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ABSTRACT 

Tens of thousands of reproducibly identified GWAS (Genome-Wide Association 

Studies) variants, with the vast majority falling in non-coding regions resulting in no 

eventual protein products, call urgently for mechanistic interpretations. Although 
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numerous methods exist, there are few, if any methods, for simultaneously testing the 

mediation effects of multiple correlated SNPs via some mediator (for example, the 

expression of a gene in the neighborhood) on phenotypic outcome. We propose SMUT, 

multi-SNP Mediation intersection-Union Test to fill in this methodological gap. Our 

extensive simulations demonstrate the validity of SMUT as well as substantial, up to 

92%, power gains over alternative methods. In addition, SMUT confirmed known 

mediators in a real dataset of Finns for plasma adiponectin level, which were missed by 

many alternative methods. We believe SMUT will become a useful tool to generate 

mechanistic hypotheses underlying GWAS variants, facilitating functional follow-up. The 

R package SMUT is publicly available from CRAN at https://CRAN.R-

project.org/package=SMUT. 

INTRODUCTION 

Genome-wide association studies (GWASs) have been successful for detecting genetic 

variants associated with complex diseases and traits, which usually result from interplay 

of multiple factors including genetic, epigenetic, transcriptomic, proteomic and/or 

environmental factors. The effects of genetic variants either individually or even in 

aggregation on complex traits are typically small to moderate at the best (1). More 

importantly, the vast majority of identified GWAS variants (in the order of >104) do not 

map to protein-encoding regions, so the underlying mechanism remain largely elusive. 

Expression quantitative trait loci (eQTL) analysis which postulate mechanistic 

hypotheses between genetic variants and the expression levels of genes, particularly 

genes in the neighborhood (i.e., cis or more precisely local eQTLs) (2–6), has become 
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an important tool for functional interpretation of GWAS. Transcriptome-wide association 

study (TWAS), which identify significant expression-trait associations through 

correlating the imputed gene expression to the trait, enables the GWAS and eQTL 

datasets from two independent studies (7–9). Such TWAS analysis can also be 

performed using summary statistic from GWAS and eQTL datasets when individual 

level data are not available (10). Mancuso et al. proposed a method of utilizing the cis 

genetic variation near a gene to estimate the local genetic correlation between gene 

expression and a complex trait in TWAS and estimate the causal relationship between 

pairs of complex traits that are genetically correlated (10). Integration of genotype, gene 

expression and phenotype information from GWAS and eQTL datasets will 

fundamentally advance our knowledge of molecular mechanisms of disorders.  

The integrative genomic studies enable mechanistic interpretations, for example, via 

either the methods of instrumental variable(s)(IV[s]) and/or mediation analysis. 

Mendelian randomization (MR) framework (11–13) has been adopted by a number of 

methods. MR treats genetic variant(s) (in most cases, SNPs) as the IV(s) to assess the 

causal effects of genetic variants through some mediator(s) of interest (e.g. expression 

levels of some gene[s]) on the trait of interest (9, 12, 14). Classic MR methods, 

including SMR (9), make several key assumptions including complete mediation, where 

SNPs must be marginally independent of the confounding between mediator and final 

outcome; and a priori knowledge that the causal flow is from SNP to mediator but not 

the reverse (11, 15, 16). When the assumptions are violated, MR performs essentially 

invalid IV analysis, leading to biased inference. Some of the more recently developed 

MR methods allow relaxation of certain key assumption(s) aforementioned. Such 
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relaxation(s), however, are at costs. For example, MR-Egger (17) relaxed the complete 

mediation assumption and allows multiple IVs by first analyzing each IV individually and 

then meta-analyzing individual IV results. However, MR-Egger assumes that multiple 

IVs (i.e., SNPs) in the analysis are uncorrelated, limiting its application to a typical 

GWAS or eQTL locus where multiple partially dependent SNPs are identified. Another 

drawback of MR methods is that they cannot distinguish between mediation and 

pleiotropy, the phenomenon of one SNP having effect on more than one outcome 

(where the outcome can be either a molecular measure such as gene expression 

measurement, or phenotypic outcome) (Figure 1). Since pleiotropy is commonly 

observed for many complex traits (18), MR methods are therefore not preferred, when 

the goal is to infer mediation or in general to generate mechanistic hypotheses. The 

more recent CaMMEL method (BioRxiv: https://doi.org/10.1101/219428) further extends 

MR-Egger to allow multiple mediators and to model multiple IVs simultaneously (in 

contrast to MR-Egger which models each IV individually and then meta-analyzes 

individual IV results). In addition, CaMMEL accommodates linkage disequilibrium (LD) 

among SNPs (19). Thus, CaMMEL can handle multiple correlated genetic variants and 

claims to be more powerful than Mancuso et al. method (10) and MR-Egger (20) without 

inflated false discovery rates (FDR). However, CaMMEL, designed for multiple 

mediators modeled simultaneously, is sub-optimal for single mediator analysis. In 

addition, CaMMEL assumes the presence of at least one eQTL since it tests the effect 

of mediators on phenotype (as in contrast to testing the presence of indirect genotype 

effect via mediator(s) on phenotype). Besides TWAS and MR, other mechanism 

elucidating methods proposed in the recent literature include CIT (Causal Inference 
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Test) (21) and Huang et al. (22–24) . CIT employs regression based framework and 

tests for complete mediation and is thus most suitable under the arguably unrealistic 

scenario of complete mediation. The methods of Huang et al. employ a kernel 

regression framework and uses variance component score statistic (25) to test for 

mediation. However, this method also assumes that genetic variants under testing are, 

or at least contain, a priori known eQTL(s). In addition, it only tests the effect of 

mediators on phenotype, similar to CaMMEL, again in contrast to testing indirect 

genotype effect through mediators on phenotype.  

