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Abstract 

   Neurological Diseases (NDs) are progressive disorder often advances with age and 

comorbidities of Type 2 diabetes (T2D). Epidemiological, clinical and neuropathological 

evidence advocate that patients with T2D are at an increased risk of getting NDs. 

However, it is very little known how T2D affects the risk and severity of NDs. 

To tackle these problems, we employed a transcriptional analysis of affected tissues 

using agnostic approaches to identify overlapping cellular functions. In this study, we 

examined gene expression microarray human datasets along with control and disease-

affected individuals. Differentially expressed genes (DEG) were identified for both T2D 

and NDs that includes Alzheimer Disease (AD), Parkinson Disease (PD), Amyotrophic 

Lateral Sclerosis (ALS), Epilepsy Disease (ED), Huntington Disease (HD), Cerebral Palsy 

(CP) and Multiple Sclerosis Disease (MSD). 

We have developed genetic association and diseasome network of T2D and NDs based 

on the neighborhood-based benchmarking and multilayer network topology approaches. 

Overlapping DEG sets go through protein-protein interaction for hub protein 

identification and gene enrichment using pathway analysis and gene ontology methods 

that enhance our understanding of the fundamental molecular procedure of NDs 

progression. 

Gene expression analysis platforms have been extensively used to investigate altered 

pathways and to identify potential biomarkers and drug targets. Finally, we validated 

our identified biomarkers using the gold benchmark datasets which identified the 

corresponding relationship of T2D and NDs. Therapeutic targets aimed at attenuating 

identified altered pathway could ameliorate neurological dysfunction in a T2D patient. 

  Keywords-Type 2 diabetes, Neurological Diseases, hub protein, pathway, ontology, 

therapeutic targets. 

 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/480400doi: bioRxiv preprint 

https://doi.org/10.1101/480400


I. Introduction 

  Diabetes mellitus(DM) derived from Greek word Diabetes stands to pass through and Mellitus is 

a Latin word for honey[1],  often simply referred to as diabetes was firstly reported in Egyptian 

manuscript about 3000 years ago[2] and clearly made a distinction between type1 and type2 DM 

in 1936[3]. Type 2 Diabetes(T2D) mellitus first described as a component of metabolic syndrome 

in 1988[4] is the most common form of DM characterized by hyperglycemia, insulin resistance, 

and relative insulin deficiency. The global rise in type 2 diabetes (T2D) incidence estimating 439 

million people by the year 2030[5] is known to be a nonreversible clinical issue with the attendant 

chronic kidney disease, amputation, blindness, various cardiac and vascular disease issues such 

as strokes, heart disease, retinopathy, and peripheral ischemia. Its high incidence rate raises 

issues of its interaction with other diseases occurring (or at risk of occurring) in the same 

individuals,i.e,co-morbidities. Epidemiological, clinical and neuropathological evidence advocate 

that patients with type 2 diabetes are at an increased risk of getting Neurological 

Diseases(NDs)[6,7,8].Neurological diseases(NDs) are characterized by selective dysfunction and 

loss of neurons associated with pathologically altered proteins that deposit in the human brain but 

also in peripheral organs[7,9]. NDs primarily attack the neurons of the central nervous system 

and progressively damage the function of them. Neurons are most vulnerable to injury and 

normally don't reproduce or replace themselves [10]. If neurons become damaged or die they 

cannot be replaced by medical treatments. So that NDs are very dangerous and currently they 

don't have any cure. We studied several NDs Include Alzheimer Disease (AD), Perkinson Diseases 

(PD), Amyotrophic Lateral Sclerosis (ALS), Epilepsy Diseases(ED), Huntington Diseases (HD), 

Cerebral Palsy (CP) and Multiple Sclerosis Diseases (MSD) to find the effects of T2D on them. 

Alzheimer Disease (AD), the most common type of incurable dementia is characterized by 

progressive neuronal loss, cognitive deterioration, and behavioral changes. Accumulation of 

amyloid or senile plaques and formation of neurofibrillary tangles are thought to be the major 

cause of neuronal loss in the AD brain[11,12]. PD is featured by progressive death of 

dopaminergic neurons in the substantia nigra and characterized by clinical symptoms including 

progressive impairment of movement control, cognitive decline, depression, anxiety, and 

olfactory dysfunction. Insulin dysregulation and changes in insulin action are concerned with 

developing Parkinson's disease [11,13].LGD also cognizant as Amyotrophic lateral sclerosis (ALS), 

is one of the major neurological diseases alongside Alzheimer’s disease and Parkinson’s disease 

that progressively damages motor neurons and muscle atrophy controlling voluntary muscle 

movement. Muscle weakness or stiffness is the initial symptoms of ALS. ALS patients are 

hypermetabolic and have impaired glucose tolerance associated with T2D[14].ED is a 

heterogeneous group of neurodegenerative disorder that affects neural cells in the brain which 

are recognized by recurrent seizures or unusual behavior, awareness and sensations and high 

levels of β-amyloid in the brain can cause epileptiform activity[15].HD is an inherited disorder 
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characterized by the selective loss of medium spiny neurons from the striatum, leading to 

neuropsychiatric changes and movement disorder and the molecular cause of HD is the expansion 

of a CAG trinucleotide repeat in the gene encoding huntingtin(HTT), resulting in a polyglutamine 

stretch in the N-terminus of the protein[16]. Cerebral Palsy (CP) is a well-known group of 

disorders of movement, muscle tone, or other features that reflect abnormal control over motor 

function by the central nervous system[17]. Multiple sclerosis disease(MSD) is a chronic 

inflammatory and demyelinating disease of the central nervous system, which causes neurological 

disability due to the selective autoimmune destruction of white matter, ultimately leading to 

axonal loss. Genetic and environmental factors are thought to contribute to the pathogenesis of 

this disease[18][19]. 

How these are influenced by T2D is poorly understood, and typically studied by classical 

endocrinology approaches that focus on the effects of T2D associated cell secretions and serum 

glucose and glycation product levels. Although discoveries are continuing to be made in this field, 

the main causes or risk factors of NDs remain poorly understood. 

