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1 Abstract

2 Background: Fibrinogen is an essential hemostatic factor and cardiovascular disease risk 

3 factor. Early attempts at evaluating the causal effect of fibrinogen on coronary heart disease 

4 (CHD) and myocardial infraction (MI) using Mendelian randomization (MR) used single 

5 variant approaches, and did not take advantage of recent genome-wide association studies 

6 (GWAS) or multi-variant, pleiotropy robust MR methodologies. 

7 Methods and Findings: We evaluated evidence for a causal effect of fibrinogen on both 

8 CHD and MI using MR. We used both an allele score approach and pleiotropy robust MR 

9 models. The allele score was composed of 38 fibrinogen-associated variants from recent 

10 GWAS. Initial analyses using the allele score incorporated data from 11 European-ancestry 

11 prospective cohorts to examine incidence CHD and MI. We also applied 2 sample MR 

12 methods with data from a prevalent CHD and MI GWAS. Results are given in terms of the 

13 hazard ratio (HR) or odds ratio (OR), depending on the study design, and associated 95% 

14 confidence interval (CI).

15 In single variant analyses no causal effect of fibrinogen on CHD or MI was observed. In 

16 multi-variant analyses using incidence CHD cases and the allele score approach, the estimated 

17 causal effect (HR) of a 1 g/L higher fibrinogen concentration was 1.62 (CI = 1.12, 2.36) when 

18 using incident cases and the allele score approach. In 2 sample MR analyses that accounted 

19 for pleiotropy, the causal estimate (OR) was reduced to 1.18 (CI = 0.98, 1.42) and 1.09 (CI = 

20 0.89, 1.33) in the 2 most precise (smallest CI) models, out of 4 models evaluated. In the 2 

21 sample MR analyses for MI, there was only very weak evidence of a causal effect in only 1 

22 out of 4 models.

23 Conclusions: A small causal effect of fibrinogen on CHD is observed using multi-variant MR 

24 approaches which account for pleiotropy, but not single variant MR approaches. Taken 
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1 together, results indicate that even with large sample sizes and multi-variant approaches MR 

2 analyses still cannot exclude the null when estimating the causal effect of fibrinogen on CHD, 

3 but that any potential causal effect is likely to be much smaller than observed in 

4 epidemiological studies. 

5

6 Author Summary

7 Initial Mendelian Randomization (MR) analyses of the causal effect of fibrinogen on coronary 

8 heart disease (CHD) utilized single variants and did not take advantage of modern, multi-

9 variant approaches. This manuscript provides an important update to these initial analyses by 

10 incorporating larger sample sizes and employing multiple, modern multi-variant MR 

11 approaches to account for pleiotropy. We used incident cases to perform a MR study of the 

12 causal effect of fibrinogen on incident CHD and the nested outcome of myocardial infarction 

13 (MI) using an allele score approach. Then using data from a case-control genome-wide 

14 association study for CHD and MI we performed two sample MR analyses with multiple, 

15 pleiotropy robust approaches. Overall, the results indicated that associations between 

16 fibrinogen and CHD in observational studies are likely upwardly biased from any underlying 

17 causal effect. Single variant MR approaches show little evidence of a causal effect of 

18 fibrinogen on CHD or MI. Multi-variant MR analyses of fibrinogen on CHD indicate there 

19 may be a small positive effect, however this result needs to be interpreted carefully as the 

20 95% confidence intervals were still consistent with a null effect. Multi-variant MR approaches 

21 did not suggest evidence of even a small causal effect of fibrinogen on MI. 
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1 Introduction:

2 Fibrinogen is an essential component of the clotting and hemostasis system with a strong 

3 genetic basis [1-3]. Although it primarily serves as the precursor to fibrin, it also carries out 

4 several other functions, including enhancing platelet aggregation and mediating inflammation 

5 [4, 5]. In epidemiologic studies, fibrinogen levels are associated with coronary heart disease 

6 (CHD) [6-8], myocardial infarction (MI) [9, 10], ischemic stroke [11, 12], and abdominal 

7 aortic aneurysm [13, 14].

8 Mendelian randomization (MR) is an instrumental variable analysis method which uses 

9 genetic variants as instruments to uncover evidence for a causal relationship between a 

10 modifiable risk factor and outcome.[15] MR studies utilizing a limited number of genetic 

11 variants in the FGB promoter have yielded little evidence of a causal effect of fibrinogen on 

12 CHD or MI [16-18]. In a genome-wide association study (GWAS) for fibrinogen, each 

13 fibrinogen-associated variant was individually evaluated for association with CHD, but no 

14 associations provided substantial evidence of a causal effect [19]. To date MR studies of 

15 fibrinogen have been limited to single variant approaches which have not taken into account 

16 recent GWAS findings or modern, multi-variant MR methodologies. Here we re-examine the 

17 potential for fibrinogen to be a causal biomarker for CHD and MI, taking into account these 

18 improved approaches. 