Popular approaches of classic mediation analysis include causal steps, difference 

method and product method (26, 27). Causal steps approach performs multiple tests 

involved in a causal chain. Difference method is based on the difference in the 

treatment (here, genetic variant) coefficient estimate before and after including the 

mediator in the regression model. Product method, such as Sobel test, explicitly tests 

the product of the treatment coefficient in the mediator model and the mediator 

coefficient in the outcome model. However, it is unclear that such methods can be 

adapted to integrative genomic settings with high dimensional SNPs. 

In short, to the best of our knowledge, few, if any, existing methods can simultaneously 

accommodate incomplete mediation as well as multiple correlated SNPs, when 

complete individual level data (including genotype, mediator, and phenotype 

information) are available. To fill the gap, we propose here SMUT, multi-SNP Mediation 

intersection-Union Test, to explicitly accommodate both direct and indirect (via 

mediator) effect of multiple (in the order of hundreds to thousands) correlated SNPs on 

phenotype of interest. SMUT is a flexible, regression based approach that evaluates the 
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joint mediation effects of multiple genetic variants on some trait of interest through a 

single mediator. SMUT extends the classic framework of Baron and Kenny (28) to allow 

multiple treatment variables (in our context, multiple genetic variants). Leveraging 

intersection-union test (IUT) (29), SMUT decomposes mediation effects using two 

separate regression models. One is the mediator model where we regress the mediator 

on multiple genetic variants. For this mediator model, SMUT adopts the SKAT (30) 

framework to handle potentially a large number of genetic variants in a statistically and 

computationally efficient manner. The other is the outcome model where we regress the 

outcome on both the mediator and multiple genetic variants. Classic regression models 

fail for the outcome model due to the high dimensionality of the SNPs. To solve this 

issue, we adopt, for SMUT’s outcome model, a mixed effects model and the Rao’s 

score test (31, 32) for mediation testing. Our extensive simulations and real data 

analysis demonstrate the advantages of SMUT over alternative methods. For example, 

with controlled type-I error, we show up to 92% power gain in simulations. More 

importantly, in real data analysis, SMUT confirms mediations at several well-established 

positive control loci while most of the alternative methods failed to reveal any of the 

relationships.  

MATERIAL AND METHODS 

multi-SNP Mediation intersection-Union Test (SMUT) 

SMUT is a powerful test for the joint mediation effects of multiple genetic variants on the 

trait through a single mediator. The multiple genetic variants can be in a region or sub-

locus defined by genes or moving windows across the genome.  
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Notation and Data Set-up 

Without loss of generality, we assume that we have three types of data. Specifically, 

genotypes, gene expression measurements (can be other types of mediators such as 

metabolite levels or protein abundances) and phenotypic trait are available. Let 𝐺 =

(𝐺1, 𝐺2, . . . , 𝐺𝑞) be the 𝑛 by 𝑞 genotype matrix, where 𝑛 is sample size, 𝑞 is the total 

number of marker, and 𝐺𝑗 = (𝐺1𝑗 , 𝐺2𝑗 , . . . , 𝐺𝑛𝑗)
𝑇 is the vector of genotypes for the 𝑛 

samples at marker 𝑗, 𝑗 = 1,2, . . . , 𝑞. We consider an additive model with 𝐺𝑖𝑗 taking values 

0,1,2, measuring the number of copies of the minor allele. Suppose in total there are 𝑙 

genes 𝑀,𝑀(2), 𝑀(3), . . . , 𝑀(𝑙), with the first notation 𝑀 having no superscript. Here, 𝑀 =

(𝑀1,𝑀2, . . . , 𝑀𝑛)
𝑇, is the vector of expression values of a given gene (the mediator) for n 

samples. Similarly, 𝑀(2), . . . , 𝑀(𝑙)are the vectors of expression values of the other (𝑙 − 1) 

genes (i.e., mediators). Let 𝑌 = (𝑌1, 𝑌2, . . . , 𝑌𝑛)
𝑇 be the vector of phenotypic trait.  

SMUT Model and Test for Joint Mediation Effects 

SMUT models the effects of genetic variants on the trait mediated by the expression 

level of a single gene. We start with considering a more general model with multiple 

genes expression levels via the following regression models 

 𝑌 = 𝛼1 +𝑀𝜃 + ∑ 𝑀(𝑘)𝜃(𝑘)𝑙
𝑘=2  + 𝐺𝛾 + 𝜖1   Outcome model (1) 

 

 

{
 
 

 
 

𝑀 = 𝛼2 + 𝐺𝛽 + 𝜖2 

𝑀(2) = 𝛼(2) + 𝐺𝛽(2) + 𝜖(2)

𝑀(3) = 𝛼(3) + 𝐺𝛽(3) + 𝜖(3)

…
𝑀(𝑙) = 𝛼(𝑙) + 𝐺𝛽(𝑙) + 𝜖(𝑙)

                         Mediator models (2) 
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where 𝛾 = (𝛾1, 𝛾2, . . . , 𝛾𝑞)
𝑇are the direct effects of the q genetic variants; 𝛽𝜃 measures 

the indirect effects mediated by 𝑀 for the multiple genetic variants. Similarly 

𝛽(𝑘)𝜃(𝑘) measures the indirect effects mediated by 𝑀(𝑘), 𝑘 = 2,3, . . . , 𝑙. 