To address these issues, here, we have proposed a novel computation-based approach, seeking 

to identify gene expression pathways common to T2D and NDs, as gene expression is profoundly 

affected by the disease processes themselves as well as predisposing genetic and environmental 

factors. Our approach aims to find overlapping pathways of potential clinical utility, but may also 

identify important new pathways relevance to many diseases. 

With global transcriptome analyses, we investigated in detail common gene expression profiles of 

T2D and AD, PD, ALS, ED, HD, CP, and MSD. To understand the genetic effects of T2D on NDs, 

we examined gene expression dysregulation, disease association network, dysregulated pathway, 

gene expression ontology, and protein-protein interaction along with hub protein identification. 

We also investigated the validation of our study by using the gold benchmark databases (dbGAP 

and OMIM). This network-based approach identified significant common pathways influencing 

these diseases. 

II. MATERIALS AND METHODS 

A. Overview of analytical approach 

 A systematic and quantitative approach to evaluate human disease comorbidities using different 

sources of gene expression microarray data is summarized as shown in Fig. 1. This approach 

employs gene expression analyses, disease gene associations network, signaling pathway 

mechanism, Gene Ontology (GO) data, and protein-protein interaction network to identify 

putative components of common pathways between T2D and Neurological diseases (NDs). 

B. Datasets employed in this study  

  To investigate the molecular pathways involved in T2D on AD, PD, ALS, ED, HD, CP, and MSD at 

the molecular level, we first analyzed gene expression microarray datasets. In this study, we 
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collected raw data from the Gene Expression Omnibus of the National Center for Biotechnology 

Information (NCBI) (http://www.ncbi.nlm.nih.gov/geo/). 

                               

 

                                 Fig. 1: overview of the network-based approach. 

We analyzed 8 different large human gene expression datasets having control and disease 

affected individuals for our study with accession numbers GSE23343[20], GSE28146[21], 

GSE19587[22], GSE833[23], GSE22779[24], GSE1751[25], GSE31243[26] , and GSE38010[27]. 

The T2D dataset (GSE23343) contains gene expression data obtained through extensive analysis 

after conducting liver biopsies in the human. The AD dataset (GSE28146) is a microarray data on 

RNA from fresh frozen hippocampal tissue blocks that contain both white and gray matter, 

potentially obscuring region-specific changes. The PD dataset (GSE19587) is taken from 6 

postmortem brains of PD patients and from 5 control brains. The LGD dataset (GSE833) is an 

Affymetrix Human Full Length HuGeneFL [Hu6800] Array. In this data, postmortem spinal cord 

grey matter from sporadic and familial ALGD patients are compared with controls. The ED dataset 

(GSE22779) is a gene expression profiles of 4 non-leukemic individuals (1 healthy and 3 with 

epilepsy) is generated from the mononuclear cells isolated from the peripheral blood samples 

before, and after 2, 6, and 24 hours of in-vivo glucocorticoid treatment. The CP (GSE31243) is an 

Affymetrix human genome U133A 2.0 array where 40 microarrays are provided into four groups 

to analyze the effect of cerebral palsy and differences between muscles. The Huntington 

Disease(HD) dataset(GSE1751) is an Affymetrix U133A expression levels for 12 symptomatic and 

5 presymptomatic Huntington's disease patients with 14 healthy controls. The MSD dataset 

(GSE38010) is a microarray data of multiple sclerosis (MS) patients brain lesions compared with 

control brain samples. 

C. Analysis methods  

Analyzing oligonucleotide microarray data for gene expression is known to be an effective and 

responsive approach to demonstrate the molecular assessors of human diseases. Using DNA 
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microarrays technologies with global transcriptome analyses, we compared the gene expression 

profiles of T2D with that in our AD, PD, ALS, ED, HD, CP, and MSD datasets to find the effect of 

T2D on them. All these datasets were generated by comparing diseased tissue with normal to 

identify differentially expressed genes (DEG) associated with their respective pathology. To 

uniform the mRNA expression data of different platforms and to avoid the problems of 

experimental systems, we normalized the gene expression data (disease state or control data) by 

using the Z-score transformation (Zij ) for each NDs gene expression profile using the following 

equation: 

                                            (1) 

      Where σi implies the standard deviation, gij represents the value of the gene expression i in 

sample j. These datasets were obtained and detected DEGs with their respective pathology to 

compare disease tissue with a normal one. We used log2 transformation and calculated expression 

level of each gene implementing linear regression:  where Xi   is a disease state(case 

and control),α0 and α1 are considered the coefficient of this model estimating with least squares 

and Yi is the gene expression value. Student’s unpaired t-test was employed between two 

conditions and performed to find out DEGs over normal samples in patients and significant genes 

were preferred. A threshold of at least 1 log2 fold change and a p-value for the t-tests of <= 5 ∗ 

10−2 were chosen. In addition, a two-way ANOVA with Bonferroni’s post hoc test was used to 

determine statistical significance between groups (<0.1). Gene symbol and title of different genes 

are extracted from each disease. Null gene symbol records are discarded from each disease. We 

also find out unique genes both over and under-expression genes. The most important up and 

down-regulated genes are selected between individual disease and T2D. 

There are applied neighborhood benchmarking and topological methods to show the associations 

between genes and diseases. A gene-disease network was built(GDN) regarding the connection of 

gene-disease where nodes can be either diseases or genes such a network can be represented as 

a bipartite graph whether T2D is the center of this network using Cytoscape V 3.6.1[28]. Diseases 

are associated when they share at least one significant dysregulated gene. Given a particular set 

of human diseases D and a set of human genes G, gene-disease associations attempt to find 

whether gene g  G is associated with diseases d  D. If Gi  and Gj  , the sets of significant up and 

down-dysregulated genes associated with diseases Di and Dj respectively, then the number of 

shared dysregulated genes ( ) associated with both disease Di and Dj  is as follows[29]:  

                                        (2) 

     Co-occurrence refers to the number of shared genes in the GDN and common neighbors 

identified employing the Jaccard Coefficient method, where the edge prediction score for the node 

pair is:  
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                                      (3) 

  Where G is the set of nodes and E is the set of all edges.  We used R software packages 

“comoR”[30] and “POGO”[31] to cross check the disease comorbidity associations. 

