not reported among the GIANT 

cohorts (neither among 46 cohorts in (Lango Allen et al. 2010) nor among additional 32 cohorts in 
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Wood et al. 2014). However, a closer look into the cohort descriptions suggested that COROGENE, 

DILGOM, MORGAM and MIGEN cohorts may include some FINRISK samples. This shows that 

it is not always straightforward to keep track of where publicly accessible samples have been used 

previously, which would be a crucial piece of information for appropriately validating PS. While 

computational methods exist to detect sample overlaps between GWAS summary statistics (Bulik-

Sullivan et al. 2015), their behavior in large datasets are not yet completely understood (Yengo et 

al. 2018). 

 

To test whether overlapping individuals affect results, we ran an additional GWAS on HG using the 

FINRISK samples but now also included the 2,376 target individuals in the GWAS. We then built a 

PS (called FINRISK-OV-PS for FINRISK-OVERLAP-PS) based on this GWAS and compared it to 

our original FINRISK-PS where the target individuals were excluded. FINRISK-OV-PS was 

naturally overfitted to the target data and consequently explained 74% of the height variance in the 

target sample. Despite this overfitting, it predicted only a 1.5 cm [95% CI: 1.07 - 1.93] height 

difference between WF and EF, which is very similar to the prediction of our original FINRISK-PS 

(1.4 cm [95% CI: 1.14 - 1.58]). This demonstrates that even a large number of overlapping samples 

may have only a small effect on the predicted geographic difference between the populations even 

though the overfitting effect on the variance explained may be enormous. Thus, the possible overlap 

between GIANT GWAS and some of our target individuals is unlikely to be the main reason for the 

large difference in geographic distribution between GIANT-PS and the other PS.  

 

Effect of related individuals and residual population structure 

Cryptic relatedness or unadjusted population structure can cause bias in GWAS that can affect the 

PS. We assessed the effects of these factors by comparing our initial HG-PS based on the results 

from the GWAS of standard linear regression using principal component adjustment to a PS based 

on the GWAS using a linear mixed model implemented in BOLT-LMM (Loh et al. 2015), both in 

FINRISK and UKBB data. We could not apply the mixed model to GIANT data since the 

individual-level data were not available to us. Results (Table S3) show that for UKBB, the PS based 

on the mixed model explained slightly more variance of height (25%) in our target sample than the 

PS based on linear regression (22%), while for FINRISK, the variance explained remained the same 

(15%). The predicted height differences between WF and EF based on the BOLT-LMM summary 

statistics were 0.37 cm (0.10 - 0.64 cm) for UKBB and 1.15 cm (0.94 – 1.38 cm) for FINRISK. 

Compared to the standard linear regression, 0.64 cm (0.39 – 0.89 cm) for UKBB and 1.35 cm (1.14 
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– 1.58 cm) for FINRISK, PS based on the mixed model gave smaller predicted differences, 

although the differences between the mixed model and the standard linear model were not 

statistically significant. This suggests that there can be some residual population structure and/or 

cryptic relatedness using standard linear regression with the leading principal components as 

covariates, resulting in larger geographical differences in the PS. We further tested whether the 

mixed model reduced the accumulation of population differences in the random PS in FINRISK 

data but the accumulation remained similar to the linear model results (Figure S2). Another way 

how cryptic relatedness could affect PS is through non-random relatedness between the GWAS and 

target samples. Later in this work, we will use SCZ data to test whether including some Finnish 

samples in GWAS has an effect on geographic differences of SCZ PS. 

 

Testing bias accumulation in other complex diseases and traits 

 

Accumulation of geographic differences in other diseases and traits 

After assessing multiple sources of bias accumulation in HG, we applied similar strategies to the 

other seven phenotypes. For each phenotype, we generated random PS with increasing number of 

variants to detect a possible accumulation of biases. Here we present absolute difference between 

Eastern and Western Finland using standardized PS since we did not have a way to turn these to the 

phenotypic scale for disease studies. Figure 5 shows that for RA, CD, UC and SCZ, the absolute 

WF-EF PS difference of the random score is close to zero whereas for CAD, BMI, WHR and HG 

we observe a possible accumulation of bias.  
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Figure 5. Absolute value of polygenic score difference between Eastern and Western 

subpopulations using different numbers of independent variants (r2 < 0.1) randomly chosen with 

GWAS P-value > 0.5. For BMI and WHR, the data did not contain more than 60,000 independent 

variants. The solid region is the 95% probability interval under the theoretical null assumption of 

zero effect sizes and completely independent variants (r2 = 0) (Methods).  