Substituting the 𝑀,𝑀(2), 𝑀(3), . . . , 𝑀(𝑙)with the values in (2), we have 

 𝑌 = 𝛼̃ + 𝐺𝛽𝜃 + 𝐺𝛾̃ + 𝜖̃ (3) 
 

Where 𝛼̃ = 𝛼1 + 𝛼2𝜃 + ∑ 𝛼(𝑘)𝜃(𝑘)𝑙
𝑘=2 ,  𝛾̃ = 𝛾 + ∑ 𝛽(𝑘)𝜃(𝑘)𝑙

𝑘=2 ,  𝜖̃ = 𝜖1 + 𝜃𝜖2 +

∑ 𝜃(𝑘)𝑙
𝑘=2 𝜖(𝑘)         

Equation (3) shows that indirect effects mediated by 𝑀(2), 𝑀(3), . . . , 𝑀(𝑙) would be 

absorbed by the direct effects 𝛾̃ if we only model gene 𝑀. Therefore, without loss of 

generality, we only consider the mediation analysis for a given single gene expression 

level and consider the regression models below 

 𝑌 = 𝛼1 +𝑀𝜃 + 𝐺𝛾 + 𝜖1    Outcome model (4) 
 

 𝑀 = 𝛼2 + 𝐺𝛽 + 𝜖2             Mediator model (5) 
 

where 𝜖1~𝑁(0, 𝜎1
2𝐼), 𝜖2~𝑁(0, 𝜎2

2𝐼), and we assume that 𝜖1 and 𝜖2 are independent; 

otherwise their correlation would make themselves mediator-outcome confounders 

which violates the key assumption for mediation analysis (26, 27).  

Here 𝛾 measures effects from two sources: direct effects of the q genetic variants on 

outcome; and indirect effects of genetic variants via mediators other than M. For 

presentation brevity and clarity, we hereafter use direct effects to refer to the 

aggregated effects from the above two sources. We are interested in testing the 
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mediation effect, of the q genetic variants via mediator M. Specifically, we test the null 

hypothesis H0: 𝛽𝜃 = 0. If we have only one genetic variant, then 𝛽𝜃 would be a scalar 

and the classic methods for testing mediation effects, such as the Sobel test,22, 23 under 

the framework of Baron and Kenny can be applied. Since we focus on the joint (from 

multiple genetic variants) mediation effects, 𝛽𝜃 is thus a vector in our setup. The null 

hypothesis again is H0: 𝛽𝜃 = 0, versus the alternative hypothesis H1: 𝛽𝜃 ≠  0. The null 

hypothesis is divided into two sub-hypotheses, H0
𝜃: 𝜃 = 0 versus H1

𝜃: 𝜃 ≠  0 and H0
𝛽
: 𝛽 =

0 versus H1
𝛽
: 𝛽 ≠  0. Thus, we have 

 H0 = H0
𝜃 ∪ H0

𝛽
 (6) 

 

 H1 = H1
𝜃 ∩ H1

𝛽
 (7) 

  

This can be conveniently solved by the intersection-union test (IUT). Suppose the p 

value for testing H0
𝜃 versus H1

𝜃  is 𝑝1; and the p value for testing H0
𝛽
 versus H1

𝛽
 is 𝑝2. Then 

the p value for testing the overall H0versus H1 applying IUT is the maximum of 𝑝1 and 

𝑝2. In the following sections, we use the SMUT strategy to test 𝜃 and 𝛽 separately to 

obtain 𝑝1and 𝑝2. 

Testing 𝛃 in the Mediator Model  

Many of the testing methods for association between multiple genetic variants and the 

trait can be applied here. We adopt the SKAT framework, a de facto locally most 

powerful test (30), which accommodates large numbers of genetic variants efficiently.  

Testing 𝛉 in the Outcome Model 
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The outcome model is also high dimensional with multiple genetic effects and the 

mediator. Classic regression models tend to fail for such models. As a solution, we 

employ the following mixed effects model to reduce the dimension of parameters.  

 {

𝛾𝑗~𝑖.𝑖.𝑑. 𝑁(𝜇𝛾, 𝜎𝛾
2)

𝜖𝑖~𝑖.𝑖.𝑑. 𝑁(0, 𝜎𝜖
2)

𝑌𝑖|(𝛾1 , … , 𝛾𝑞 , 𝐺)  = 𝛼1 +𝑀𝑖𝜃 + 𝛴𝑗=1
𝑞 𝐺𝑖𝑗𝛾𝑗 + 𝜖𝑖

 (8) 

 

We first write out the log-likelihood function for (8) and then derive the Rao’s score 

statistic (31, 32) for testing 𝜃. Next, we apply Expectation–maximization (EM) algorithm 

to obtain maximum likelihood estimate (MLE) under the null hypothesis (33, 34). Finally, 

the score statistic is evaluated at MLE.  