To get further insight into the molecular pathways of T2D that overlap with the AD, PD, ALS, ED, 

HD, CP, and MSD, we performed pathway and gene ontology analysis using the Enrichr[32], and 

KEGG pathways database [33]. We also generated a protein-protein interaction (PPI) network for 

each disease pair datasets, using data from the STRING database [stringdb.org] where proteins 

are represented by nodes and the interaction between two proteins are represented by edges. 

Furthermore, we also incorporated three gold benchmark verified datasets, OMIM 

(www.omim.org), OMIM Expanded, and dbGaP (www.ncbi.nlm.nih.gov/gap) for retrieving the 

genes of all known diseases, relevant disorders, and genotype-phenotype relationships, in our 

study for validating the proof of principle of our network-based approach. 

 

III. RESULTS 

A. Gene Expression Analysis 

To investigate the effects of T2D on NDs, we analyzed the gene expressing microarray data from 

the National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/geo/). 

We found that 1320 genes were differentially expressed for T2D with False Discovery Rate(FDR) 

below 0.05 |logFC| >= 1 using R Bioconductor packages(Limma) . Among them, 622 and 698 

were up and down-regulated respectively. Similarly, our analysis identified the most significant 

differentially expressed genes for each NDGD after various steps of statistical analysis. We 

identified differentially expressed genes, 1606 (847 up and 759 down) in AD, 1588 (1167 up and 

422 down) in PD, 2901 (735 up and 2166 down) in ALS, 1887 (882 up and 1007 down) in ED , 

1338 (365 up and 973 down) in HD  , 588 (243 up and 345 down) in CP and 7463 (3987 up and 

3476 down) in MSD. The cross-comparative analysis was also performed to find the common 

differentially expressed genes between T2D and each ND. We observed that T2D shares 

3,21,4,13,7,11 and 35 significantly up-regulated genes and 12,2,25,16,6,5 and 28 significant 

down-regulated genes with AD,PD,ALS,ED,HD,CP and MSD respectively. To find statistically 

significant associations among these diseases, we built up and down diseasome relationships 

network centered on the T2D as shown in fig. 2A and 2B in which two diseases are comorbid if 

there exist one or more genes that are associated with both diseases [34].Notably, 5 significant 

genes FLI1, PACSIN2, BICD1, TCP11L2, and ENTPD1 are commonly up-regulated among T2D, ED, 

and MSD. While 2 significant genes PEG10 and EFCAB14 are up-regulated among T2D, PD, and 

MSD. ITGB8 is up-regulated among T2D, HD, PD, and MSD.FBLN1 is up-regulated among T2D, 

ALS, and MSD.IGFBP5 is up-regulated among T2D, CP, and MSD.SGCB is up-regulated among 

T2D, HD, and MSD.SLC25A30 is up-regulated among T2D, PD, and CP. On the other hand, 
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ST6GALNAC5, RIMS1 are down-regulated among T2D, AD, and MSD.ZBTB7A, YME1L1 are down-

regulated among T2D, ALS, and ED. FUT6 is down-regulated among T2D, AD, and ALS.BRF1 is 

down-regulated among T2D, ALS, and CP.CDC14B is down-regulated among T2D, ALS, ED, and 

MSD.CD47 is down-regulated among T2D, ALS, HD, and ED.NRG1 is down-regulated among T2D, 

ALS, HD, and MSD.DNM1 is down-regulated among T2D, CP, and MSD.TLB1XR1 is down-

regulated among T2D, HD, and MSD.GPR161 is down-regulated among T2D, ALS, and MSD.  

 

 

 

 

Fig. 2A. Disease network of T2D with NDs. Red colored octagon-shaped nodes represent different 

categories of disease, and round-shaped…… colored nodes represent commonly up-regulated 

genes for T2D with the other neurodegenerative disorders. A link is placed between a disease and 

a gene if mutations in that gene lead to the specific disorder.  

 

B. Pathway and Functional Association Analysis 

Pathways are the key to know how an organism reacts to perturbations in its internal changes. 

The pathway-based analysis is a modern technique to understand how different complex diseases 

are related to each other by underlying molecular or biological mechanisms [35].  We analyzed 

pathway of the common differentially expressed genes using Enrichr[32], and KEGG pathway 

database [33] by determining T2D vs. AD, T2D vs. PD, T2D vs. ALS, T2D vs. ED, T2D vs. HD, 

T2D vs. CP, and T2D vs. MSD enrichment to identify overrepresented pathway groups amongst 

differentially expressed genes and to group them into functional categories. . Pathways deemed 

significantly enriched in the common DEG sets (FDR ¡0.05) were reduced by manual curation to 
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include only those with known relevance to the diseases concerned. The total numbers of 51 

pathways data are summarized on Table I. We observe that 12,6,2,2,12,7, and 10 significant 

pathway, associated pathway genes, and adjusted P-values are identified by Enrichr which are 

significantly connected with DEG of T2D(See Table I: A, B, C, D, E, F, and G). 

 

Fig. 2B. Disease network of T2D with NDs. Red colored octagon-shaped nodes represent different 

categories of disease, and round-shaped green colored nodes represent commonly down-

regulated genes for T2D with the NDs. A link is placed between a disease and a  gene if mutations 

in that gene lead to the specific disease. 

Moreover, We observed a number of the significant pathways that notably includes Synaptic 

vesicle cycle (hsa04721) among AD, CP, and MSD , Glycosphingolipid biosynthesis- ganglio series 

(hsa00604) between AD and MSD , Allograft rejection (hsa05330), Graft-versus-host disease 

(hsa05332), and Type I diabetes mellitus (hsa04940) between AD and PD , Glycosphingolipid 

biosynthesis- lacto and neolacto series (hsa00601)  among ALS HD and AD , Purine metabolism 

(hsa00230) between CP and AD ,Endocrine and other factor-regulated calcium reabsorption 

(hsa04961) between CP and MSD, Viral myocarditis (hsa05416) between HD and AD, and 

Arrhythmogenic right ventricular cardiomyopathy (ARVC) (hsa05412),Hypertronic 

cardiomyopathy(HCM) (hsa05410) and Dilated cardiomyopathy (hsa05414) between HD and MSD 

were observed. 

