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ABSTRACT 43 

 Stress is associated with poorer physical and mental health. To improve our 44 

understanding of this link, we performed genome-wide association studies (GWAS) of 45 

depressive symptoms and genome-wide by environment interaction studies (GWEIS) 46 

of depressive symptoms and stressful life events (SLE) in two UK population cohorts 47 

(Generation Scotland and UK Biobank). No SNP was individually significant in either 48 

GWAS, but gene-based tests identified six genes associated with depressive 49 

symptoms in UK Biobank (DCC, ACSS3, DRD2, STAG1, FOXP2 and KYNU; p < 2.77x10
-6

). 50 

Two SNPs with genome-wide significant GxE effects were identified by GWEIS in 51 

Generation Scotland: rs12789145 (53kb downstream PIWIL4; p = 4.95x10
-9

; total SLE) 52 

and rs17070072 (intronic to ZCCHC2; p = 1.46x10
-8

; dependent SLE). A third locus 53 

upstream CYLC2 (rs12000047 and rs12005200, p < 2.00x10
-8

; dependent SLE) when 54 

the joint effect of the SNP main and GxE effects was considered. GWEIS gene-based 55 

tests identified: MTNR1B with GxE effect with dependent SLE in Generation Scotland; 56 

and PHF2 with the joint effect in UK Biobank (p < 2.77x10
-6

). Polygenic risk scores 57 

(PRS) analyses incorporating GxE effects improved the prediction of depressive 58 

symptom scores, when using weights derived from either the UK Biobank GWAS of 59 

depressive symptoms (p = 0.01) or the PGC GWAS of major depressive disorder (p = 60 

5.91x10
-3

). Using an independent sample, PRS derived using GWEIS GxE effects 61 

provided evidence of shared aetiologies between depressive symptoms and 62 

schizotypal personality, heart disease and COPD.  Further such studies are required 63 

and may result in improved treatments for depression and other stress-related 64 

conditions. 65 

66 
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INTRODUCTION 67 

Mental illness results from the interplay between genetic susceptibility and 68 

environmental risk factors
1,2

. Previous studies have shown that the effects of 69 

environmental factors on traits may be partially heritable
3
 and moderated by 70 

genetics
4,5

. Major depressive disorder (MDD) is the most common psychiatric 71 

disorder with a lifetime prevalence of approximately 14% globally
6
 and with a 72 

heritability of approximately 37%
7
. There is strong evidence for the role of stressful 73 

life events (SLE) as risk factor and trigger for depression
8-12

. Genetic control of 74 

sensitivity to stress may vary between individuals, resulting in individual differences 75 

in the depressogenic effects of SLE, i.e., genotype-by-environment interaction 76 

(GxE)
4,13-16

. Significant evidence of GxE has been reported for common respiratory 77 

diseases and some forms of cancer
17-22

, and GxE studies have identified genetic risk 78 

variants not found by genome-wide association studies (GWAS)
23-27

. 79 

Interaction between polygenic risk of MDD and recent SLE are reported to increase 80 

liability to depressive symptoms
4,16

; validating the implementation of genome-wide 81 

approaches to study GxE in depression. Most GxE studies for MDD have been 82 

conducted on candidate genes, or using polygenic approaches to a wide range of 83 

environmental risk factors, with some contradictory findings
28-32

. Incorporating 84 

knowledge about recent SLE into GWAS may improve our ability to detect risk 85 

variants in depression otherwise missed in GWAS
33

. To date, four studies have 86 

performed genome-wide by environment interaction studies (GWEIS) of MDD and 87 

SLE
34-37

, but this is the first study to perform GWEIS of depressive symptoms using 88 

adult SLE in cohorts of relatively homogeneous European ancestry. 89 
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Interpretation of GxE effects may be hindered by gene-environment correlation. 90 

Gene-environment correlation denotes a genetic mediation of associations through 91 

genetic influences on exposure to, or reporting of, environments
2,38

. Genetic factors 92 

predisposing to MDD may contribute to exposure and/or reporting of SLE
39

. To tackle 93 

this limitation, measures of SLE can be broken down into SLE likely to be independent 94 

of a respondent’s own behaviour and symptoms, or into dependent SLE, in which 95 

participants may played an active role exposure to SLE
40,41

. Different genetic 96 

influences with a higher heritability for reported dependent SLE than independent 97 

SLE
39,42-45

 suggest that whereas GxE driven by independent SLE is likely to reflect a 98 

genetic moderation of associations between SLE and depression, GxE driven by 99 

dependent SLE may result from a genetic mediation of the association through 100 

genetically driven personality or behavioural traits. To test this we analysed 101 

dependent and independent SLE scores separately in Generation Scotland. 102 

Stress contributes to many human conditions, with evidence of genetic vulnerability 103 

to the effect of SLE
46

. Therefore, genetic stress-response factors in MDD may also 104 

underlie the aetiology of other stress-linked disorders, with which MDD is often co-105 

morbid
47,48

 (e.g. cardiovascular diseases
49

, diabetes,
50

 chronic pain
51

 and 106 

inflamation
52

). We tested the hypothesis that pleiotropy and shared aetiology 107 

between mental and physical health conditions may be due in part to genetic variants 108 

underlying SLE effects in depression. 109 

In this study we conduct GWEIS of depressive symptoms incorporating data on SLE in 110 

two independent UK-based cohorts. We aimed to: i) identify loci associated with 111 

depressive symptoms through genetic response to SLE; ii) study dependent and 112 

independent SLE to support a contribution of genetically mediated exposure to 113 
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stress; iii) assess whether GxE effects improve the proportion of phenotypic variance 114 

in depressive symptoms explained by genetic additive main effects alone; and iv) test 115 

for a significant overlap in the genetic aetiology of the response to SLE and mental 116 

and physical stress-related phenotypes. 117 

118 
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MATERIALS & METHODS 119 