The log-likelihood for outcome 𝑌 is 

 

ℓ𝑌 ≔ −
1

2
log(det(2𝜋𝑉)) 

−
1

2
(𝑌 − 𝛼11𝑛 −𝑀𝜃 − 𝐺1𝑞𝜇𝛾)

𝑇
𝑉−1(𝑌 − 𝛼11𝑛 −𝑀𝜃 − 𝐺1𝑞𝜇𝛾) 

 

(9) 

 

where 𝑉 ≔ 𝐶𝑜𝑣(𝑌) = 𝜎𝛾
2𝐺𝐺𝑇 + 𝜎𝜖

2𝐼 and 1𝑘 ≔ (1,1,… ,1)𝑇 is a vector of 𝑘 copies of 1.   

The Rao’s score statistic for testing 𝜃 is  

 
𝑆𝐶(𝜃) =

[
𝜕ℓ𝑌
𝜕𝜃

]
2

𝐹𝑖𝑠ℎ𝑒𝑟(𝜃)
 

(10) 

 

where 𝐹𝑖𝑠ℎ𝑒𝑟(𝜃) = 𝐸 (−
𝜕2ℓ𝑌

𝜕𝜃2
) − 𝐸 (−

𝜕2ℓ𝑌

𝜕𝜃𝜕𝜉
)
𝑇

[𝐸(−
𝜕2ℓ𝑌

𝜕𝜉𝜕𝜉𝑇
)]
−1

𝐸 (−
𝜕2ℓ𝑌

𝜕𝜃𝜕𝜉
) , 𝜉 = (𝛼1, 𝜇𝛾 , 𝜎𝛾

2, 𝜎𝜖
2)
𝑇
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Derivations can be found in (34). The first and second derivatives of ℓ𝑌 for our model 

are detailed in Supplementary Data. 

Under the null hypothesis 𝜃 = 0, this score statistic 𝑆𝐶(𝜃) asymptotically follows a Chi-

squared distribution with one degree of freedom when MLE under the null is plugged in. 

This assumes at least some of the direct effects 𝛾𝑗(𝑗 = 1,2,… , 𝑞) are nonzero. When 

there is no direct effects, the variance component 𝜎𝛾
2 is on the boundary. The 

asymptotic Chi-square distribution works well in simulations (Supplementary Figure S1 

and S2). 

We leverage the EM algorithm to obtain MLE under the null. When applying EM 

algorithm to mixed effects model, random effects 𝛾 are treated as missing data. The 

complete data comprise the observed outcome data and random effects. The log-

likelihood for complete data (𝑌, 𝛾) is 

 𝐿𝐿(𝑌, 𝛾|𝐺; 𝜉) ≔ log[𝑝(𝑌, 𝛾|𝐺; 𝜉)] = log[𝑝(𝑌|𝛾, 𝐺; 𝜉)] + log[𝑝(𝛾|𝐺; 𝜉)] (11) 

 

= −
𝑛

2
log(2𝜋𝜎𝜖

2) −
1

2𝜎𝜖2
(𝑌 − 𝛼1 − 𝐺𝛾)

𝑇(𝑌 − 𝛼1 − 𝐺𝛾) −
𝑞

2
log(2𝜋𝜎𝛾

2)

−
1

2𝜎𝛾2
(𝛾 − 𝜇𝛾)

𝑇
(𝛾 − 𝜇𝛾) 

(12) 

 

where 𝜉 = (𝛼1, 𝜇𝛾 , 𝜎𝛾
2, 𝜎𝜖

2)
𝑇
 

Derivations for E-step and M-step can be found in (34). 

E-step of EM algorithm is  

 𝜂̂(𝑡) = 𝐸(𝛾|𝑌) = 1𝑞𝜇𝛾
(𝑡)
+ 𝜎𝛾

2(𝑡)
𝐺𝑇𝑉(𝑡)

−1
(𝑌 − 𝛼1

(𝑡)
1𝑛 − 𝐺1𝑞𝜇𝛾

(𝑡)
) (13) 
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𝐸 ((𝛾 − 𝜇𝛾)
𝑇
(𝛾 − 𝜇𝛾)|𝑌) 

= 𝑞𝜎𝛾
2(𝑡)

+ 𝜎𝛾
4(𝑡)

{(𝑌 − 𝛼1
(𝑡)1𝑛 − 𝐺1𝑞𝜇𝛾

(𝑡))
𝑇
𝑉(𝑡)

−1
𝐺𝐺𝑇𝑉(𝑡)

−1
(𝑌 − 𝛼1

(𝑡)1𝑛

− 𝐺1𝑞𝜇𝛾
(𝑡)) − 𝑡𝑟(𝐺𝑇𝑉−1𝐺)} 

(14) 

 

𝐸((𝑌 − 𝛼1 − 𝐺𝛾)
𝑇(𝑌 − 𝛼1 − 𝐺𝛾)|𝑌) = 𝐸(𝜖

𝑇𝜖|𝑌) 

= 𝑛𝜎𝜖
2(𝑡)

+ 𝜎𝜖
4(𝑡)

{(𝑌 − 𝛼1
(𝑡)1𝑛 − 𝐺1𝑞𝜇𝛾

(𝑡))
𝑇
𝑉(𝑡)

−1
𝑉(𝑡)

−1
(𝑌 − 𝛼1

(𝑡)1𝑛

− 𝐺1𝑞𝜇𝛾
(𝑡)) − 𝑡𝑟(𝑉−1)} 

 

(15) 

 