 

Similarly to HG, we were able to compare the geographic distribution of PS of BMI and WHR to 

their phenotypic counterparts. Figures S3A and S6A show that neither BMI nor WHR shows clear 

geographic patterns in our data. For BMI, the comparison of PS based on three different GWAS 

(Figure S3 B-D and Figure S4) shows that GIANT-PS has the largest variance explained (8.0%) 

and the largest geographic difference and also shows signs of an accumulation of geographic bias 

between populations when we use PS based on a random set of non-associated variants. UKBB-PS 

does not show any evidence of EF-WF difference matching the observed phenotypic distribution 

(Figure S3) and explains 4.9% of variance. FINRISK-PS explains the least amount of phenotypic 

variance (1.3%) and shows only a limited amount of EF-WF difference. For WHR, GIANT-PS 

explained 2.0% of variance and showed again a dramatic geographic difference both for the initial 

PS and a random set of non-associated variants. FINRISK-PS explained 1.1% of variance and 

showed a very subtle difference between East and West (Figures S5, S6 and Table S7). The UKBB 

GWAS results available at Neale lab summary statistic resource did not contain WHR. These 

results on BMI and WHR largely repeat the results on HG with respect to the behavior of PS as a 

function of the three different GWAS cohorts. 

 

 

Table 3. Summary of the GWAS statistics and sources of possible bias. For diseases, GWAS n = 

cases / controls. 

Trait Study Method 

GWAS 

ancestry GWAS n 

Finnish 

samples 

CAD CARDIoGRAM 

plusC4D Consortium 

(Nikpay et al. 2015) 

Logistic regression 

(additive model) 

Trans-ethnic 60,801 / 

123,504 

5,825 / 5,639 

RA Okada et al. 2014 Logistic regression 

(additive model) 

European 18,136 / 

49,724 

-- 
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SCZ Psychiatric Genomics 

Consortium 

(Schizophrenia 

Working Group of the 

Psychiatric Genomics 

2014) 

Logistic regression 

(additive model) 

European + 

East Asian 

36,989 / 

113,075 

546 / 2,011 

(excluded 

from our 

analyses) 

UC IIBDGC (Liu et al. 

2015) 

Logistic regression European 6,968 / 

20,464 

-- 

CD IIBDGC (Liu et al. 

2015) 

Logistic regression European 5,956 / 

14,927 

-- 

WHR GIANT consortium 

(Shungin et al. 2015) 

Linear regression 

(additive model) 

Trans-ethnic 224,459 

 

~32,000 

BMI GIANT consortium 

(Locke et al. 2015) 

Linear regression 

(additive model) 

European 322,154 

 

~36,000 

HG GIANT consortium 

(Wood et al. 2014) 

Linear regression 

(additive model) 

European 253,288 ~35,000 

 

Effect of Finnish samples in schizophrenia 

Table 3 summarizes the properties of GWAS that we used. It is noteworthy that all phenotypes with 

Finnish samples included in the GWAS also showed some bias accumulation in our analyses 

(Figure 5). Because Finns are considered a genetic isolate (Lappalainen et al. 2006; Jakkula et al. 

2008; Kerminen et al. 2017; Martin et al. 2018b), we tested whether including a small number of 

Finnish samples (but not our target individuals) had an effect on geographic distribution of PS. SCZ 

was the only phenotype in Table 3 where we had access to the original GWAS data. Summary 

statistics of SCZ reported by Psychiatric Genomics Consortium (Schizophrenia Working Group of 

the Psychiatric Genomics 2014) included 546 Finnish cases and 2,011 Finnish controls, while in our 

analyses so far, we have used summary statistics where these individuals were excluded. We 

compared the results of the PS based on the GWAS excluding (SCZ-PS) and including the Finnish 

samples (SCZ-INCL-PS) and, overall, the genetic risk maps show similar risk patterns (Figure S7). 