The core workflow of this study is summarized at Figure 1. 120 

 121 

COHORT DESCRIPTIONS  122 

Generation Scotland (GS). Generation Scotland is a family-based population cohort 123 

representative of the Scottish population
53

. At baseline, blood and salivary DNA 124 

samples were collected, stored and genotyped at the Wellcome Trust Clinical 125 

Research Facility, Edinburgh. Genome-wide genotype data was generated using the 126 

Illumina HumanOmniExpressExome-8 v1.0 DNA Analysis BeadChip (San Diego, CA, 127 

USA) and Infinium chemistry
54

. The procedures and details for DNA extraction and 128 

genotyping have been extensively described elsewhere
55,56

. 21 525 participants were 129 

re-contacted to participate in a follow-up mental health study (Stratifying Resilience 130 

and Depression Longitudinally, STRADL), of which 8 541 participants responded 131 

providing updated measures in psychiatric symptoms and SLE through self-reported 132 

mental health questionnaires
57

. Samples were excluded if: they were duplicate 133 

samples, had diagnoses of bipolar disorder, no SLE data (non-respondents), were 134 

population outliers (mainly non-Caucasians and Italian ancestry subgroup), had sex 135 

mismatches, or were missing more than 2% of genotypes. SNPs were excluded if: 136 

missing more than 2% of genotypes, Hardy-Weinberg Equilibrium test p < 1x10
−6

, or 137 

minor allele frequency less than 1%. Further details of the GS and STRADL cohort are 138 

available elsewhere
53,57-59

. All components of GS and STRADL obtained ethical 139 

approval from the Tayside Committee on Medical Research Ethics on behalf of the 140 

NHS (reference 05/s1401/89). After quality control, individuals were filtered by 141 

degree of relatedness (pi-hat < 0.05), maximizing retention of those individuals 142 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 28, 2018. ; https://doi.org/10.1101/479691doi: bioRxiv preprint 

https://doi.org/10.1101/479691


7 

 

reporting a higher number of SLE. The final dataset comprised data on 4 919 143 

unrelated individuals (1 929 men; 2 990 women) and 560 351 SNPs.  144 

Independent GS datasets. Additional datasets for a range of stress-linked medical 145 

conditions and personality traits were created from GS (N = 21 525) excluding 146 

respondents and their relatives (N = 5 724). Following the same quality control 147 

criteria detailed above, we maximized unrelated non-respondents for retention of 148 

cases, or proxy cases (see below), to maximize the information available for each 149 

phenotype. This resulted in independent datasets with unrelated individuals for each 150 

trait. Differences between respondents and non-respondents are noted in the figure 151 

legend of Table 1. 152 

UK Biobank (UKB). This study used data from 99 057 unrelated individuals (47 558 153 

men; 51 499 women) from the initial release of UKB genotyped data (released 2015; 154 

under UK Biobank project 4844.). Briefly, participants were removed based on UKB 155 

genomic analysis exclusion, non-white British ancestry, high missingness, genetic 156 

relatedness (kinship coefficient > 0.0442), QC failure in UK BiLEVE study, and gender 157 

mismatch. GS participants and their relatives were excluded and GS SNPs imputed to 158 

a reference set combining the UK10K haplotype and 1000 Genomes Phase 3 159 

reference panels
60

. After quality control, 1 009 208 SNPs remained. UK Biobank 160 

received ethical approval from the NHS National Research Ethics Service North West 161 

(reference: 11/NW/0382). Further details on UKB cohort description, genotyping, 162 

imputation and quality control are available elsewhere
61-63

.  163 

All participants provided informed consent. 164 

 165 

PHENOTYPE ASSESSMENT 166 
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Stressful life events (SLE). GS participants reported SLE experienced over the 167 

preceding 6 months through a self-reported brief life events questionnaire based on 168 

the 12–item List of Threating Experiences
40,64,65

 (Supplementary Table 1a). The total 169 

number of SLE reported (TSLE) consisted of the number of ‘yes’ responses. TSLE were 170 

subdivided into SLE potentially dependent or secondary to an individual’s own 171 

behaviour (DSLE, questions 6-11 in Supplementary Table 1a), and independent SLE 172 

(ISLE, questions 1-5 in Supplementary Table 1a; pregnancy item removed) following 173 

Brugha et al.
40,41

. Thus, 3 SLE measures (TSLE, DSLE and ISLE) were constructed for GS. 174 

UKB participants were screened for “illness, injury, bereavement and stress” 175 

(Supplementary Table 1b) over the previous 2 years using 6 items included in the UKB 176 

Touchscreen questionnaire. A score reflecting SLE reported in UKB (TSLEUKB) was 177 

constructed by summing the number of ‘yes’ responses. 178 

Psychological assessment. GS participants reported whether their current mental 179 

state over the preceding 2 weeks differed from their typical state using a self-180 

administered 28-item scaled version of The General Health Questionnaire (GHQ)
66-68

. 181 

Participants rated the degree and severity of their current symptoms with a four-182 

point Likert scale (following Goldberg et al., 1997
68

). A final log-transformed GHQ was 183 

used to detect altered psychopathology and thus, assess depressive symptoms as 184 

results of SLE. In UKB participants, current depressive symptoms over the preceding 2 185 

weeks were evaluated using 4 psychometric screening items (Supplementary Table 186 

2), including two validated and reliable questions for screening depression
69

, from the 187 

Patient Health Questionnaire (PHQ) validated to screen mental illness
70,71

. Each 188 

question was rated in a four-point Likert scale to assess impairment/severity of 189 
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symptoms. Due to its skewed distribution, a four-point PHQ score was formed from 190 

PHQ (0 = 0; 1 = 1-2; 2 = 3-5; 3 = 6 or more) to create a more normal distribution. 191 