M-step of EM algorithm is  

 𝛼1
(𝑡+1)

= 𝐸 (
1

𝑛
𝛴𝑖=1
𝑛 [𝑌𝑖 − 𝛴𝑗=1

𝑞 𝐺𝑖𝑗𝛾𝑗]|𝑌) =
1

𝑛
𝛴𝑖=1
𝑛 [𝑌𝑖 − 𝛴𝑗=1

𝑞 𝐺𝑖𝑗𝜂̂𝑗
(𝑡)] (16) 

 𝜇𝛾
(𝑡+1)

= 𝐸 (
1

𝑞
𝛴𝑗=1
𝑞 𝛾𝑗|𝑌) =

1

𝑞
𝛴𝑗=1
𝑞 𝜂̂𝑗

(𝑡)
 (17) 

 

𝜎𝛾
2(𝑡+1) = 𝐸 (

1

𝑞
(𝛾 − 𝜇𝛾)

𝑇
(𝛾 − 𝜇𝛾)|𝑌) 

= 𝜎𝛾
2(𝑡)

+
1

𝑞
𝜎𝛾
4(𝑡)

{(𝑌 − 𝛼1
(𝑡)1𝑛 − 𝐺1𝑞𝜇𝛾

(𝑡))
𝑇
𝑉(𝑡)

−1
𝐺𝐺𝑇𝑉(𝑡)

−1
(𝑌 − 𝛼1

(𝑡)1𝑛

− 𝐺1𝑞𝜇𝛾
(𝑡)) − 𝑡𝑟(𝐺𝑇𝑉−1𝐺)} 

(18) 

 

𝜎𝜖
2(𝑡+1) = 𝐸 (

1
𝑛
(𝑌 − 𝛼1 − 𝐺𝛾)

𝑇(𝑌 − 𝛼1 − 𝐺𝛾)|𝑌) 

= 𝜎𝜖
2(𝑡)

+
1

𝑛
𝜎𝜖
4(𝑡)

{(𝑌 − 𝛼1
(𝑡)1𝑛 − 𝐺1𝑞𝜇𝛾

(𝑡))
𝑇
𝑉(𝑡)

−1
𝑉(𝑡)

−1
(𝑌 − 𝛼1

(𝑡)1𝑛

− 𝐺1𝑞𝜇𝛾
(𝑡)) − 𝑡𝑟(𝑉−1)} 

(19) 

Convergence criterion for EM algorithm is  

 max (|𝜎𝛾
2(𝑡+1) − 𝜎𝛾

2(𝑡)|, |𝜎𝜖
2(𝑡+1) − 𝜎𝜖

2(𝑡)|) ≤ 1 × 10−6 (20) 

 

If convergence is not reached, iteration stops when the number of iterations exceeds a 

pre-specified large number. 
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As for the starting values of EM algorithm, the intercept 𝛼1 is randomly generated from 

uniform distribution 𝑈𝑛𝑖𝑓(−1,1). And 𝜇𝛾 is also randomly generated from uniform 

distribution 𝑈𝑛𝑖𝑓(−1,1). The variance components 𝜎𝛾
2 and 𝜎𝜖

2 are independently 

generated from uniform distribution 𝑈𝑛𝑖𝑓(0,1). 

Simulations 

To evaluate the performance of SMUT in comparison with alternative methods, we 

carried out extensive simulations to investigate power and type-I error. We first 

simulated 20,000 European-like chromosomes in a 1Mb region, using the COSI 

coalescent model (35) to generate realistic data in terms of allele frequency, linkage 

disequilibrium and population differentiation. The final dataset had 23,889 SNPs in a 1 

Mb region. We constructed 10,000 pseudo-individuals by pairing up the 20,000 

simulated chromosomes. To evaluate power and type-I error, we generated 200 

datasets with 1,000 samples each by sampling without replacement from the entire pool 

of 10,000 samples above. Simulations were restricted to the 2,891 SNPs with minor 

allele frequency (MAF) ≥ 1%.  

The outcome (trait) and the mediator were generated via the following outcome model 

(21) and mediator model (22), respectively. 

 𝑌 = 𝛼1 +𝑀𝜃 + (𝑠ℎ𝑎𝑟𝑒𝑑 𝑆𝑁𝑃𝑠 𝑎𝑛𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑆𝑁𝑃𝑠)𝛾 + 𝜖1 (21) 

 𝑀 = 𝛼2 + (𝑠ℎ𝑎𝑟𝑒𝑑 𝑆𝑁𝑃𝑠 𝑎𝑛𝑑 𝑚𝑒𝑑𝑖𝑎𝑡𝑜𝑟 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑆𝑁𝑃𝑠)𝛽 + 𝜖2 (22) 
 

Where 𝛽 ∼ 𝑐𝛽𝑁(2,2), 𝛾 ∼ 𝑐𝛾𝑁(2,2), 𝜖1 ∼ 𝑁(0,1), 𝜖2 ∼ 𝑁(0,1). 
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We set 𝑐𝛾 = 0.2 to evaluate the performance of SMUT and alternative methods under 

the scenario of pleiotropy. Specifically, the shared SNPs (sSNPs) between the two 

models are those that influence both the mediator and the outcome trait. The outcome 

(or mediator) specific SNPs only contribute to the trait (or mediator). The causal SNPs 

are the union of the shared SNPs (sSNPs), mediator specific SNPs (mSNPs) and 

outcome specific SNPs (oSNPs). We considered two scenarios in terms of causal SNP 

density: sparse and dense (Table 1), with 10 and 1,000 causal SNPs respectively. The 

set of (10 or 1000) causal SNPs, common across the 200 datasets, were randomly 

selected from the 2,891 SNPs with MAF ≥ 1%. 𝛽 and 𝛾, again fixed across the 200 

datasets, were independently drawn from a normal distribution with mean and variance 

both being 2. Error terms 𝜖1and 𝜖2 were independently generated from standard normal 

distribution and were separately simulated for each of the 200 datasets.  