19

20

21 Results 

22 For incident CHD there were 3,147 incident events observed in 15,427 participants in the 

23 discovery analyses, and 1,482 incident events among the 34,209 participants in the replication 

24 analyses. Of the 18,798 participants in the incident MI discovery analyses, 1,711 had an 

25 incident MI. For the replication analyses, there were 687 incident MI events out of the 33,288 
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1 participants. Table 1 contains the distributions of clinical covariates and fibrinogen. The FGB 

2 variant rs1800790 (commonly used in previous fibrinogen MR analyses) had a weaker 

3 association (by effect size) than the allele score (Supplemental Table 3). In single variant 

4 analyses of rs1800790 the estimated causal effect appeared to be centered around the null 

5 with little evidence of a causal effect of fibrinogen on CHD or MI (Supplemental Table 3), 

6 consistent with published literature. In multi-variant MR using the 2SC model, we observed 

7 evidence of a causal association of fibrinogen on incident CHD in the discovery and 

8 replication analyses which remained in a combined analysis of all cohorts (HR = 1.75; CI = 

9 1.22–2.51; P = 0.002; Figure 2). For incident MI, we observed an elevated HR that included 

10 the null, even in the combined analysis (HR = 1.45; CI = 0.85–2.49; P = 0.17; Figure 3). 

11 Pleiotropy robust models

12 In sensitivity analyses four MR methods were used each of which is at least partially robust to 

13 horizontal pleiotropy under differing assumptions. For CHD, three of the four models showed 

14 a positive effect, albeit smaller than the effect observed in the 2SC model, with the MR 

15 PRESSO method having the largest causal OR (OR = 1.18; CI = 0.98, 1.42; Table 2). For MI 

16 only the MR PRESSO method showed a causal OR > 1 (OR = 1.16; CI = 0.98, 1.38; Table 

17 2), again substantially reduced from that observed in the 2SC model. All other models for MI 

18 showed little evidence of a causal effect of fibrinogen on MI.

19 As a further test we examined MR associations of fibrinogen on CHD risk using published 

20 data available in the MR-Base. While some of the CHD risk factors showed a positive causal 

21 effect estimate, none provided substantial evidence for excluding the null after accounting for 

22 the number of tests performed (Supplemental Table 5).

23

24 Discussion
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1 The attractiveness of fibrinogen as a causal factor in CHD comes from its roles in both 

2 thrombosis and inflammation. Fibrinogen is the precursor to fibrin, which interlinks into a 

3 mesh that acts as the scaffold of blood clots.  Additionally, fibrinogen also has an active role 

4 in platelet aggregation,[20] thus contributing to the formation of platelet plugs. By binding the 

5 CD11b/CD18 integrin receptor fibrinogen activates the NF-κB pathway [5], an important 

6 pathway in inflammation as well as the formation, destabilization, and rupture of 

7 atherosclerotic plaques [21, 22].  As a modifiable risk factor [23] even a small causal effect of 

8 fibrinogen on CHD could have substantial public health implications. 

9 Using the allele score approach, a 1 g/L higher fibrinogen concentration was causally 

10 associated with a HR of 1.75 (CI = 1.22–2.51) in the combined cohort analysis for CHD. 

11 However, sensitivity analysis using methods robust to pleiotropy arising from independent 

12 effects of SNPs on exposure and outcome (which could invalidate MR analyses) suggested a 

13 substantially weaker causal effect on CHD even for the model with the strongest effect 

14 estimate (OR = 1.18 per 1 g/L higher fibrinogen; CI = 0.98, 1.42), and the MR Egger model 

15 showed virtually no evidence of a causal effect – though the wide 95% confidence interval 

16 encompassed effects from all other models.  Overall, when accounting for potential horizontal 

17 pleiotropy, the accumulated evidence points to a substantially weaker casual effect of 

18 fibrinogen on CHD than the observational risk ratio of 1.8 (CI = 1.6, 2.0) previously reported 

19 [6]. Using rs1800790 in a single variant MR analysis, there was limited evidence of any 

20 causal effect, though the 95% confidence interval could not exclude positive estimated causal 

21 effects seen in multi-variant analyses. In combination these analyses suggest that when after 

22 accounting for horizontal pleiotropy the effect of fibrinogen on CHD is likely to be small and 

23 that current MR estimates of the potential causal effect remain unable to exclude the null 

24 despite large sample sizes and the latest methodologies.