Stress-related traits. Targeted GS stress-related phenotypes and sample sizes are 192 

shown in Table 1 and detailed elsewhere
53

. These conditions were selected from 193 

literature review based on previous evidence of a link with stress
46

 (see also 194 

Supplementary Material: third section). Furthermore, we created additional 195 

independent samples using mapping by proxy, where individuals with a self-reported 196 

first-degree relative with a selected phenotype were included as proxy cases. This 197 

approach provides greater power to detect susceptibility variants in traits with low 198 

prevalence
72

.  199 

 200 

STATISTICAL ANALYSES 201 

SNP-heritability and genetic correlation. Restricted maximum likelihood approach 202 

was applied to estimate SNP-heritability (h
2

SNP) of depressive symptoms and self-203 

reported SLE measures, and within samples bivariate genetic correlation between 204 

depressive symptoms and SLE measures using GCTA
73

. 205 

GWAS analyses. GWAS were conducted in PLINK74. In GS, age, sex and 20 principal 206 

components (PCs) were fitted as covariates. In UKB, age, sex, and 15 PCs 207 

recommended by UKB were fitted as covariates. The genome-wide significance 208 

threshold was p = 5x10
-8

. 209 

GWEIS analyses. GWEIS were conducted on GHQ (the dependent variable) for TSLE, 210 

DSLE and ISLE in GS and on PHQ for TSLEUKB in UKB fitting the same covariates 211 

detailed above to reduce error variance.  GWEIS were conducted using an R plugin for 212 

PLINK74 developed by Almli et al.
75

 (https://epstein-software.github.io/robust-joint-213 
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interaction). This method implements a robust test, that jointly considers SNP and 214 

SNP-environment interaction effects from a full model (�~�� � ���� � ���	 �215 

����
��	 � ���
�������� against a null model where both the SNP and SNPxSLE 216 

effects equal 0, to assess the joint effect (the combined additive main and GxE 217 

genetic effect at a SNP) using a nonlinear statistical approach that applies Huber-218 

White estimates of variance to correct possible inflation due to heteroscedasticity 219 

(unequal variances across exposure levels). This robust test should reduce 220 

confounding due to differences in variance induced by covariate interaction effects
76

 221 

if present.  Additional code was added (courtesy of Prof. Michael Epstein
75

; 222 

Supplementary Material) to generate beta-coefficients and the p-value of the GxE 223 

term alone. In UKB, correcting for 1 009 208 SNPs and 1 exposure we established a 224 

Bonferroni-adjusted threshold for significance at p = 2.47x10
-8

 for both joint and GxE 225 

effects. In GS, correcting for 560 351 SNPs and 3 measures of SLE we established a 226 

genome-wide significance threshold of p = 2.97x10
-8

.  227 

Post-GWAS/GWEIS analyses. GWAS and GWEIS summary statistics were analysed 228 

using FUMA
77

 including: gene-based tests, functional annotation, gene prioritization 229 

and pathway enrichment (Supplementary Material). 230 

Polygenic profiling & prediction. Polygenic risk scores (PRS) weighting by GxE effects 231 

(PRSGxE) were generated using PRSice-2
78

 (Supplementary Material) in GS using GxE 232 

effects from UKB-GWEIS. In UKB, PRSGxE were constructed using GxE effects from all 233 

three GS-GWEIS (TSLE, DSLE and ISLE as exposures) independently. PRS were also 234 

weighted in both samples using either UKB-GWAS or GS-GWAS statistics (PRSD), and 235 

summary statistics from Psychiatric Genetic Consortium (PGC) MDD-GWAS (released 236 

2016; PRSMDD) that excluded GS and UKB individuals when required (NnoGS = 155 866; 237 
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NnoUKB = 138 884). Furthermore, we calculated PRS weighted by the joint effects (the 238 

combined additive main and GxE genetic effects; PRSJoint) from either the UKB-GWEIS 239 

or GS-GWEIS. PRS predictions of depressive symptoms were permuted 10 000 times. 240 

Multiple regression models fitting PRSGxE and PRSMDD, and both PRSGxE and PRSD were 241 

tested. All models were adjusted by same covariates used in GWAS/GWEIS. Null 242 

models were estimated from the direct effects of covariates alone. The predictive 243 

improvement of combining PRSGxE and PRSMDD/PRSD effects over PRSMDD/PRSD effect 244 

alone was tested for significance using the likelihood-ratio test (LRT).  245 

Prediction of PRSD, PRSGxE and PRSJoint on stress-linked traits were adjusted by age, sex 246 

and 20 PCs; and permuted 10 000 times. Empirical-p-values after permutations were 247 

further adjusted by false discovery rate (conservative threshold at Empirical-p = 248 

6.16x10
-3

). The predictive improvement of fitting PRSGxE combined with PRSD and 249 

covariates over prediction of a phenotype using the PRSD effect alone with covariates 250 

was assessed using LRT, and LRT-p-values adjusted by FDR (conservative threshold at 251 

LRT-p = 8.35x10
-4

).  252 

253 
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RESULTS 254 

Phenotypic and genetic correlations. Depressive symptoms scores and SLE measures 255 

were positively correlated in both UKB (r
2
 = 0.22, p < 2.2x10

-16
) and GS (TSLE-r

2
 = 0.21, 256 

p =1.69x10
-52

; DSLE-r
2
 = 0.21, p = 8.59x10

-51
; ISLE-r

2
 = 0.17, p = 2.33x10

-33
). Significant 257 

bivariate genetic correlation between depression and SLE scores was identified in 258 

UKB (rG = 0.72; p < 1x10
-5

, N = 50 000), but not in GS (rG = 1, p ≥ 0.056, N = 4 919; 259 

Supplementary Table 3a). 260 

SNP-heritability (h
2

SNP). In UKB, a significant h
2

SNP of PHQ was identified (h
2

SNP = 261 

0.090; p < 0.001; N = 99 057). This estimate remained significant after adjusting by 262 