In the simulations, we tested the joint mediation effects of these 2,891 SNPs on the trait 

using SMUT and other methods including adaptive Huang et al.’s method, adaptive 

LASSO (36), adaptive CaMMEL, Sobel’s test and SMR. The adaptive Huang et al.’s 

method adopts the original kernel framework where effect(s) of interest are treated as 

random (22–24). In our context, when applying Huang et al., we treat the mediator 

coefficient in the outcome model as a random effect and apply IUT using variance 

component score test in the outcome model and SKAT in the mediator model. The 

adaptive LASSO employs LASSO for variable selection in the outcome model and 

applies IUT using regular regression with the selected variables in the outcome model 

and all the variables (i.e., genetic variants) via SKAT framework in the mediator model. 

The adaptive CaMMEL applies IUT using CaMMEL to test 𝜃 in the outcome model and 
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SKAT to test 𝛽 in the mediator model. Since Sobel test and SMR can only model one 

single SNP at a time, we tested each SNP separately and applied Bonferroni 

adjustment.  

As detailed above, we simulated causal SNPs only from the pool of common (MAF > 

1%) SNPs. By default, we tested all common SNPs in the region to mimic the realistic 

scenario where we have relatively little information regarding which SNPs are causal, at 

an established GWAS locus. To test the robustness and generalizability of the methods, 

we considered two alternative testing strategies each with a reduced set of genetic 

variants modelled. For the first testing strategy, we assume prior knowledge of eQTL 

SNPs (union of shared and mediator specific causal SNPs) and test only these eQTL 

SNPs. On the positive side, such an approach results in a reduced model with causal 

SNPs considered only. On the negative side, a subset of causal markers (specifically, 

the outcome specific causal SNPs) is not modelled. The second strategy tests SNPs 

with MAF  5%, thus missing true causal SNPs with MAF between 1% to 5%.  

RESULTS 

Type-I Error in Simulations 

We evaluated SMUT along with alternative methods including adaptive Huang et al.’s 

method, adaptive LASSO (using R package glmnet (37)), adaptive CaMMEL, Sobel test 

(using R package bda (38)) and SMR in simulations. SMUT manifested controlled type-I 

error rates, at α = 0.05 level, regardless of causal SNP density, as shown in Figures 2 

and 3 for sparse and dense scenarios, respectively. Note that the first panel (𝑐𝛽 = 0) 

and the leftmost point (𝜃 = 0) in other panels (𝑐𝛽 ≠ 0) all correspond to the null of no 
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mediation through the mediator. Adaptive Huang et al.’s method also showed protected 

Type-I error. In contrast, Sobel test and SMR showed substantial inflation in Type-I 

error, particularly when 𝑐𝛽 is large. For example, when 𝑐𝛽 = 0.2, 𝜃 = 0 and sparse 

causal SNPs, Type-I error rates for Sobel test and SMR are 90% and 100% 

respectively. Such marked inflation in Type-I error is likely due to the more severe 

violation of the assumption of no pleiotropy, made by these two methods, as 𝑐𝛽 

increases. Adaptive CaMMEL also showed Type-I error inflation. For example, when 

𝑐𝛽 = 0.2, 𝜃 = 0 and sparse causal SNPs, the Type-I error rate is 100%. We suspect 

such inflation is due to the fact that CaMMEL was developed for joint testing of multiple 

mediators via a Bayesian framework to borrow information across mediators. Thus, 

when testing one single mediator, lack of information in the Bayesian inference can lead 

to Type-I error inflation. Adaptive LASSO had severe Type-I error inflation when the 

causal SNPs were dense (Figure 3). For instance, when 𝑐𝛽 = 0.05 and 𝜃 = 0 type-I 

error rate is 75%. This is likely due to the violation of LASSO’s sparsity assumption (39). 

Assuming normality of 𝛾𝑗(𝑗 = 1,2,… , 𝑞) in the outcome model may not be strictly correct 

when some SNPs are non-causal (𝛾𝑗 exactly zero), while others are causal. A mixture 

distribution would be more appropriate. But our approach gives valid tests in simulations 

even when the assumption may not be valid.  

Power in Simulations 

We assessed power only for tests with protected Type-I error, namely our SMUT and 

adapted Huang et al. SMUT demonstrated large power gains when the causal SNPs 

were either sparse or dense. For example, when 𝑐𝛽 = 0.2, 𝜃 = 0.15 and dense causal 
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SNPs, SMUT and adapted Huang et al. had 97% and 5% power respectively and the 

power gain was 92%. Power gains appeared more profound when 𝑐𝛽 increased 

because adapted Huang et al. became very conservative when pleiotropy effect (𝑐𝛽) 

was large.  

Robustness with Alternative Testing Strategies 

As aforementioned, the true causal SNPs were drawn from common (MAF > 1%) SNPs 

and by default all common SNPs were simultaneously modeled and tested. 