Table I:KEGG pathway analyses to identify pathways common to T2D and the NDs revealed by 

the commonly expressed genes. These include significant pathways common to T2D and A) AD B) 

PD C) ALS D) ED E) HD F) CP and G) MSD 
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A. Common significant pathways of T2D and AD 

KEGG ID Term Genes in the 
pathway 

Adjusted P-
value 

hsa00604 Glycosphingolipid biosynthesis- ganglio series ST6GALNAC5 1.12E-02 

hsa00601 Glycosphingolipid biosynthesis - lacto anneolacto 

series 

FUT6 1.93E-02 

hsa05310 Asthma_Homo sapiens HLA-DQB1 2.30E-02 

hsa05330 Allograft rejection HLA-DQB1 2.81E-02 

hsa05332 Graft-versus-host disease HLA-DQB1 3.03E-02 

hsa04672 Type I diabetes mellitus HLA-DQB1 3.18E-02 

hsa04940 Intestinal immune network  for IgA production HLA-DQB1 3.54E-02 

hsa05320 Autoimmune thyroid disease HLA-DQB1 3.90E-02 

hsa05150 Staphylococcus aureus infection HLA-DQB1 4.12E-02 

hsa05416 Viral myocarditis HLA-DQB1 4.34E-02 

hsa04721 Synaptic vesicle cycle RIMS1 4.62E-02 

hsa05321 Inflammatory bowel  disease (IBD) HLA-DQB1 4.77E-02 

 

B.Common significant pathways of T2D and PD 

KEGG ID Pathway Genes in the  
pathway 

Adjusted P-
value 

hsa04514 Cell adhesion molecules (CAMs) CD86;ITGB8 1.15E-02 

hsa04810 Regulation of actin cytoskeleton MYH14;ITGB8 2.49E-02 

hsa00512 Mucin type O-Glycan biosynthesis GALNT12 3.51E-02 

hsa05330 Allograft rejection CD86 4.28E-02 

hsa05332 Graft-versus-host disease CD86 4.61E-02 

hsa04940 Type I diabetes mellitus CD86 4.83E-02 

 

C.Common significant pathways of T2D and ALS 

KEGG ID Pathway Genes in the 
 pathway 

Adjusted P-
value 

hsa00601 Glycosphingolipid biosynthesis- lacto and neolacto 
series 

FUT6 3.70E-02 

hsa00061 Fatty acid biosynthesis OLAH 1.87E-02 

 

D.Common significant pathways of T2D and ED 

KEGG ID pathway Genes in the  
pathway 

Adjusted P-
value 

hsa04110 Cell cycle E2F5;CDC14B 1.39E-02 

hsa00230 Purine metabolism ENTPD1;ADK 2.68E-02 

 

E.Common significant pathways of T2D and HD 

KEGG ID Pathway Genes in the 
pathway 

Adjusted P-
value 

hsa05412 Arrhythmogenic right ventricular cardiomyopathy 
(ARVC) 

SGCB;ITGB8 1.03E-03 

hsa04512 ECM-receptor interaction ITGB8;CD47 1.26E-03 

hsa05410 Hypertrophic cardiomyopathy 
 (HCM) 

SGCB;ITGB8 1.29E-03 

hsa05414 Dilated cardiomyopathy SGCB;ITGB8 1.51E-03 

hsa00601 Glycosphingolipid biosynthesis 
 - lacto and neolacto series 

GCNT2 1.68E-02 

hsa05033 Nicotine addiction GRIN1 2.57E-02 

hsa05030 Cocaine addiction GRIN1 3.14E-02 

hsa00510 N-Glycan biosynthesis ALG13 3.14E-02 

hsa05014 Amyotrophic lateral sclerosis (ALS) GRIN1 3.27E-02 

hsa05416 Viral myocarditis SGCB 3.77E-02 

hsa04720 Long-term potentiation GRIN1 4.21E-02 

hsa05031 Amphetamine addiction GRIN1 4.27E-02 
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F.Common significant pathways of T2D and CP 

KEGG ID Pathway Genes in the  
pathway 

Adjusted P-
value 

hsa05032 Morphine addiction PDE4D;PDE3A 2.36E-03 

hsa00230 Purine metabolism PDE4D;PDE3A 8.52E-03 

hsa04024 cAMP signaling pathway PDE4D;PDE3A 1.08E-02 

hsa04144 Endocytosis ACAP2;DNM1 1.78E-02 

hsa00760 Nicotinate and nicotinamide metabolism NADSYN1 2.30E-02 

hsa04961 Endocrine and other factor-regulated calcium 
reabsorption 

DNM1 3.70E-02 

hsa04721 Synaptic vesicle cycle DNM1 4.92E-02 

 

G.Common significant pathways of T2D and MSD 

KEGG ID Pathway Genes in the 
pathway 

Adjusted P-
value 

hsa04721 Synaptic vesicle cycle RIMS1;DNM1;DNM2 1.03E-03 

hsa04961 Endocrine and other factor-regulated 
calcium reabsorption 

DNM1;DNM2 9.64E-
03 

hsa04072 Phospholipase D signaling pathway DGKE;DNM1;DNM2 1.06E-02 

hsa05412 Arrhythmogenic right ventricular 
cardiomyopathy (ARVC) 

SGCB;ITGB8 2.28E-02 

hsa05100 Bacterial invasion of epithelial cells DNM1;DNM2 2.52E-02 

hsa05410 Hypertrophic cardiomyopathy(HCM) SGCB;ITGB8 2.82E-02 

hsa05414 Dilated cardiomyopathy SGCB;ITGB8 3.28E-02 

hsa05231 Choline metabolism in cancer DGKE;SP1 4.04E-02 

hsa04723 Retrograde endocannabinoid signaling GRIA2;RIMS1 4.04E-02 

hsa00604 Glycosphingolipid biosynthesis - ganglio 
series 

ST6GALNAC5 4.62E-02 

 