Quantitatively, the geographic difference in the PS difference is stronger in SCZ-INCL-PS (Table 

S4), which varies significantly both in the east-west (P < 3e-4) and north-south (P < 4e-6) 

directions, while SCZ-PS shows significant differences only in the east-west (P < 4e-3) direction. 
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Thus, there is a possible effect of cryptic relatedness between the original GWAS sample and our 

target sample. However, since this effect seems to be stronger in north-south direction, we do not 

observe an accumulation of differences over randomly sampled variants between the EF and WF 

populations (Figure S8).   

 

Discussion 
 

Polygenic scores (PS) have recently reached predictive power of some well-established monogenic 

risk factors for disease (Khera et al. 2018), and several projects are currently testing their utility in 

health care settings. PS could also potentially inform us about the role of genetics in geographic 

variability of traits and disease. However, a major challenge is that the geographic distribution of 

PS is a complex function of population genetic differences between the GWAS data and the target 

samples, complicating its interpretation (Scutari et al. 2016; Martin et al. 2017; Reisberg et al. 2017; 

Martin et al. 2018a). Here we studied the geographic distribution of several PS within Finland and 

assessed their robustness and possible biases in several ways.   

 

By generating PS for eight phenotypes on Finnish samples, we observed strong similarities between 

the geographic distribution of several PS and the main population structure in Finland that runs 

from south-west to north-east (Kerminen et al. 2017). We further showed that even the least 

statistically significantly associated half of the effect sizes (with GWAS P-value > 0.5) were 

carrying a consistent pattern of east-west difference for CAD (CARDIoGRAM data) and the three 

anthropometric traits from the GIANT consortium: HG, BMI and WHR, which we interpret 

indicating a likely bias. In theory, such a pattern could also result from extreme polygenicity. 

However, with the highly polygenic HG as our model trait, we showed that the random score from 

our largest HG GWAS based on the UK Biobank did not show any east-west variation within 

Finland. This suggests that the geographic difference accumulating in the random score from 

GIANT is rather due to bias than polygenicity. Furthermore, we observed for HG that the GIANT-

PS was so strongly aligned with the first principal component of the genetic structure in our target 

data that this association masked some of the predictive power of the PS. This suggests that the 

effect estimates from GIANT contains a bias aligned with the main population structure in Finland, 

which is in line with two recent studies that have reported related biases in the context of polygenic 

selection studies (Berg et al. 2018; Sohail et al. 2018). 
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For all three quantitative traits, PS predicted unrealistically large geographic differences compared 

to the actual phenotypic differences. A theoretical but unlikely possibility remains that the 

geographic structure of the genetic component not explained by our current PS could be opposite to 

the component that is explained by our current PS, which could eventually balance out the 

unrealistically large estimates for GIANT-PS and FINRISK-PS. However, given that the estimated 

difference consistently increases with the inclusion of more variants in PS, a more plausible 

explanation is that we simply cannot robustly interpret the geographic differences in PS derived 

from existing GWAS on the phenotypic scale via a simple regression framework. Earlier, results of 

phenotypically inconsistent PS differences between continental groups have been reported (Martin 

et al. 2017; Reisberg et al. 2017; Curtis 2018). Here we show that similar patterns can exist even for 

a relatively small geographic area and a relatively homogeneous population of Finland. We note 

that even if the genetic E-W difference in Finland may be large compared to variation within some 

other European countries (Salmela et al. 2008), it is tiny compared to the continental differences 

(The 1000 Genomes Project Consortium 2012).  

 

Our results showed that the phenotypes that did not accumulate E-W differences were the two types 

of inflammatory bowel disease (CD and UC), and SCZ and RA. Of these, CD and UC did not show 

any geographic PS variation in Finland. To our knowledge, only two studies have studied the 

geographic variation in the prevalence of inflammatory bowel disease (IBD) in Finland. Lehtinen et 

al. 2016 reported higher incidence rates of pediatric IBD in more sparsely populated areas while 

Jussila et al. 2013 reported increasing UC prevalence rates in Northern Finland but no geographic 

structure for CD. Our polygenic risk prediction for CD is in line with the observations in Jussila et 

al. (2013) and, even though the PS of UC did not show significant geographic differences in our 

statistical analysis, the genetic risk map for UC shows some increasing risk pattern in Northern 