Alternatively, we considered two other testing strategies: (1) eQTL SNPs only; and (2) 

SNPs with MAF  5% only. Under (1), our observations above regarding Type-I error 

and power remained largely the same: namely SMUT remained valid and more powerful 

than alternative methods (Figures 4 and 5). In addition, adapted Huang et al. was more 

powerful using strategy (1) than testing all common SNPs in the default setting in most 

scenarios. For example, when 𝑐𝛽 = 0.05, 𝜃 = 0.15, and sparse causal SNPs, adapted 

Huang et al. (SMUT) had 25% and 96% (36% and 97%) power using the default and (1) 

testing strategy, respectively (Figure 6). 

Because SMUT and adapted Huang et al. had protected type-I error, we only evaluated 

their performance under alternative setting (2). Using testing strategy (2) where only 

SNPs with MAF  5% were tested, both SMUT and adapted Huang et al. had inflated 

type-I error (Figure 7 and 8). This might be due to violation of confounding assumptions 

for mediation analysis (27), because shared SNPs became mediator-outcome 

confounders when absent in models.  

Figure 2 - 8 are generated using R package ggplot2 (40) and RColorBrewer (41).  
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Real Data Application: METSIM Dataset 

The METSIM study is a population-based study with 10,197 males, aged 45–73 years, 

randomly selected from the population register of Kuopio town in eastern Finland 

(population 95,000) (42). We analyzed genotype, gene expression and phenotype data 

in the subset of 770 participants with gene expression measurements from 

subcutaneous adipose tissue (43). Specifically, we tested two “positive control” loci for 

which our previous study (43) provided mechanistic evidences. The first locus was the 

ARL15 GWAS locus (with the index SNP rs6450176 being an ARL15 intronic variant) 

associated with adiponectin levels, where the association might be mediated, at least in 

part, through altered expression of FST gene further (>521Kb) away instead of ARL15 

(43, 44). The second locus was the ADIPOQ locus, also associated with adiponectin 

levels.  

We first extracted SNPs within ±1Mb of the corresponding genes, ARL15 union FST 

and ADIPOQ union ADIPOQ-AS1 for the two loci respectively. In terms of phenotypic 

outcome, namely adiponectin, we used inverse normal transformation after adjusting for 

age and BMI, following our previous work (43). For the first ADIPOQ locus, we tested 

286 SNPs with adiponectin association p value < 5  10−8, using SMUT and alternative 

methods including adaptive Huang et al.’s method, adaptive CaMMEL, CIT, SMR and 

Sobel test. Results were summarized in Table 2. Huang et al.’s method returned no 

results (therefore not shown in Table 2) because it required standardized genotype data 

which can be undefined for low frequency SNPs. SMUT and SMR both showed 

significant mediation effects through ADIPOQ on adiponectin: SMUT for two probesets 

and SMR for two probesets. For the second FST-ARL15 locus, we tested 366 SNPs 
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with MAF  1% and adiponectin association p values < 0.01. Only SMUT detected 

significant mediation effects through FST (but not ARL15) on the adiponectin. These 

results suggest that our SMUT is more powerful for detecting genuine mediation effects.  

DISCUSSION 

We propose SMUT, a flexible regression based approach that tests the joint mediation 

effects of multiple genetic variants on an outcome through a given mediator (e.g. gene). 

We demonstrate, through extensive simulations, that SMUT preserves type-I error rate 

and is statistically more powerful than alternative methods including adaptive Huang et 

al.’s method, adaptive LASSO, adaptive CaMMEL, Sobel’s test and SMR.  

SMUT enjoys several major advantages over alternative methods. First, as a regression 

based approach under the mediation analysis framework, SMUT can distinguish 

mediation from pleiotropy. Second, SMUT generalizes the framework of Baron and 

Kenny to multiple genetic variants, while methods including SMR and Sobel test can 

only test one single variant at a time. Third, SMUT naturally accommodates correlation 

(or LD) among genetic variants while many methods including MR-Egger assume 

genetic variants under testing are uncorrelated. Finally, SMUT, even its present form, 

can handle mediators other than gene expression (as presented in the manuscript). For 

example, molecular measurements such as chromatin spatial organization, histone 

modification, transcription factor binding affinity, protein abundance can all serve as 

valid mediators (6, 45–47). 
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Conceptually, TWAS methods are also designed to elucidate mechanisms regarding the 

mediation effects of multiple SNPs via gene expression on phenotypic outcome. 

However, as afore-reviewed, TWAS is designed for scenarios where eQTL and GWAS 

datasets are from two separate sets of study participants. Our SMUT method is 

designed for the scenario where we have genotype, mediator, and phenotype 

information all measured in the study subjects. Therefore, we have not directly 

compared with TWAS methods and deem our SMUT and TWAS useful for different data 

scenarios. 

SMUT can be further extended in several directions. It can be extended to 

accommodate binary, survival, or longitudinal phenotypic outcome, given its regression 

based framework. We can also extend SMUT to simultaneously model multiple 

mediators, which may yield improved power for testing at the price of stronger modelling 

assumptions.  