25 Comparison with previous MR analyses
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1 Previous MR studies assessing the causal effect of fibrinogen on CHD or MI focused 

2 exclusively on rs1800790 [24, 25]. In a few studies one additional variant also in the FGB 

3 promoter region was examined, however this variant is in nearly complete LD with 

4 rs1800790, particularly in Europeans [16, 18]. The allele score was a better predictor of 

5 fibrinogen than rs1800790 alone (Supplemental Table 3). Though the allele score estimated 

6 a causal effect of fibrinogen on CHD similar to observational studies, much of this appeared 

7 to be driven by pleiotropy as estimated effects decreased in models more robust to pleiotropy 

8 (Table 2). This highlights the need to balance increased power from multi-variant approaches 

9 with the potential for increased pleiotropy in these instruments. 

10 For the CHARGE cohorts we used exclusively incident cases whereas previous studies 

11 utilized populations composed entirely or primarily of prevalent cases. In some instances, the 

12 use of prevalent cases may bias MR studies such as if the disease subsequently what is 

13 perceived as a disease risk factor, e.g. if CHD leads to higher fibrinogen as opposed to the 

14 reverse, then reverse confounding can still occur even in an MR setting [26]. Additionally, if 

15 the risk factor were to affect severity of an event, e.g. the fatality of MI, then use of prevalent 

16 cases may dilute the MR-estimated causal effect as the most severe cases may not be observed 

17 due to being too ill to participate or suffering a fatal event. This type of prevalence-incidence 

18 bias is not exclusive to MR analyses [27-29]. However, care must still be taken when 

19 interpreting results from incident case MR studies as the exclusion of prevalent cases is 

20 equivalent to conditioning on disease status at baseline. This has the potential to introduce 

21 bias in the form of an exclusion restriction violation.[30] Whether bias is introduced and the 

22 degree of confounding are dependent on the actual biological processes that account for the 

23 relationship between the genetic instrument(s) chosen, the modifiable risk factor, and outcome 

24 in the MR analysis. When performing incident case MR it is best to combine the efforts with 
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1 MR analyses including prevalent cases and interpret results for both with careful 

2 consideration towards their underlying assumptions, strengths, and weaknesses.

3 In general, our results are compatible with previous MR studies, however we use more 

4 modern methods, including multi-variant, pleiotropy robust methods, able to produce smaller 

5 confidence intervals and which indicate that after accounting for pleiotropy there may be a 

6 small positive effect of fibrinogen on CHD. This is particularly true for the methods 

7 producing the most precise estimates. However, these results warrant further investigations as 

8 confidence intervals for some models were still wide and with results for the single variant 

9 and MR Egger analyses possibly more consistent with no causal effect than even a small 

10 causal effect.

11 Strengths and limitations

12 As with all MR studies the causal effects estimated here are based on regression estimates for 

13 genetic variants and are only valid, causal estimates under the assumptions of MR. 

14 Additionally, causal estimates generated via MR methodologies are for lifelong, genetically 

15 determined increases in the exposure, e.g. fibrinogen, which means that caution should be 

16 exercised when applying clinical interpretations or attempting to translate results into 

17 estimates of an intervention.[31, 32]This study had some overlap between studies involved in 

18 the GWAS used to select fibrinogen variants and those used in the MR analyses. Our 

19 approach to mitigate this was to replicate the allele score analysis in an independent set of 

20 cohorts. For the pleiotropy robust 2-sample MR approaches this overlap was unavoidable, 

21 however there was no overlap for the cases which means that unbiased estimates should be 

22 obtained [33]. A strength of the study is the use of incident cases for the allele score model 

23 approach which reduces the potential for bias from reverse confounding (which can still affect 

24 MR studies) and prevalence-incidence bias. Additionally, even though the allele score 

25 approach was sensitive to horizontal pleiotropy we used an array of additional approaches that 
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1 were each partially robust to horizontal pleiotropy through different assumptions about the 

2 nature of the pleiotropy. These models often have lower power than other approaches, which 

3 motivated our use of a previously published GWAS which had 60,801 prevalent cases and 

4 123,504 controls [34]. However, to prevent potential bias and more closely align with our 

5 initial analyses, a large sample size of incident cases independent of those used to evaluate 

6 associations between genetic variants and fibrinogen would have been preferable. 