C. Gene Ontology Analysis 

The Gene Ontology (GO) refers to a universal conceptual model for representing gene functions 

and their relationship in the domain of gene regulation. It is constantly expanded by accumulating 

the biological knowledge to cover regulation of gene functions and the relationship of these 

functions in terms of ontology classes and semantic relations between classes [36].To get further 

insight into the identified pathways, enriched common gene sets were processed by gene 

ontology methods using Enrichr which identifies related biological processes and groups them into 

functional categories. The list of processes was also curated for those with known involvement 

with the diseases of interest. The cell processes and genes identified are summarized on Table 

II.We observe that 10,20,29,18,14,24, and 30 significant ontological pathways, associated 

pathway genes and adjusted P-values are identified by Enrichr which are significantly connected 

with DEGs of T2D(See table A, B, C, D, E, F, and G). Moreover,we observed a number of the 

significant pathways that notably includes regulation of neurotransmitter transport (GO:0051588) 

and regulation of neurotransmitter secretion (GO:0046928) between AD and MSD, negative 

regulation of nervous system development (GO:0051961) between ALS and AD, negative 

regulation of signal transduction (GO:0009968) between ALS and CP, central nervous system 

neuron differentiation (GO:0021953) between ALS and ED, positive regulation of cellular process 

(GO:0048522), neural fate commitment (GO:0048663) and neural fate specification 

(GO:0048665) between ALS and HD, regulation of ERK1 and ERK2 cascade (GO:0070372) among 
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ALS, HD, and CP, neural crest cell differentiation (GO:0014033) among ALS, HD, and MSD, 

regulation of cell motility (GO:2000145) between ALS and MSD, neuronal action potential 

(GO:0019228) between ALS and PD, neurotransmitter receptor internalization (GO:0099590) 

between CP and MSD, protein localization to organelle (GO:0033365) between ED and MSD, 

mitotic spindle elongation (GO:0000022) between ED and PD, transmembrane receptor protein 

tyrosine kinase signaling pathway (GO:0007169) between HD and CP and finally extracellular 

matrix organization (GO:0030198) between HD and PD were observed. 

Table II: Gene ontology identification of biological processes common to T2D and NDs.  

A. Common significant GOs  of T2D and AD 

GO ID Pathway 
Genes in the 
pathway 

Adjusted P-
value 

GO:0032000 positive regulation of fatty acid beta-oxidation  PLIN5 5.99E-03 

GO:0016064 immunoglobulin mediated immune response  HLA-DQB1 6.73E-03 

GO:2000269 regulation of fibroblast apoptotic process  STK17B 6.73E-03 

GO:0031998 regulation of fatty acid beta-oxidation  PLIN5 8.22E-03 

GO:0051588 regulation of neurotransmitter transport  RIMS1 1.05E-02 

GO:0007498 mesoderm development  GDF11 1.64E-02 

GO:0051961 negative regulation of nervous system development  ARHGEF15 1.71E-02 

GO:0046928 regulation of neurotransmitter secretion  RIMS1 2.08E-02 

GO:0043603 cellular amide metabolic process  FUT6 4.62E-02 

GO:0009311 oligosaccharide metabolic process  ST6GALNAC5 4.70E-02 

 

B.Common significant GOs  of T2D and PD 

GO ID Pathway 
Genes in the  
pathway 

P-value 

GO:0070486 leukocyte aggregation  S100A8 9.16E-03 

GO:0070584 mitochondrion morphogenesis  MYH14 1.14E-02 

GO:0090128 regulation of synapse maturation  ADGRL1 1.26E-02 

GO:0045624 positive regulation of T-helper cell differentiation  CD86 1.37E-02 

GO:0000022 mitotic spindle elongation  CDC14A 1.37E-02 

GO:1900003 regulation of serine-type endopeptidase activity  CR1 1.37E-02 

GO:0032990 cell part morphogenesis  MYH14 1.37E-02 

GO:0048854 brain morphogenesis  SHANK2 1.37E-02 

GO:0006939 smooth muscle contraction  SMTN 1.71E-02 

GO:0003009 skeletal muscle contraction  MYH14 2.16E-02 

GO:0043401 steroid hormone mediated signaling pathway  NR6A1 2.39E-02 

GO:0019228 neuronal action potential  MYH14 2.73E-02 

GO:0097061 dendritic spine organization  SHANK2 2.84E-02 

GO:0030198 extracellular matrix organization  DPT;ITGB8 2.84E-02 

GO:0030199 collagen fibril organization  DPT 3.40E-02 

GO:0061448 connective tissue development  ITGB8 3.51E-02 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/480400doi: bioRxiv preprint 

https://doi.org/10.1101/480400


GO:0048813 dendrite morphogenesis  SHANK2 3.73E-02 

GO:0009312 oligosaccharide biosynthetic process  GALNT12 3.84E-02 

GO:0099601 regulation of neurotransmitter receptor activity  SHANK2 3.84E-02 

GO:1901606 alpha-amino acid catabolic process  MCCC2 4.50E-02 

 

C.Common significant GOs  of T2D and ALS 

GO ID Pathway 
Genes in the 
pathway 

Adjusted P-
value 

GO:0043496 
regulation of protein  homodimerization 
activity  

NRG1;ISL1 2.72E-04 

GO:0072091 regulation of stem cell proliferation  SIX3;FBLN1 2.72E-04 

GO:0045892 
negative regulation of  transcription, DNA-
templated  

NR6A1;SIX3;NRG1; 
NR2F2;ZBTB7A;ISL1 

9.49E-04 

GO:1902117 positive regulation of  organelle assembly  PLK4;CROCC 2.20E-03 

GO:0006352 DNA-templated transcription, initiation  NR6A1;BRF1;TAF13 2.46E-03 

GO:0050870 positive regulation of T cell activation  TFRC;CD47 4.48E-03 

GO:2000113 
negative regulation of cellular 
macromolecule biosynthetic process  

SIX3; NRG1; NR2F2; 
ZBTB7A 

6.11E-03 

GO:0048935 
peripheral nervous system neuron 
development  

ISL1 1.01E-02 

GO:0021522 spinal cord motor neuron  differentiation  ISL1 1.01E-02 

GO:0021559 trigeminal nerve development  ISL1 1.01E-02 

GO:2000145 regulation of cell motility  NRG1;FBLN1 1.10E-02 

GO:0048665 neuron fate specification  ISL1 1.15E-02 

GO:0051094 
positive regulation of developmental 
process  

TFRC;ISL1 1.18E-02 

GO:1902692 regulation of neuroblast proliferation  SIX3 1.58E-02 

GO:0048663 neuron fate commitment  ISL1 2.01E-02 

GO:2000177 
regulation of neural precursor cell 
proliferation  

SIX3 2.15E-02 

GO:0014033 neural crest cell differentiation  NRG1 2.30E-02 

GO:0008284 positive regulation of cell proliferation  NRG1;CD47;CYR61 2.31E-02 

GO:0006355 regulation of transcription, DNA-templated  
NR6A1;TAF13;SIX3; 
NRG1;NR2F2;ZBTB7A 