TSLEUKB effect (h
2

SNP = 0.079; p < 0.001), suggesting a genetic contribution unique of 263 

depressive symptoms. The h
2

SNP of TSLEUKB was also significant (h
2

SNP = 0.040, p < 264 

0.001; Supplementary Table 3b). In GS, h
2

SNP was not significant for GHQ (h
2

SNP = 265 

0.071, p = 0.165; N = 4 919). However, in an ad hoc estimation from the baseline 266 

sample of 6 751 unrelated GS participants (details in Supplementary Table 3b) we 267 

detected a significant h
2

SNP for GHQ (h
2

SNP = 0.135; p < 5.15x10
-3

), suggesting that the 268 

power to estimate h
2

SNP in GS may be limited by sample size. Estimates were not 269 

significant for neither TSLE (h
2

SNP = 0.061, p = 0.189; Supplementary Table 3b) nor ISLE 270 

(h
2

SNP = 0.000, p = 0.5), but h
2

SNP was significant for DSLE (h
2

SNP = 0.131, p = 0.029), 271 

supporting a potential genetic mediation and gene-environment correlation.  272 

GWAS of depressive symptoms. No genome-wide significant SNPs were detected by 273 

GWAS in either cohort. Top findings (p < 1x10
-5

) are summarized in Supplementary 274 

Table 4. Manhattan and QQ plots are shown in Supplementary Figures 1-4. There was 275 

no evidence of genomic inflation (all λ1000 < 1.01).  276 
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Post-GWAS analyses. Gene-based test identified six genes associated with PHQ using 277 

UKB-GWAS statistics at genome-wide significance (Bonferroni-corrected p = 2.77x10
-

278 

6
; DCC, p = 7.53x10

-8
; ACSS3, p = 6.51x10

-7
; DRD2, p = 6.55x10

-7
; STAG1, p = 1.63x10-

6
; 279 

FOXP2, p = 2.09x10
-6

; KYNU, p = 2.24x10
-6

; Supplementary Figure 8). Prioritized genes 280 

based on position, eQTL and chromatin interaction mapping are detailed in 281 

Supplementary Table 5. No genes were detected in GS-GWAS gene-based test 282 

(Supplementary Figures 9). No tissue enrichment was detected from GWAS in either 283 

cohort. Significant gene-sets and GWAS catalog associations for UKB-GWAS are 284 

reported in Supplementary Table 6. These included the biological process: positive 285 

regulation of long term synaptic potentiation, and GWAS catalog associations: brain 286 

structure, schizophrenia, response to amphetamines, age-related cataracts (age at 287 

onset), fibrinogen, acne (severe), fibrinogen levels, and educational attainment; all 288 

adjusted-p < 0.01. There was no significant gene-set enrichment from GS-GWAS. 289 

GWEIS of depressive symptoms. Manhattan and QQ plots are shown in 290 

Supplementary Figures 1-4. There was no evidence of GWEIS inflation for either UKB 291 

or GS (all λ1000 < 1.01). No genome-wide significant GWEIS associations were detected 292 

for SLE in UKB. GS-GWEIS using TSLE identified a significant GxE effect (p < 2.97x10
-8

) 293 

at an intragenic SNP on chromosome 11 (rs12789145, p = 4.95x10
-9

, β = 0.06, closest 294 

gene: PIWIL4; Supplementary Figure 5), and using DSLE at an intronic SNP in ZCCHC2 295 

on chromosome 18 (rs17070072, p = 1.46x10
-8

, β = -0.08; Supplementary Figure 6). In 296 

their corresponding joint effect tests both rs12789145 (p = 2.77x10
-8

) and rs17070072 297 

p = 1.96x10
-8

) were significant. GWEIS for joint effect using DSLE identified two 298 

further significant SNPs in on chromosome 9 (rs12000047, p = 2.00x10
-8

, β = -0.23; 299 

rs12005200, p = 2.09x10
-8

, β = -0.23, LD r
2 

> 0.8, closest gene: CYLC2; Supplementary 300 
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Figure 7). None of these associations replicated in UKB (p > 0.05), although the effect 301 

direction was consistent between cohorts for the SNP close to PIWL1 and SNPs at 302 

CYLC2. No SNP achieved genome-wide significant association in GS-GWEIS using ISLE 303 

as exposure. Top GWEIS results (p < 1x10
-5

) are summarized in Supplementary Tables 304 

7-10. 305 

Post-GWEIS analyses: gene-based tests. All results are shown in Supplementary 306 

Figures 10-17. Two genes were associated with PHQ using the joint effect from UKB-307 

GWEIS (ACSS3 p = 1.61x10
-6

;
 
PHF2, p = 2.28x10

-6
; Supplementary Figure 11). ACSS3 308 

was previously identified using the additive main effects, whereas PHF2 was only 309 

significantly associated using the joint effects. Gene-based tests identified MTNR1B as 310 

significantly associated with GHQ on GS-GWEIS using DSLE in both GxE (p = 1.53x10
-6

) 311 

and joint effects (p = 2.38x10
-6

; Supplementary Figures 14-15).  312 

Post-GWEIS analyses: tissue enrichment. We prioritized genes based on position, 313 

eQTL and chromatin interaction mapping in brain tissues and regions. In UKB, 314 

prioritized genes with GxE effect were enriched for up-regulated differentially 315 

expressed genes from adrenal gland (adjusted-p = 3.58x10
-2

). Using joint effects, 316 

prioritized genes were enriched on up-regulated differentially expressed genes from 317 

artery tibial (adjusted-p = 4.34x10
-2

). In GS, prioritized genes were enriched: in up-318 

regulated differentially expressed genes from artery coronary (adjusted-p = 4.55x10
-2

) 319 

using GxE effects with DSLE; in down-regulated differentially expressed genes from 320 

artery aorta tissue (adjusted-p = 4.71x10
-2

) using GxE effects with ISLE; in up-321 

regulated differentially expressed genes from artery coronary (adjusted-p = 5.97x10
-3

, 322 

adjusted-p = 9.57x10
-3

) and artery tibial (adjusted-p = 1.05x10
-2

, adjusted-p = 1.55x10
-

323 

2
) tissues using joint effects with both TSLE and DSLE; and in down-regulated 324 
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differentially expressed genes from lung tissue (adjusted-p = 3.98x10
-2

) and in up- and 325 

down-regulated differentially expressed genes from the spleen (adjusted-p = 4.71x10
-