Finland. SCZ showed a higher polygenic risk in EF than in WF, which is in line with extensive 

geographic incidence information from several studies (Lehtinen et al. 1990; Hovatta et al. 1997; 

Haukka et al. 2001; Perala et al. 2008; Pietiläinen 2014; Kurki et al. 2018) that describe highest 

SCZ prevalence/incidence rates in Northern and Eastern Finland and lowest rates in the South-

western parts of the country. Also, RA showed higher polygenic risk in EF than in WF. Our limited 

information about regional incidence of RA in Finland is from (Kaipiainen-Seppanen et al. 2001) 

who reported highest RA incidence rates for North Karelia (in EF) and lowest for Ostrobothnia (on 

the west coast), but unfortunately the study did not include Southwestern or Northern Finland.  
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Neither our SCZ nor our RA GWAS summary statistics included any Finnish samples. Together 

these two diseases exemplify the potential of PS to explain geographic health differences.  

 

To conclude, we recommend the following practices for geographic evaluation of PS. (1) Check 

residual geographic stratification of PS by generating random scores of non-associated variants and 

by testing whether PS unrealistically strongly align with the leading PCs of genetic structure. (2) 

Use a linear/logistic mixed model instead of the standard linear/logistic regression model in GWAS. 

(3) Compare the genetically predicted phenotypic difference between populations to the observed 

phenotypic difference to detect unrealistic genetic predictions. With these tools, we showed that 

while PS for several traits in Finland followed the geographic distribution of the phenotype (HG, 

CAD, SCZ, RA, CD, UC), for CAD, HG as well as for BMI and WHR, we observed suspicious 

behavior of the geographic distribution of PS that could indicate a bias arising from population 

genetic structure rather than from a direct genotype-phenotype association. Our results emphasize 

that we have limited understanding of the interplay between our current PS and genetic population 

structure even within one of the most thoroughly studied populations in human genetics. Therefore, 

we recommend refraining from using the current PS to argue for significant polygenic basis for 

geographic phenotype differences until we understand better the source and extent of the 

geographic bias in the current PS. 
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Materials and Methods 
 

Geographically defined target data 

We used data from the National FINRISK Study which is a survey for Finnish adult population (age 

from 25 to 74) to estimate risk and protecting factors of chronic diseases (Borodulin et al. 2017). 

The FINRISK Study has collected several thousand samples every five years, since 1972. We used 

data from the FINRISK Study survey of 1997 on geographically defined sample of 2,376 

individuals that was previously described in Kerminen et al. 2017. The two parents of each 

individual in this sample were both born within 80 km from each other. For the genetic analyses, we 

used genotypes from Illumina HumanCoreExome-12 BeadChip (see details in Kerminen et al. 

2017) and imputed genotypes as described in (Ripatti et al. 2016). 

 

Variant filtering for polygenic scores 

We derived polygenic scores (PS) in our target data for each disease and trait based on large 

international GWAS meta-analyses whose summary statistics were publicly available. We derived 

all PS by excluding variants whose minor allele frequency (MAF) was below 1% in meta-analysis 

or whose meta-analysis P-value was above 0.05 or that resided in the major histology complex (chr 

6: 25-34 Mb) (Price et al. 2008). In addition, where applicable, we filtered out variants whose INFO 

score was below 90% or that had been present in less than 90% of the cohorts of the meta-analysis. 

We also excluded all multi-allelic variants. Finally, the PS were built by selecting independent 

variants with PLINK 1.9 (Purcell and Chang ; Chang et al. 2015), using clump command with 500 

kb window radius and 0.1 threshold for r2. Number of remaining variants in each PS are given in 

Tables 1 and 2. Below, we give the detailed information of the data and filtering for each disease 

and trait separately.  

 

CAD 

The CAD-PS was derived from the CARDIoGRAMplusC4D study (Nikpay et al. 2015) and the 

summary statistics were based on the cohort with trans-ethnic ancestry. Variant filtering was based 

on above MAF and P-value thresholds. INFO score filtering was used. Variant was also filtered out 

if it was not observed in at least 90% of the cohorts in meta-analysis. 

RA 

The RA-PS was derived from study of Okada et al. (2013) and the summary statistics were based 

on the cohort with European ancestry. Variant filtering was based on above MAF and P-value 
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thresholds. INFO score filtering was not used because it was not available. MAF was based on the 

FINRISK data. Filtering based on the number of cohorts or samples was not used. 