2.49E-02 

GO:1901990 
regulation of mitotic cell cycle phase 
transition  

PLK4;CDC14B 2.93E-02 

GO:0045597 positive regulation of cell differentiation  ISL1;CYR61 3.23E-02 

GO:0051961 
negative regulation of nervous system 
development  

GPR161 3.28E-02 

GO:0019228 neuronal action potential  CACNA1H 3.42E-02 

GO:0048522 positive regulation of cellular process  NRG1;CD47;ISL1 3.87E-02 

GO:0021953 
central nervous system neuron 
differentiation  

ISL1 4.68E-02 

GO:0000122 
negative regulation of transcription from 
RNA polymerase II promoter  

NR6A1; NR2F2; ISL1 4.78E-02 

GO:0120031 
plasma membrane bounded cell projection 
assembly  

FGD6;CDC14B 4.78E-02 

GO:0050768 negative regulation of neurogenesis  SIX3 4.82E-02 

GO:0070372 regulation of ERK1 and ERK2 cascade  FBLN1; CYR61 4.99E-02 
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D.Common significant GOs of T2D and ED 

GO ID Pathway 
Genes in the 
pathway 

Adjusted P-
value 

GO:0006897 endocytosis  PACSIN2;RIN3;IGHA1 6.45E-03 

GO:0033365 protein localization to organelle  PACSIN2;BICD1 8.85E-03 

GO:0051251 positive regulation of lymphocyte activation  CD47;IGHA1 1.01E-02 

GO:0007599 hemostasis  FLI1 1.15E-02 

GO:0015822 ornithine transport  SLC25A29 1.15E-02 

GO:0090286 cytoskeletal anchoring at nuclear membrane  SYNE2 1.30E-02 

GO:0034214 protein hexamerization  YME1L1 1.44E-02 

GO:0007010 cytoskeleton organization  PACSIN2;SYNE2 1.45E-02 

GO:0034063 stress granule assembly  BICD1 1.73E-02 

GO:0000022 mitotic spindle elongation  CDC14B 1.73E-02 

GO:0097205 renal filtration  IGHA1 1.73E-02 

GO:0035278 miRNA mediated inhibition of translation  TNRC6A 1.73E-02 

GO:0071470 cellular response to osmotic stress  SERPINB6 2.15E-02 

GO:0034656 
nucleobase-containing small molecule catabolic 
process  

ENTPD1 2.30E-02 

GO:0009069 serine family amino acid metabolic process  SRR 2.58E-02 

GO:0043949 regulation of cAMP-mediated signaling  UBE2B 2.72E-02 

GO:0072522 
purine-containing compound biosynthetic 
process  

ADK 3.28E-02 

GO:0021953 central nervous system neuron differentiation  DRAXIN 4.68E-02 

 

E.Common significant GOs of T2D and HD 

GO ID Pathway Genes in the pathway 
Adjusted P-
value 

GO:0042127 regulation of cell proliferation  
GCNT2;NRG1;CD47; 
POU3F2;PTPN2 

6.92E-05 

GO:0022409 positive regulation of cell-cell adhesion  GCNT2;CD47 2.16E-04 

GO:0048522 positive regulation of cellular process  
GCNT2;NRG1;CD47; 
POU3F2 

2.68E-04 

GO:1901185 
negative regulation of ERBB signaling 
pathway  

NRG1; PTPN2 3.63E-04 

GO:0051896 regulation of protein kinase B signaling  GCNT2; NRG1 4.91E-03 

GO:0048665 neuron fate specification  POU3F2 5.19E-03 

GO:0048663 neuron fate commitment  POU3F2 9.06E-03 

GO:0030198 extracellular matrix organization  ITGB8;CD47 9.45E-03 

GO:0014033 neural crest cell differentiation  NRG1 1.04E-02 

GO:0070372 regulation of ERK1 and ERK2 cascade  GCNT2;PTPN2 1.09E-02 

GO:0009968 negative regulation of signal transduction  NRG1;PTPN2 1.41E-02 

GO:0043161 
proteasome-mediated ubiquitin-dependent 
protein catabolic process  

TBL1XR1;UBXN4 1.49E-02 

GO:0007169 
transmembrane receptor protein tyrosine 
kinase signaling pathway  

NRG1; PTPN2 2.65E-02 

GO:0007399 nervous system development  NRG1;POU3F2 3.43E-02 
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F.Common significant GOs  of T2D and CP 

GO ID Pathway Genes in the pathway 
Adjusted P-
value 

GO:1903050 
regulation of proteolysis involved in cellular 
protein catabolic process  