326 

2
) using joint effects with ISLE. There was no enrichment using GxE effect with TSLE. 327 

Post-GWEIS analyses: gene-sets enrichment. Significant gene-sets and GWAS catalog 328 

hits from GWEIS are detailed in Supplementary Tables 11-14, including for UKB 329 

Biocarta: GPCR pathway; Reactome: opioid signalling, neurotransmitter receptor 330 

binding and downstream transmission in the postsynaptic cell, transmission across 331 

chemical synapses, gastrin CREB signalling pathway via PKC and MAPK; GWAS 332 

catalog: post bronchodilator FEV1/FVC ratio, migraine and body mass index. In GS, 333 

enrichment was seen using TSLE and DLSE for GWAS catalog: age-related macular 334 

degeneration, myopia, urate levels and Heschl’s gyrus morphology; and using ISLE for 335 

biological process: regulation of transporter activity. All adjusted-p < 0.01. 336 

Cross-cohort prediction. In GS, PRSD weighted by UKB-GWAS of PHQ significantly 337 

explained 0.56% of GHQ variance (Empirical-p < 1.10
-4

), similar to PRSMDD weighted by 338 

PGC MDD-GWAS (R
2
 = 0.78%, Empirical-p < 1.10

-4
). PRSGxE weighted by UKB-GWEIS 339 

GxE effects explained 0.15% of GHQ variance (Empirical-p = 0.03, Supplementary 340 

Table 15). PRSGxE fitted jointly with PRSMDD significantly improved prediction of GHQ 341 

(R
2
 = 0.93%, model p = 6.12x10

-11
; predictive improvement of 19%, LRT-p = 5.91x10

-3
) 342 

compared to PRSMDD alone. Similar to PRSGxE with PRSD (R
2
 = 0.69%, model p = 343 

2.72x10
-8

; predictive improvement of 23%, LRT-p = 0.01). PRSJoint weighted by UKB-344 

GWEIS also predicted GHQ (R
2
 = 0.58%, Empirical-p < 1.10

-4
), although the variance 345 

explained was significantly reduced compared to the model fitting PRSGxE and PRSD 346 

together (LRT-p = 4.69x10
-7

), suggesting that additive and GxE effects should be 347 

modelled independently for polygenic approaches (Figure 2a). 348 
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In UKB (Figure 2b), both PRSD weighted by GS-GWAS of GHQ and PRSMDD significantly 349 

explained 0.04% and 0.45% of PHQ variance, respectively (both Empirical-p < 1.10
-4

; 350 

Supplementary Table 15). PRSGxE derived from GS-GWEIS GxE effect did not 351 

significantly predicted PHQ (TSLE-PRSGxE Empirical-p = 0.382; DSLE-PRSGxE Empirical-p 352 

= 0.642; ISLE-PRSGxE Empirical-p = 0.748). Predictive improvements by PRSGxE effect 353 

fitted jointly with PRSMDD or PRSD were not significant (all LRT-p > 0.08). PRSJoint 354 

significantly predicted PHQ (TSLE-PRSJoint: R
2
 = 0.032%, Empirical-p < 1.10

-4
; DSLE-355 

PRSJoint: R
2
 = 0.012%, Empirical-p = 4.3x10

-3
; ISLE-PRSJoint: R

2
 = 0.032%, Empirical-p < 356 

1.10
-4

), although the variances explained were significantly reduced compared to the 357 

models fitting PRSGxE and PRSD together (all LRT-p < 1.48x10
-3

). 358 

Prediction of stress-related traits. Prediction of stress-related traits in independent 359 

samples using PRSD, PRSGxE and PRSJoint are summarized in Figure 3a and 360 

Supplementary Table 16. Significant trait prediction after FDR adjustment (Empirical-361 

p < 6.16x10
-3

, FDR-adjusted Empirical-p < 0.05) using both UKB and GS PRSD was seen 362 

for: depression status, neuroticism and schizotypal personality. PRSGxE weighted by 363 

GS-GWEIS GxE effect using ISLE significantly predicted depression status mapping by 364 

proxy (Empirical-p = 7.00x10
-4

, FDR-adjusted Empirical-p = 9.54x10
-3

). 365 

Nominally significant predictive improvements (LRT-p < 0.05) of fitting PRSGxE over the 366 

PRSD effect alone using summary statistics generated from both UKB and GS were 367 

detected for schizotypal personality, heart diseases and COPD by proxy (Figure 3b). 368 

PRSGxE weighted by GS-GWEIS GxE effect using ISLE significantly improved prediction 369 

over PRSD effect alone of depression status mapping by proxy after FDR adjustment 370 

(LRT-p = 1.96x10
-4

, FDR-adjusted LRT-p = 2.35x10
-2

). 371 

372 
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DISCUSSION 373 

This study performs GWAS and incorporates data on recent adult stressful life events 374 

(SLE) into GWEIS of depressive symptoms, identifies new loci and candidate genes for 375 

the modulation of genetic response to SLE; and provides insights to help disentangle 376 

the underlying aetiological mechanisms increasing genetic liability through SLE to 377 

both depressive symptoms and stress-related traits.  378 

SNP-heritability of depressive symptoms (h
2

SNP = 9-13%), were slightly higher than 379 

estimates from African American populations
34

, and over a third larger than estimates 380 

in MDD from European samples
79

. h
2

SNP for PHQ in UKB (9.0%) remained significant 381 

after adjusting for SLE (7.9%). Thus, although some genetic contributions may be 382 

partially shared between depressive symptoms and reporting of SLE, there is still a 383 

relatively large genetic contribution unique to depressive symptoms. Significant h
2

SNP 384 

of DSLE in GS (13%) and TSLEUKB in UKB (4%), which is mainly composed of dependent 385 