7 Conclusion  

8 Fibrinogen represents an important role in thrombosis, platelet aggregation, and inflammation 

9 making it a promising risk factor for CHD. Despite the epidemiological evidence, MR studies 

10 using prevalent cases and single variant approaches have consistently shown no causal effect 

11 of fibrinogen on CHD. Out results indicate that epidemiologic studies may substantially over-

12 estimate any causal effect of fibrinogen on CHD. While some MR models which accounted 

13 for pleiotropy did show a modest causal effect, the 95% confidence intervals still contained 

14 the null indicating that researchers should exercise caution in interpreting these results. 

15 Further analyses using larger sample sizes and more precise methods are warranted to better 

16 resolve the effect of fibrinogen on CHD.

17

18 Methods:

19 This study was conducted within the Cohorts for Heart and Aging Research in Genomic 

20 Epidemiology (CHARGE) consortium [35] using 11 European-ancestry cohorts. For incident 

21 CHD, six cohorts participated in the initial (discovery) analyses (N = 15,427), and four 

22 cohorts (N = 34,209) contributed data for replication. For incident MI, six cohorts participated 

23 in the discovery (N = 18,798), and three cohorts participated in the replication (N = 33,288) 

24 analyses. Details on all cohorts are given in the Supplemental Materials and the clinical 

25 covariates in Table 1, and Figure 1 outlines all analyses. Data collection analysis for all 
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1 cohorts was approved by their respective Institutional Review Boards and/or ethical 

2 committees, and all cohorts obtained written, informed consent from participants. 

3 Assessment of CHD and MI

4 We defined incident CHD as validated, incident fatal or non-fatal CHD events which 

5 included: validated hospitalized MI, CHD-related hospitalizations, definite CHD deaths, 

6 likely CHD deaths, and CHD-related revascularization procedures, e.g. percutaneous coronary 

7 intervention and coronary artery bypass grafting. Incident MI was defined as a validated fatal 

8 or non-fatal MI and included definite MI hospitalizations. For cohorts that used questionnaires 

9 as a component of the follow-up procedures, all events were corroborated with medical 

10 records and/or review by trained medical personnel. Cohort specific details are given in the 

11 Supplemental Online Methods. 

12 Fibrinogen Assessment

13 Fibrinogen was assessed by a variety of methods, with seven cohorts using the Clauss method 

14 [36]. Of the remaining four cohorts, RS used a clotting time-derived method to assess 

15 fibrinogen concentrations, while KORA, MESA, and WGHS used immunological assays to 

16 assess total fibrinogen. 

17 Genotyping and Imputation

18 Genotyping and imputation were performed separately in all cohorts, per published methods 

19 [37]. All participating studies used either the HapMap build 36 [38], 1000 Genomes phase I 

20 version 3, or 1000 Genomes phase I version 2 reference panel for imputation [39]. Imputation 

21 was performed via MACH[40] or IMPUTE [41]. Low quality variants were excluded in line 

22 with previously published approaches: MACH imputation quality < 0.3 or IMPUTE 

23 imputation quality < 0.4 [37]. 

24 Creation of the Allele Score
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1 We evaluated 69 variants associated with fibrinogen in at least one of three recent 

2 genome/exome-wide association studies [2, 19, 37] for inclusion into the allele score [42]. We 

3 applied four criteria to each variant to improve the plausibility that each meets the MR 

4 assumptions. First, to ensure that the variants were not correlated with known risk factors for 

5 cardiovascular disease (CVD), the Spearman correlation between each of the variants and 

6 body mass index (BMI), low-density lipoprotein (LDL) cholesterol, high-density lipoprotein 

7 (HDL) cholesterol, type 2 diabetes mellitus (binary), hypertension (binary), and smoking 

8 (ever, never, current) was tested within each cohort and any variants with a Spearman 

9 correlation greater than 0.10 in any cohort for any of these outcomes were removed. Second, 

10 the variants were tested for linkage disequilibrium (LD) with known CHD loci [34, 43-52] 

11 using SNAP from the Broad Institute with LD patterns coming from European ancestry 

12 individuals [53]. As no variant had r2 > 0.20 with a CHD locus, they were considered 

13 independent of known CHD loci. Next, we reduced pairs of variants in high LD (r2 > 0.70) by 

14 preferentially retaining those variants that were found in the largest genome-wide scan [37]. 