EPHA4;UBE3A 1.64E-04 

GO:0046058 cAMP metabolic process  PDE4D;PDE3A 1.78E-04 

GO:0019933 cAMP-mediated signaling  PDE4D;PDE3A 1.65E-03 

GO:0048013 ephrin receptor signaling pathway  EPHA4;DNM1 1.97E-03 

GO:0071363 cellular response to growth factor stimulus  ACAP2;PDE3A 5.47E-03 

GO:0048681 negative regulation of axon regeneration  EPHA4 6.38E-03 

GO:0070571 
negative regulation of neuron projection 
regeneration  

EPHA4 7.18E-03 

GO:0099590 neurotransmitter receptor internalization  DNM1 8.77E-03 

GO:0048679 regulation of axon regeneration  EPHA4 8.77E-03 

GO:0021952 
central nervous system projection neuron 
axonogenesis  

EPHA4 8.77E-03 

GO:0008045 motor neuron axon guidance  EPHA4 8.77E-03 

GO:0106030 neuron projection fasciculation  EPHA4 8.77E-03 

GO:0009966 regulation of signal transduction  EPHA4;IGFBP5 1.47E-02 

GO:0070372 regulation of ERK1 and ERK2 cascade  EPHA4; P2RY1 1.64E-02 

GO:0071880 
adenylate cyclase-activating adrenergic 
receptor signaling pathway  

PDE4D 1.67E-02 

GO:0071875 adrenergic receptor signaling pathway  PDE4D 1.67E-02 

GO:1990090 
cellular response to nerve growth factor 
stimulus  

ACAP2 1.82E-02 

GO:1901701 
cellular response to oxygen-containing 
compound  

IGFBP5;PDE3A 1.99E-02 

GO:0009968 negative regulation of signal transduction  EPHA4;IGFBP5 2.11E-02 

GO:0043410 positive regulation of MAPK cascade  EPHA4; P2RY1 2.20E-02 

GO:0007169 
transmembrane receptor protein tyrosine 
kinase signaling pathway  

EPHA4; DNM1 3.93E-02 

GO:0010977 
negative regulation of neuron projection 
development  

EPHA4 4.08E-02 

GO:0016192 vesicle-mediated transport  ACAP2;DNM1 4.18E-02 

GO:0001934 positive regulation of protein phosphorylation  EPHA4;P2RY1 4.22E-02 

 

G.Common significant GOs  of T2D and CP 

GO ID Pathway Genes in the pathway 
Adjusted P-
value 

GO:0070229 
negative regulation of lymphocyte apoptotic 
process  

PRKCQ; 
FOXP1 

4.32E-04 

GO:0099590 neurotransmitter receptor internalization  
DNM1; 
DNM2 

5.27E-04 

GO:0061025 membrane fusion  RIMS1;DNM1;DNM2 6.95E-04 

GO:0043112 receptor metabolic process  ACKR3;DNM1;DNM2 8.54E-04 

GO:0051588 regulation of neurotransmitter transport  
RIMS1; 
KCNMB4 

8.67E-04 

GO:0050804 
modulation of chemical synaptic 
transmission  

GRIA2;RIMS1;KCNMB4 2.29E-03 

GO:0046928 regulation of neurotransmitter secretion  RIMS1;KCNMB4 3.50E-03 

GO:2000146 negative regulation of cell motility  IGFBP5;FBLN1;SRGAP1 3.66E-03 

GO:0071320 cellular response to cAMP  IGFBP5;HCN1 4.28E-03 

GO:0072384 organelle transport along microtubule  TRAK1;BICD1 4.56E-03 

GO:0007009 plasma membrane organization  PACSIN2;SPTBN1 6.06E-03 

GO:0048661 
positive regulation of smooth muscle cell 
proliferation  

MEF2D;FOXP1 6.38E-03 

GO:0090181 regulation of cholesterol metabolic process  SQLE;SP1 7.75E-03 
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GO:0048660 
regulation of smooth muscle cell 
proliferation  

IGFBP5;FOXP1 8.86E-03 

GO:0001508 action potential  KCNMB4;CACNA1E 1.30E-02 

GO:0007411 axon guidance  FRS2;PRKCQ;SPTBN1 1.38E-02 

GO:0072657 protein localization to membrane  PIGR;RFTN1;SPTBN1 1.43E-02 

GO:0007517 muscle organ development  MKX;MEF2D 1.59E-02 

GO:0007005 mitochondrion organization  TRAK1;DNM1;DNM2 1.60E-02 

GO:0010595 
positive regulation of endothelial cell 
migration  

SP1;FOXP1 2.11E-02 

GO:0010646 regulation of cell communication  GRIA2;CXORF36 2.17E-02 

GO:0038127 ERBB signaling pathway  PIGR;NRG1 2.70E-02 

GO:0050658 RNA transport  RFTN1;SRSF3 2.70E-02 

GO:0007088 regulation of mitotic nuclear division  NPM2;CDC14B 2.95E-02 

GO:0010628 positive regulation of gene expression  
RIMS1;SP1;TBL1XR1 
ITGB8;FLI1;DNM2 

3.43E-02 

GO:0033365 protein localization to organelle  PACSIN2;BICD1 3.83E-02 

GO:0098916 anterograde trans-synaptic signaling  GRIA2;KCNMB4;CACNA1E 4.05E-02 

GO:0006406 mRNA export from nucleus  SRSF3;NUP58 4.41E-02 

GO:2000145 regulation of cell motility  FBLN1;NRG1 4.71E-02 

GO:0014033 neural crest cell differentiation  NRG1 4.92E-02 

 

D. Protein- protein-protein interaction (PPI) analysis 

 Protein-protein interaction networks (PPINs) are the mathematical representation of the physical 

contacts of proteins in the cell. Protein-protein interactions (PPIs) are essential to every molecular 

and biological process in a cell, so PPIs is crucial to understand cell physiology in disease and 

healthy states [37]. The malfunction of a protein complex causes multiple diseases by the 

malfunction of a protein complex. Two diseases are potentially related to each other if they share 

one or more commonly associated protein sub network. Having identified genes involved in 

pathways and processes common to T2D and the Neurological diseases, we sought evidence for 

existing sub-networks based on known PPI. Using the enriched common disease genesets, we 

constructed putative PPI networks using web-based visualization resource STRING [38] by the 

distinct 159 differentially expressed genes as shown in Fig3. The network is also grouped into 7 

clusters using the MCL clustering technique representing NDs to depict the protein belongings. 