With more genotyping-based GWAS and large whole genome sequencing efforts 

underway, the already dauntingly large number of GWAS variants will continue to 

increase. Approaches generating hypotheses on the mechanisms underlying these 

variants are imperative. We anticipate SMUT will be a powerful tool in this post-GWAS 

era to help with bridging the functional gap of GWAS, prioritizing functional follow-up, 

and disentangling the potential causal mechanism from DNA to phenotype for a new 

drug discovery and personalized medicine. 
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TABLES AND FIGURES 

Table 1. Causal SNP composition in two simulated scenarios. The sparse(dense) 

scenario is to simulate data sets based on a small(large) number of causal SNPs. 

Causal SNPs are the union of shared SNPs, mediator specific SNPs and outcome 

specific SNPs. Shared SNPs have effects on both mediator and outcome. 

Mediator(outcome) specific SNPs have effects only on mediator(outcome). All these 

SNPs are randomly selected from the 2,891 SNPs with MAF ≥ 1%. 

 

 # of causal 
SNPs 

# of shared 
SNPs 

# of mediator 
specific SNPs 

# of outcome 
specific SNPs 

Sparse 10 4 3 3 

Dense 1000 334 333 333 
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Table 2. Results from the METSIM study. We used SMUT and other alternative 

methods (Adaptive CaMMEL, CIT, SMR, Sobel test) to test two loci, the ARL15 locus 

and the ADIPOQ locus. SNPs within corresponding genes, ARL15 union FST and 

ADIPOQ union ADIPOQ-AS1 for the two loci respectively, are extracted. For the 

ADIPOQ locus, both SMUT and SMR showed significant mediation effects through 

ADIPOQ on adiponectin. For the ARL15 locus, only SMUT detected significant 

mediation effects through FST (but not ARL15) on the adiponectin. The p values are 

adjusted using Bonferroni correction.  

    P values 

Probesets #SNPs Gene Trait SMUT 
Adaptive 
CaMMEL 

CIT SMR 
Sobel 
test 

11734558_a_at 286 ADIPOQ Adiponectin 0.0699 0.0891 1.0000 0.0846 0.0747 

11734559_x_at 286 ADIPOQ Adiponectin 0.0077 0.0891 0.5436 0.0333 0.0693 

11734560_x_at 286 ADIPOQ Adiponectin 0.8987 0.0891 1.0000 0.0846 1.0000 

11752564_x_at 286 ADIPOQ Adiponectin 0.0354 0.0891 0.8910 0.0306 0.2700 

11724032_a_at 366 FST Adiponectin 0.0197 0.0891 1.0000 1.0000 1.0000 

11732712_a_at 366 FST Adiponectin 0.0059 0.0891 1.0000 1.0000 1.0000 

11732713_at 366 FST Adiponectin 0.0258 0.0891 1.0000 1.0000 1.0000 

11731654_at 366 ARL15 Adiponectin 1.0000 0.0891 1.0000 1.0000 1.0000 

11757014_a_at 366 ARL15 Adiponectin 0.1262 0.0891 1.0000 1.0000 1.0000 
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A                                                   B             

 

 

 

Figure 1. Directed acyclic graph for mediation and pleiotropy. (A) Red arrows indicate 

the mediation effect of the genotype on the outcome through the mediator. (B) Orange 

arrows indicate the pleiotropy.  
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Figure 2. Power and type-I error when causal SNPs are simulated sparse. The x-axis is 

the true value for mediator’s effect(𝜃) on the outcome in the outcome model. The y-axis 

is the power or type-I error. The sub-title indicates the true value for 𝑐𝛽. When 𝑐𝛽 = 0 or 

𝜃 = 0, it is under the null hypothesis and y-axis represents the corresponding type-I 

error. When 𝑐𝛽 ≠ 0 and 𝜃 ≠ 0, it is under alternative hypothesis and y-axis represents 

the corresponding power. The underlying truth for simulated data sets is the sparse 

scenario in Table 1. The candidate SNPs fit in the mediator and outcome model are the 

2,891 SNPs with MAF ≥ 1%.  
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Figure 3. Power and type-I error when causal SNPs are simulated dense. The meaning 

of x-axis and y-axis is the same as Figure 2. The underlying truth for simulated data 

sets is the dense scenario in Table 1. The candidate SNPs fit in the mediator and 

outcome model are the 2,891 SNPs with MAF ≥ 1%. 
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Figure 4. Power and type-I error under alternative setting (1) when testing mediation 

effects using the true eQTL SNPs and the underlying truth for simulated data sets is the 

sparse scenario in Table 1. The meaning of x-axis and y-axis is the same as Figure 2.  
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Figure 5. Power and type-I error under alternative setting (1) when testing mediation 

effects using the true eQTL SNPs and the underlying truth for simulated data sets is the 

dense scenario in Table 1. The meaning of x-axis and y-axis is the same as Figure 2.  
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Figure 6. Example of power gain when the true eQTL SNPs are known. Under this 

situation, with the knowledge on eQTL SNPs helps increase power for SMUT, adaptive 

LASSO and adaptive Huang et al.’s method.  
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Figure 7. Power and type-I error under alternative setting (2) when testing SNPs with 

MAF from 1% to 5% and the underlying truth for simulated data sets is the sparse 

scenario in Table 1. The meaning of x-axis and y-axis is the same as Figure 2.  
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Figure 8. Power and type-I error under alternative setting (2) when testing SNPs with 

MAF from 1% to 5% and the underlying truth for simulated data sets is the dense 

scenario in Table 1. The meaning of x-axis and y-axis is the same as Figure 2.  
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