CD 

The CD-PS was derived from the International Inflammatory Bowel Disease Genetics Consortium 

study (Liu et al. 2015) and the summary statistics were based on the cohort with European ancestry. 

Variant filtering was based on above MAF and P-value thresholds. INFO score filtering was used. 

Variant was also filtered out if it was not observed in at least 90% of the cohorts in meta-analysis. 

UC 

The UC-PS was derived from International Inflammatory Bowel Disease Genetics Consortium 

study (Liu et al. 2015)  and the summary statistics were based on the cohort with European 

ancestry. Variant filtering was based on above MAF and P-value thresholds. INFO score filtering 

was used. Variant was also filtered out if it was not observed in at least 90% of the cohorts in meta-

analysis. 

SCZ 

The SCZ-PS was derived from Psychiatric Genomics Consortium study (Schizophrenia Working 

Group of the Psychiatric Genomics 2014) and the summary statistics were based on the cohort with 

European and Asian ancestry from which the Finnish samples (546 cases and 2,011 controls) were 

excluded. Variant filtering was based on above MAF and P-value thresholds. INFO score filtering 

was used. Variant was also filtered out if it was not observed in at least 90% of the cohorts in meta-

analysis. 

HG 

The HG-GIANT-PS was derived from the GIANT consortium study (Wood et al. 2014) and the 

summary statistics were based on the sex-combined cohort with European ancestry. Variant 

filtering was based on above MAF and P-value thresholds. INFO score filtering was not used as it 

was not available. Variant was also filtered out if it was not observed in at least 90% of samples. 

The HG-UKBB-PS was derived from the UK Biobank data analyzed by the Neale lab 

(Churchhouse and Neale 2017) and the summary statistics were based on the cohort with white-

British ancestry. Variant filtering was based on above MAF and P-value thresholds. INFO score 

filtering was not used as it was not available. Filtering based on the number of cohorts or samples 

was not used. 

The HG-FINRISK-PS was derived from the National FINRISK Study (Borodulin et al. 2017) and 

the summary statistics were based on the cohort with Finnish ancestry (see details below).  Variant 

filtering was based on above MAF and P-value thresholds. INFO score filtering was not used. 

Filtering based on the number of cohorts or samples was not used. 
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BMI  

The BMI-GIANT-PS was derived from the GIANT consortium study (Locke et al. 2015) and the 

summary statistics were based on the sex-combined cohort with European ancestry. Variant 

filtering was based on above MAF and P-value thresholds. INFO score filtering was not used as it 

was not available. Variant was also filtered out if it was not observed in at least 90% of samples. 

The BMI-UKBB-PS was derived from the UK Biobank data analyzed by the Neale lab 

(Churchhouse and Neale 2017) and the summary statistics were based on the cohort with white-

British ancestry. Variant filtering was based on above MAF and P-value thresholds. INFO score 

filtering was not used as it was not available. Filtering based on the number of cohorts or samples 

was not used. 

The BMI-FINRISK-PS was derived from the National FINRISK Study (Borodulin et al. 2017) and 

the summary statistics were based on the cohort with Finnish ancestry (see details below).  Variant 

filtering was based on above MAF and P-value thresholds. INFO score filtering was not used. 

Filtering based on the number of cohorts or samples was not used. 

WHR 

We considered BMI-adjusted WHR throughout this work. 

The WHR-GIANT-PS was derived from the GIANT consortium study (Shungin et al. 2015) and the 

summary statistics were based on the sex-combined cohort with European ancestry. Variant 

filtering was based on above MAF and P-value thresholds. INFO score filtering was not used as it 

was not available. Variant was also filtered out if it was not observed in at least 90% of samples. 

The WHR-FINRISK-PS was derived from the National FINRISK Study (Borodulin et al. 2017) and 

the summary statistics were based on cohort with Finnish ancestry (see details below). Variant 

filtering was based on above MAF and P-value thresholds. INFO score filtering was not used. 

Filtering based on the number of cohorts or samples was not used. 