SLE items, were detected similar to previous studies (8% and 29%)
34,43

. Conversely, 386 

there was no evidence for heritability of independent SLE. A significant bivariate 387 

genetic correlation between depressive symptoms and SLE (rG = 0.72) was detected 388 

in UKB after adjusting for covariates, suggesting that there are shared common 389 

variants underlying self-reported depressive symptoms and SLE. This bivariate genetic 390 

correlation was smaller than that estimated from African American populations (rG = 391 

0.97; p= 0.04; N = 7 179)
34

. Genetic correlations between SLE measures and GHQ 392 

were not significant in GS (N = 4 919; rG = 1; all p > 0.056), perhaps due to a lack of 393 

power in this smaller sample. 394 

Post-GWAS gene-based tests detected six genes significantly associated with PHQ 395 

(DCC, ACSS3, DRD2, STAG1, FOXP2 and KYNU). Previous studies have implicated these 396 
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genes in liability to depression (see Supplementary Table 17), and three of them are 397 

genome-wide significant in gene-based tests from the latest meta-analysis of major 398 

depression that incudes UKB (DCC, p = 2.57x10
-14

; DRD2, p = 5.35x10
-14

; and KYNU, p = 399 

2.38x10
-6

; N = 807 553)
80

. This supports the implementation of quantitative measures 400 

such as PHQ to detect genes underlying lifetime depression status
81

. For example, 401 

significant gene ontology analysis of the UKB-GWAS identified enrichment for positive 402 

regulation of long-term synaptic potentiation, and for previous GWAS findings of 403 

brain structure
82

, schizophrenia
83

 and response to amphetamines
84

. 404 

The key element of this study was to conduct GWEIS of depressive symptoms and 405 

recent SLE. We identified two loci with significant GxE effect in GS. However, none of 406 

these associations replicated in UKB (p > 0.05). The strongest association was using 407 

TSLE at 53kb down-stream of PIWIL4 (rs12789145). PIWIL4 is brain-expressed and 408 

involved in chromatin-modification
85

, suggesting it may moderate the effects of stress 409 

on depression. It encodes HIWI2, a protein thought to regulate OTX2, which is critical 410 

for the development of forebrain and for coordinating critical periods of plasticity 411 

disrupting the integration of cortical circuits
86,87

. Indeed, an intronic SNP in PIWIL4 412 

was identified as the strongest GxE signal in ADHD using mother’s warmth as 413 

environmental exposure
88

. The other significant GxE identified in our study was in 414 

ZCCHC2 using DSLE. This zinc finger protein is expressed in blood CD4+ T-cells and is 415 

down regulated in individuals with MDD
89

 and in those resistant to treatment with 416 

citalopram
90

. No GxE effect was seen using ISLE as exposure.  417 

No significant locus or gene with GxE effect was detected in UKB-GWEIS. 418 

Nevertheless, joint effects (combined additive main and GxE genetic effects) 419 

identified two genes significantly associated with PHQ (ACSS3 and PHF2; see 420 
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Supplementary Table 17). PHF2 was recently detected as genome-wide significant at 421 

the latest meta-analysis of depression
80

. Notably, PHF2 paralogs have already been 422 

link with MDD through stress-response in three other studies
91-93

. Joint effects in GS 423 

also detected an additional significant association upstream CYLC2, a gene nominally 424 

associated (p < 1x10
-5

) with obsessive-compulsive disorder and Tourette’s 425 

Syndrome
94

. Gene-based test from GS-GWEIS identified a significant association with 426 

MTNR1B, a melatonin receptor gene, using DSLE (both GxE and joint effect; 427 

Supplementary Table 17). Prioritized genes using GxE effects were enriched in 428 

differentially expressed genes from several tissues including the adrenal gland, which 429 

releases cortisol into the blood-stream in response to stress, thus playing a key role in 430 

the stress-response system, reinforcing a potential role of GxE in stress-related 431 

conditions.  432 

The different instruments and sample sizes available make it hard to compare results 433 

between cohorts. Whereas GS contains deeper phenotyping measurements of stress 434 

and depressive symptoms than UKB, the sample size is much smaller, which may be 435 

reflected in the statistical power required to detect reliable GxE effects. Furthermore, 436 

the presence and size of GxE are dependent on their parameterization (i.e. the 437 

measurement, scale and distribution of the instruments used to test such 438 

interaction)
95

. Thus, GxE may be incomparable across GWEIS due to differences in 439 

both phenotype assessment and stressors tested. Although our results suggest that 440 

both depressive symptom measures are correlated with lifetime depression status, 441 

different influences on depressive symptoms from the SLE covered across studies 442 

may contribute to lack of stronger replication. Instruments in GS cover a wider range 443 

of SLE and are more likely to capture changes in depressive symptoms as 444 
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consequence of their short-term effects. Conversely, UKB could capture more marked 445 

long-term effects, as SLE were captured over 2 years compared to 6 months in GS. 446 

New mental health questionnaires covering a wide range of psychiatric symptoms 447 

and SLE in the last release of UKB data provides the opportunity to create more 448 

similar measures to GS in the near future. Further replication in independent studies 449 

with equivalent instruments is required to validate our GWEIS findings. Despite these 450 

limitations and a lack of overlap in the individual genes prioritised from the two 451 

GWEIS, replication was seen in the predictive improvement of using PRSGxE derived 452 

from the GWEIS GxE effects to predict stress-related phenotypes. 453 

The third aim of this study was to test whether GxE effect could improve predictive 454 

genetic models, and thus help to explain deviation from additive models and missing 455 

heritability of MDD
96

. Multiple regression models suggested that inclusion of PRSGxE 456 

weighted by GxE effects could improve prediction of an individual’s depressive 457 

symptoms over use of PRSMDD or PRSD weighted by additive effects alone. In GS, we 458 

detected a predictive gain of 19% over PRSMDD weighted by PGC MDD-GWAS, and a 459 

gain of 23% over PRSD weighted by UKB-GWAS (Figure 2a). However, these findings 460 

did not surpass stringent Bonferroni-correction and could not be validated in UKB. 461 

This may reflect in the poor predictive power of the PRS generated from the much 462 

smaller GS discovery sample. The results show a noticeably reduced prediction using 463 