The CDC14B protein belongs to the maximum 3 clusters ALS, ED, and MSD whereas NRG1 protein 

belongs to the 3 clusters ALS, HD, and MSD which interacts with other proteins from different 

clusters.FLI1, PACSIN2, ENTPD1, ZBTB7A, DNM1, SGCB, and FUT6 proteins belong to two 

clusters and interact with proteins in the network. For topological analysis, a simplified PPI 

network was constructed using Cyto-Hubba plugin [39] to show 10 most significant hub proteins 

as shown in Fig. 4 which are DNM2, DNM1, MYH14, PACSIN2, TFRC, PDE4D, ENTPD1, PLK4, 

CDC20B, and CDC14A. This data provides evidence that PPI sub-network exists in our enriched 

genesets, and confirm the presence of relevant functional pathways. Moreover, thus, these 

proteins could be the targeted proteins for drug development. 
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Fig.3. Protein-protein interaction network of the commonly significant Dysregulated genes of the 

NDs with T2D.Each cluster indicates the gene belongings. 

 

 

Fig.4. The simplified PPI network of the commonly dysregulated genes between NDs and T2D.The 

10 most significant hub proteins are marked as red,orange and yellow. 

E. Validating Biomarkers by Gold Benchmark Databases 

We presented a combined relation of OMIM, OMIM Expanded and dbGap databases . For cross 

checking the validity of our study, we collected genes and disease names from OMIM Disease, 
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OMIM Expanded and dbGap databases using differentially expressed genes of T2D.To find out 

significant neurological diseases, manual curation is applied considering  adjusted p-value below 

or equal to 0.05. Then, several diseases such as cancer, infectious diseases etc. are removed 

from this list because they are not concerned in this study. After analyzing them, 5 neurological 

diseases are found. Then, we construct a GDN using Cytoscape and show gene-disease 

association of different diseases as shown in Fig. 5. It indicates our analysis of finding significant 

genes of neurological diseases are also matched with existing records. 

 

Fig.5. Disease network of T2D with several NDs.Red color hexagon-shaped nodes represent our 

selected five  NDs.Violet colored hexagon-shaped nodes represent different categories of NDs. A 

link is placed between a disease and gene if muttions inthat gene lead to the specific diseases. 

 

IV. DISCUSSION 

Our analysis fills a significant gap in our knowledge about how T2D may affect AD, PD, ALS, ED, 

HD, CP, and MSD. We used a simple sequence of steps that employ widely available resources 

and data and can easily be applied to a range of possible co-morbidities. Based on the combined 

analysis of transcriptomics, genetics, PPIs, pathways and GO data, our disease network disclosed 

potentially novel disease relationships that have not been captured by previous individual studies. 

These may inform future clinical co-morbidity studies. The underlying hypothesis behind this line 

of research is that once we catalogue all (or a large proportion of) disease-related genes, PPI 

complex, and signaling pathways, we will be able to predict the susceptibility of individuals to 

other diseases using molecular biomarkers. Combined with genetic data such analyses will be a 

key element in the development of truly predictive medicine. Our results show a combination of 
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molecular and population-level data that provide insights about the novel hypothesis of disease 

mechanism. Furthermore, it will provide important information about medication overlaps and the 

probability of developing disease co-morbidity, i.e., where the occurrence of one disease in a 

patient may increase the susceptibility to or severity of another disease using molecular 

biomarkers. This observation makes us to understand the correlation between various 

neurological diseases from the molecular and genetic aspects. This analysis will also be 

considered as a key element of predictive drugs development. 

This work showed significant associations of neurological diseases with the corresponding T2D by 

substantial pathways. To explore the pathway (and transcript profile) overlaps can indicate 

disease associations and co-morbid vulnerability. We analyzed publicly available microarray data 

thus can be applied wherever such data exists. Our approach employed differentiation gene 

expression analyses, followed by gene enrichment using signaling pathway and Gene Ontology 

(GO) data. One particular technical point is that with pathway and GO analyses a large number of 

categories were reduced by manual curation. Besides, flexible, time-consuming and semantic 

analysis-based approaches are used to facilitate this work and reduce operator bias. In transcript 

analyses, it is found evidence about the processing of disease of PPI data. So, we can identify 

different pathways through the inspection of cell proteins and their interactions. This investigation 

also represents a high potential for understanding the central mechanisms behind the disease or 

disorder progression. We have also analyzed the differentially expressed genes of T2D with gold 

benchmark dataset OMIM, OMIM Expanded and dbGaP databases using EnrichR to validate our 

identified results and depicted as gene-disease associations as shown in Fig. 4. These results 

corroborate that, the differentially expressed genes of T2D are responsible for the progression of 

NDs. As a whole, our findings compensate a major gap of about T2D biology. It will also open up 

an entry point to establish a mechanic link between the T2D and various neurological diseases. 

 

V. CONCLUSIONS 

In this study, we have considered Gene Expression Omnibus (GEO) microarray data from type 2 

diabetes (T2D), Parkinson’s disease (PD), Alzheimer’s disease (AD), Amyotrophic Lateral 

Sclerosis(Lou Gehrig’s disease) ALS (LGD), Epilepsy disease (ED),Huntington Disease 

(HD),Cerebral Palsy(CP) , Multiple Sclerosis disease (MSD) and control datasets to analysis and 

investigate the genetic effects of T2D on neurological diseases (NDs). We analyzed dysregulated 

genes, disease relationship networks, dysregulated pathways, gene expression ontologies and 

protein-protein interactions of T2D and NDs. Our findings showed that T2D have a strong 

association with NDs.This study demonstrates that T2D shares several common multifactorial 

degenerative biological process that contributes to neuronal death,which leads to functional 

impairment. Because of these multifactorial aspects and complexity, our proposed gene 
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expression analysis platforms have been extensively used to investigate altered pathways and to 

identify potential biomarkers and drug targets. Although many therapeutic approaches has been 

tested, no effective cure for these neurological diseases has been identified. Therefore, high-

throuhput technique like whole genome transcriptomics and microarray technology must be 

coupled with functional genomics and proteomics in an effort to identify specific and selective 

biomarkers and viable drug targets which allow the successful discovery of disease modifying 

therapeutic targets. Therapeutic targets aimed at attenuating the above mentioned altered 

pathways could possibly ameliorate neurological dysfunction in T2D patient. This kind of study will 

be useful for making genomic evidence-based recommendations about the accurate disease 

prediction, identification, and making society aware of the dangerous effect of T2D on the human 

body. 
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