 

Additional GWAS for FINRISK and UK Biobank 

FINRISK 

We ran two standard linear regressions for HG, BMI and WHR (adjusted for BMI) first using 

27,294 individuals across the National FINRISK Study collections 1992-2012 and second 

excluding all our target individuals from the first set. The linear regression was done in HAIL 

(Hail). Both GWAS used sex, age, FINRISK project year, genotyping chip and the first 10 principal 

components of population structure as covariates in the analysis. In addition, we ran a linear mixed 

model for the second data set with the same covariates as with the standard linear model using 

BOLT-LMM v.2.3 (Loh et al. 2015). 
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UKBB 

For the UK biobank, we performed a linear mixed model GWAS for HG with BOLT-LMM v2.3 

(Loh et al. 2015). For this analysis, we mimicked the linear regression analysis (round 1) of the 

Neale lab (Churchhouse and Neale 2017) and used UKBB v2 genotypes on 343,728 samples with 

white-British ancestry. We used age, sex and the first 20 principal components as covariates and 

used directly genotyped variants with MAF above 1% and missingness below 10% for generating 

the variance component. GWAS statistics were calculated for imputed data with MAF above 0.1% 

and INFO above 0.7.  

 

Polygenic scores 

We calculated polygenic scores for the target set of 2,376 FINRISK individuals using the additive 

model as  

PS# = 	&x#(b)(

*

(+,

, 

where PSi  is a polygenic score for individual i, M is the number of SNPs in the score (after variant 

filtering), xij is the individual’s (imputed) genotype dosage for SNP j, and b) j is the effect size 

estimate of SNP j from the GWAS.  

 

Genetic risk maps 

To visualize the geographic distribution of PS, we used geographic locations of our geographically 

well-defined sample of 2,376 individuals and their PS. We estimated individual’s geographic 

location as the mean of his/her parents’ birth places. Risk maps were then created in R using a 

geographical centroid approach: it lays a grid on the map of Finland and for each grid point p 

calculates the average of individuals’ PS inversely weighted by their squared distance to the grid 

point as 

 

PS. = 	
1
r123

	&
PS#
r#.4

5

#+,

, 

 

where rip is the distance between individual i and grid point p, and r123 = ∑ ,
789
:#  is the sum of the 

weights. We used a grid with a square size of 10 kilometers and limited the minimum value for rip 

to be 50 kilometers to avoid high variance in weights. In addition, to control for uncertainty in the 
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areas that have a low sample size, we added to the calculation of PSp one pseudo-individual whose 

PS is the population average PS and whose distance to the point p is the minimum of the observed 

distances rip. This modification draws the PS values of grid points towards the population average 

especially at sparse areas where there are few individuals at the minimum range from the grid point. 

Last, the risk maps were scaled by the population average and standard deviation using a subset of 

1,042 geographically evenly distributed individuals as described in Kerminen et al. (2017). The 

border line for the map of Finland was obtained from https://gadm.org/. 

 

Linear model for correlated data to assess spatial PS differences 

To quantify whether the polygenic score has geographic differences, we performed a regression 

analysis using a linear model for correlated data where we explained PS with latitudinal or 

longitudinal coordinate and accounted for genetic relatedness as 

PS; = 	µ+ x;a + e													e		~		N(0,se4R), 

where xi is the coordinate of individual i, µ is the intercept and a is the effect of latitude or 

longitude on PS reported in Tables 1, S4, S6 and S7. For the structure of the error terms, we used 

the genetic relationship matrix R that was estimated with PLINK 1.9 (Purcell and Chang ; Yang et 

al. 2011; Chang et al. 2015) (command --make-rel) using 61,598 independent variants from 

Illumina HumanCoreExome chip described in Kerminen et al. (2017). Regression results with the 

standard linear model without accounting for genetic relatedness are shown in Table S1. 

 

Polygenic and phenotypic differences between subpopulations 

The two main subpopulations in Finland are located in Eastern Finland (EF) and Western Finland 

(WF) and were previously described in Kerminen et al. (2017) and shown in Figure 1A.  Here, we 

reproduced this analysis using CHROMOPAINTER and FineSTRUCTURE (Lawson et al. 2012) 

with our current sample of 2,376 individuals to estimate both phenotypic and polygenic score 

differences between these two populations. The analysis divided our target sample into 1,604 EF 

and 772 WF individuals and this division was used for estimating the differences between 

subpopulations. 