PRSJoint weighted by joint effects, which suggests that the genetic architecture of 464 

stress-response is at least partially independent and differs from genetic additive 465 

main effects. Therefore, our results from multiple regression models suggest that for 466 

polygenic approaches main and GxE effects should be modelled independently. 467 

SLE effects are not limited to mental illness
46

. 468 
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Our final aim was to investigate shared aetiology between GxE for depressive 469 

symptoms and stress-related traits. Despite the differences between the respondents 470 

and non-respondents (Table 1 legend), a significant improvement was seen predicting 471 

depressive status mapping by proxy cases using GxE effect from GS-GWEIS with 472 

independent SLE (FDR-adjusted LRT-p = 0.013), but not with dependent SLE. GxE 473 

effects using statistics generated from both discovery samples, despite the 474 

differences in measures, nominally improved the phenotypic prediction of schizotypal 475 

personality, heart disease and the proxy of COPD (LRT-p < 0.05). Other studies have 476 

found evidence supporting a link between stress and depression in these phenotypes 477 

that support our results (see Supplementary Material for extended review) and 478 

suggest, for instance, potential pleiotropy between schizotypal personality and stress-479 

response. Our findings point to a potential genetic component underlying a stress-480 

response-depression-comorbidities link due, at least in part, to shared stress-481 

response mechanisms. A relationship between SLE, depression and coping strategies 482 

such as smoking suggests that perhaps, genetic stress-response may modulate 483 

adaptive behaviours such as smoking, fatty diet intake, alcohol consumption and 484 

substance abuse. This is discussed further in the Supplementary Material. 485 

In this study, evidence for SNPs with significant GxE effects came primarily from the 486 

analyses of dependent SLE and not from independent SLE. This supports a genetic 487 

effect on probability of exposure to, or reporting of SLE, endorsing a gene-488 

environment correlation. Chronic stress may influence cognition, decision-making 489 

and behaviour eventually leading to higher risk-taking
97

. These conditions may also 490 

increase sensitivity to stress amongst vulnerable individuals, including those with 491 

depression, who also have a higher propensity to report SLE, particularly dependent 492 
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SLE
39

. A potential reporting bias in dependent SLE may be mediated as well by 493 

heritable behavioural, anxiety or psychological traits such as risk-taking
43,98

. 494 

Furthermore, individuals vulnerable to MDD may expose themselves into 495 

environments of higher risk and stress
14

. This complex interplay, reflected in the form 496 

of a gene-environment correlation effect, would hinder the interpretation of GxE 497 

effects from GWEIS as pure interactions. A mediation of associations between SLE 498 

and depressive symptoms through genetically driven sensitivity to stress, personality 499 

or behavioural traits would support the possibility of subtle genotype-by-genotype 500 

(GxG) interactions, or genotype-by-genotype-by-environment (GxGxE) interactions 501 

contributing to depression
99,100

. In contrast, PRS prediction of the stress-related traits: 502 

schizotypal personality, heart disease and COPD, was primarily from derived weights 503 

using independent SLE, suggesting that a common set of variants moderate the 504 

effects of SLE across stress-related traits and that larger sample sizes will be required 505 

to detect the individual SNPs contributing to this. Thus, our finding supports the 506 

inclusion of environmental information into GWAS to enhance the detection of 507 

relevant genes. Results of studying dependent and independent SLE support a 508 

contribution of genetically mediated exposure to and/or reporting of SLE, perhaps 509 

through sensitivity to stress as mediator. 510 

This study emphasises the relevance of GxE in depression and human health in 511 

general and provides the basis for future lines of research. 512 

513 
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FIGURE LEGENDS 802 

 803 

Figure 1. Study flowchart. Overview of analysis conducted on this study to achieve 804 

our aims: i) identify loci associated with depressive symptoms through genetic 805 

response to SLE; ii) test whether results of studying dependent and independent SLE 806 

support a contribution of genetically mediated exposure to stress; iii) assess whether 807 

GxE effects improve the proportion of phenotypic variance in depressive symptoms 808 

explained by genetic additive main effects alone and iv) test whether there is 809 

significant overlap in the genetic aetiology of the response to SLE and mental and 810 

physical stress-related phenotypes. Two core cohorts are used, Generation Scotland 811 

(GS) and UK Biobank (UKB). Summary statistics from Genome-Wide Association 812 

Studies (GWAS) and Genome-Wide by Environment Interaction Studies (GWEIS) are 813 

used to generate Polygenic Risk Scores (PRS). Summary statistics from Psychiatric 814 

Genetic Consortium (PGC) Major Depressive Disorder (MDD) GWAS are also used to 815 

generate PRS (PRSMDD). PRS weighted by: additive effects (PRSD and PRSMDD), GxE 816 

effects (PRSGxE) and joint effects (the combined additive and GxE effect; PRSJoint), are 817 

used for phenotypic prediction. TSLE stands for Total number of SLE reported. DSLE 818 

stands for SLE dependent on an indivisual’s own behaviour. Coversely, ISLE stands for 819 

independent SLE. N stands for sample size. NnoGS stands for sample size with GS 820 

individuals removed. NnoUKB stands for sample size with UKB individuals removed. 821 

 822 

Figure 2. Prediction of depression scores by PRSGxE, PRSD, PRSMDD & PRSJoint. Variance 823 

of depression score explained by PRSGxE PRSD, PRSMDD and PRSJoint as single effect; and 824 

combining both PRSD and PRSMDD with PRSGxE in single models. Prediction was 825 

conducted using 2a) Generation Scotland and 2b) UK Biobank as target sample. 826 

PRSGxE were weighted by cross sample GWEIS using GxE effect. PRSD were weighted 827 

by cross sample GWAS of depressive symptoms effect. PRSMDD was weighted by PGC 828 