PS differences in standard deviation units 

We calculated the PS differences between the subpopulations by first scaling the PS of the target 

sample with the subset of geographically evenly distributed 1,042 samples. Scaled PS were then 

used to calculate the difference between EF and WF. This strategy ensured a robust comparison 
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between PS based on a fixed reference set. The 95% confidence intervals for the difference between 

two groups were given by Welch’s t-test in R 3.4.1 (R Core Team 2018). 

Phenotypic differences predicted by PS 

For HG, BMI and WHR, we estimated also the phenotypic difference predicted by PS between our 

subpopulations. First, we fitted the linear model where we explained the phenotype with general 

covariates sex, age and age2 (WHR was additionally adjusted for BMI) in our target sample and 

then we fitted another linear model where we explained the residuals with PS. Based on the effect 

estimates of the second model, we were able to estimate the predicted phenotypic effect by 

multiplying the PS effect estimate with the PS difference between the populations. We estimated 

the respective 95% credible intervals by simulation approach where we generated 100,000 samples 

of pairs of effect estimates for PS difference d and PS effect on phenotype b from their posterior 

distributions (assuming improper flat priors) and by using the empirical distribution of d*b as the 

posterior distribution. The posterior distribution of d was modeled as a Normal distribution with 

mean set to the observed PS difference and standard deviation calculated from the 95% confidence 

interval from the Welch’s t-test as  (C̅EFGHIJ)
,.LM

. The posterior for b was modeled as a Normal 

distribution with mean set to the observed effect estimate and standard deviation set to the 

corresponding standard error from the linear model. 

Observed phenotypic differences for HG, BMI and WHR  

We estimated the observed phenotypic difference in HG, BMI and WHR between EF and WF by 

adjusting the corresponding trait for sex, age and age2 (WHR was additionally adjusted for BMI) 

using linear regression and then calculated the difference of the subpopulation means based on the 

residuals from this regression. The residuals were maintained in the units of the original 

phenotypes. 

 

P-value thresholding in PS 

We studied the effect of P-value threshold for our PS by applying 7 different thresholds (P-value < 

1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7 and 1e-8) to the variants of initial PS (that used threshold 0.05) 

and calculated the additional PS as described above. 

 

Accumulation of biases using weakly associated variants (“random PS”) 

To detect accumulation of biases we used a simple approach where we first filtered the GWAS 

summary statistics similarly to the original scores (as explained above) except that we considered 

only variants with the GWAS P-value larger than 0.5. This left us with at most very weakly 
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associated variants. Among these variants, we preformed LD clumping using same parameters as 

above except that we set the P-value cut-off to 1 in order to not further exclude any variant based on 

its P-value and we permuted the P-values among the variants to ensure that the resulting scores are 

random with respect to their P-value. LD clumping resulted in different number of variants for 

different traits and from those we randomly sampled increasing number of variants (5,000; 10,000; 

20,000; 40,000; 60,000; 80,000). For BMI and WHR the remaining number of variants after LD 

clumping was < 80,000 and hence we were not able to compute a PS for 80,000 for these two traits. 

Finally, we calculated the PS for each individual and evaluated the difference between 

subpopulations in these “random PS”.  

To understand the expected behavior of PS with truly zero effect sizes and to compare with our 

observed random PS, we generated 1,000 simulated PS for each observed random PS. These PS 

were simulated using the variants from the random PS but sampling their effect estimates 

independently from a normal distribution with mean zero and standard deviation that corresponded 

to the standard error of the variant in GWAS. In Figure 5 we see that the 95% highest probability 

interval of the population difference is approximately constant across the different number of 

variants in the PS and across the different GWAS. Supplemental text describes the theoretical basis 

for this property.  

Our simulated 95% intervals assume completely independent variants whereas our PS pipeline used 

a more liberal LD threshold of r2 < 0.1. Therefore, we also compared the effects of residual LD to 

our random scores by performing LD-clumping with r2 threshold of 0.01 and 0.001 for CAD and 

HG with GIANT and UKBB data. The Supplemental Figure S9 shows that, for GIANT-PS, the 

residual LD does not have an effect on the accumulation of population difference and similar 

tendency is suggested for CAD-PS even though the data are limited. For UKBB-PS, there is no 

accumulation of difference for any r2 threshold.  
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