MDD-GWAS summary statistics. PRSJoint were weighted by cross sample GWEIS using 829 

joint effect. A nominally significant gain in variance explained of GHQ of about 23% 830 

was seen in Generation Scotland when PRSGxE was incorporated into a multiple 831 

regression model along with PRSD; and of about 19% when PRSGxE was incorporated 832 

into a multiple regression model along with PRSMDD. Such gain was not seen in UK 833 

Biobank, but it must be noted that both PRSD and PRSMDD also explains much less 834 
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variance of PHQ in UK Biobank than of GHQ in Generation Scotland. To note a 835 

noticeably reduction of variance explained by PRSJoint compared to combined 836 

PRS/effects. 837 

 838 

Figure 3. a) PRS prediction in independent GS datasets. Heatmap illustrating PRS 839 

prediction of a wide range of traits from GS listed in the x-axis (Table 1). (R) refers to 840 

traits using mapping by proxy approach (i.e. where first-degree relatives of individuals 841 

with the disease are considered proxy cases and included into the group of cases). Y-842 

axis shows the discovery sample and the effect used to weight PRS. Numbers in cells 843 

indicate the % of variance explained, also represented by colour scale. Significance is 844 

represented by “*” according to the following significance codes: p-values **** < 845 

1x10
-4

 < *** < 0.001 < ** < 0.01 * < 0.05; in grey Empirical-p-values after permutation 846 

(10 000 times) and in yellow FDR-adjusted Empirical-p-values. b) Predictive 847 

improvement by GxE effect in independent GS datasets. Heatmanp illustrating the 848 

predictive improvement as a result of incorporating PRSGxE into a multiple model 849 

along with PRSD and covariates (full model), over a model fitting PRSD alone with 850 

covariates (null model); predicting a wide range of traits from GS listed in the x-axis 851 

(Table 1). Covariates: age, sex and 20 PCs. (R) refers to traits using mapping by proxy 852 

approach (i.e. where first-degree relatives of individuals with the disease are consider 853 

proxy cases and included into the group of cases). PRSGxE are weighted by GWEIS 854 

using GxE effects. PRSD were weighted by the GWAS of depressive symptoms additive 855 

main effects. The Y-axis shows the discovery sample used to weight PRS.  Numbers in 856 

cells indicate the % of variance explained by the PRSGxE, also represented by colour 857 

scale. Notice that those correspond to the PRSGxE predictions in Figure 2 when PRSGxE 858 

are weighted by GxE effects. Significance was tested by Likelihood ratio tests (LRT): 859 

full model including PRSD + PRSGxE vs. null model with PRSD alone (covariates 860 

adjusted). Significance is represented by “*” according to the following significance 861 

codes: p-values *** < 0.001 < ** < 0.01 * < 0.05; in grey LRT-p-vales and in yellow 862 

FDR-adjusted LRT-p-values. 863 
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Table 1. GS samples with stress-related phenotypes.  

Trait N Males/Females N SNPs N Cases N Controls 

Alzheimer (R) 3377 1475/1903 560622 655 2722 

Asthma 3390 1500/1890 560569 555 2835 

Asthma (R)  3375 1470/1905 560432 910 2465 

Bowel cancer (R)  3386 1495/1891 560630 672 2714 

Breast cancer 3388 1486/1902 560611 83 3305 

Breast cancer (R)  3386 1482/1904 560579 564 2822 

Chronic obstructive pulmonary disease 3387 1496/1891 560591 73 3314 

Chronic obstructive pulmonary disease (R)  3387 1474/1913 560620 553 2834 

Depression 3385 1495/1890 560584 483 2902 

Depression (R)  3382 1506/1876 560514 731 2651 

Diabetes 3388 1497/1891 560469 185 3203 

Diabetes (R)  3389 1481/1908 560584 1144 2245 

Heart disease 3392 1504/1888 560526 212 3180 

Heart disease (R)  3377 1483/1894 560479 2254 1123 

High blood preasure 3402 1501/1901 560508 729 2673 

High blood preasure (R)  3372 1464/1908 560569 1901 1471 

Hip fracture (R)  3388 1489/1899 560572 421 2967 

Lung cancer (R)  3379 1492/1887 560600 798 2581 

Osteoarthritis 3395 1486/1909 560640 411 2984 

Osteoarthritis (R)  3383 1466/1917 560516 961 2422 

Parkinson (R)  3388 1488/1900 560590 236 3152 

Prostate cancer (R)  3381 1495/1886 560570 329 3052 

Rheumatoid arthritis 3387 1490/1897 560618 93 3294 

Rheumatoid arthritis (R)  3380 1487/1893 560543 765 2615 

Stroke 3387 1492/1895 560613 81 3306 

Stroke (R)  3385 1463/1922 560478 1506 1879 

Neuroticism* 3421 1521/1900 560484 - - 

Extraversion* 3420 1520/1900 560476 - - 

Schizotypal personality* 2386 1065/1321 560369 - - 

Mood disorder* 2307 1040/1267 560318 - - 

Samples were maximized for retention of cases to maximize the information available for each trait. There was no 

preferential selection of relatives in pairs for quantitative phenotypes, in order to retain the underlying 

distribution. All individuals involved in the datasets listed above were non-respondents to the GS follow-up study. 

Compared to individuals included at GS GWEIS (respondents in GS follow-up), non-respondents were significantly: 

younger, from more socioeconomically deprived areas, generally less healthier and wealthier. Non-respondents 

were more likely to smoke, and less likely to drink alcohol, although they consumed more units per week, 

compared with respondents. At GS baseline, non-respondents experienced more psychological distress and 

reported higher scores in symptoms of GHQ-depression and GHQ-anxiety than respondents
57

. 

The total target sample size (N), number of males and females in N, number of SNPs (N SNPs) in target sample size 

N: the number of SNPs used as predictors after clumping step range between 90650 - 91000. The number of cases 

and controls in the independent target sample is indicated for binary phenotypes only. Samples were mapping by 

proxy approach was used (i.e. where first-degree relatives of individuals with the disease were considered proxy 

cases and included into the group of cases) are indicated by (R). *Assessed through self-reported questionnaires. 
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