15 Finally, we eliminated any variants that were missing across any of the discovery cohorts, 

16 leaving 38 variants that composed the allele score (Supplemental Table 1). We tested the 

17 allele score for association with each of the aforementioned CHD risk factors in each cohort 

18 as well as in a meta-analysis of all cohorts. The allele score was not associated with any CHD 

19 risk factor in the meta-analysis after a Bonferroni correction for the six tests performed (P > 

20 0.008; Supplemental Table 2).  Six variants from the allele score which were unavailable in 

21 one or more replication cohorts were removed from the allele score in the replication phase to 

22 ensure a consistent allele score in the replication meta-analysis (Supplemental Table 1). In a 

23 sensitivity analysis these variants were also removed from the discovery cohorts and the 

24 causal effect evaluated in a combined meta-analysis.
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1 Each genotype was aligned prior to summing to create the score so that the designated effect 

2 allele corresponded to a positive association with fibrinogen according to the direction of 

3 effect in the largest and most recent fibrinogen GWAS [19]. 

4 Mendelian Randomization

5 MR is a powerful framework that uses genetic variants as instrumental variables to infer 

6 causal relationships between a defined exposure and outcome. The causal effect estimated by 

7 MR is the alteration in exposure due to genetic variation and is thus assumed to be over the 

8 entire life course. There are three assumptions for a genetic variant to be a valid instrument 

9 for MR[54]

10 1. The genetic variant is independent of confounders of exposure and outcome under 

11 examination

12 2. The genetic variant is associated with the exposure

13 3. The genetic variant is independent of the outcome conditional on the exposure and any 

14 confounders

15 In addition to these three conditions, valid estimates from MR are dependent on any 

16 parametric assumptions of the model being used to estimate relevant coefficients and standard 

17 errors. 

18 Our initial MR analyses used a two-stage procedure employing a Cox regression model 

19 (2SC). To improve power, we regressed fibrinogen on age and sex and used the resulting 

20 residuals as input to the 2SC analyses. In the first stage of the 2SC procedure the fibrinogen 

21 residuals were regressed on the allele score. In the second stage the predicted values from the 

22 first stage regression were associated with incident MI or CHD via a Cox proportional 

23 hazards model. This approach is similar to the two-stage predictor-substitution MR approach 

24 [55-57], and results from the 2SC model are given per unit (g/L) increase in the fibrinogen 

25 residuals. We used a fixed effects model for all meta-analyses since we observed little 
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1 heterogeneity according to the Q-statistics [58] (P(Q) > 0.05 for all analyses). We also 

2 compared associations with our allele score to those obtained using a single variant, FGB -

3 455G>A (rs1800790), which is a commonly used variant for fibrinogen MR analyses [16, 18]. 

4 We performed sensitivity analyses using four pleiotropy robust methods each of which uses a 

5 different approach to partially relax the no horizontal pleiotropy assumption of MR 

6 analyses:[59] MR-Egger [54], MR mode based estimate (MBE),[60] MR PRESSO,[61] and 

7 Weighted median [62]. For these sensitivity analyses, we used the prevalent CHD and MI 

8 GWAS results from CARDIoGRAMplusC4D consortium [34] as it had a larger sample size 

9 (60,801 prevalent cases and 123,504 controls) and these methods often have lower power to 

10 detect effects. For estimates of variant effects on fibrinogen we used fixed-effects meta-

11 analysis estimates from the 11 cohorts in these analyses. Since an individual cannot be both a 

12 prevalent and incident CHD or MI case at the same sampling, there was no overlap amongst 

13 the cases between our incident analyses and the prevalent cases used in the 

14 CARDIoGRAMplusC4D GWAS. There would still be some overlap amongst the non-

15 cases/controls which could bias estimates towards the null.  

16 We also examined whether fibrinogen showed evidence for a causal effect on 7 metabolic 

17 CHD risk factors using MR-base (www.mrbase.org), a database of published GWAS 

18 available for MR [63]. We focused on metabolic CHD risk factors as initial results indicated 

19 that body mass index was the trait with which our allele score showed the strongest evidence 

20 for pleiotropy - potentially horizontal (i.e. SNPs affecting fibrinogen and CHD via 

21 independent pathways) and vertical (i.e. fibrinogen-associated SNPs also associated with risk 

22 factors downstream of fibrinogen) as the associations did not distinguish between the two. 

23 The CHD risk factors were body mass index [64], waist circumference [65], waist-to-hip ratio 

24 [65],  low-density lipoprotein cholesterol,[66] triglycerides [66],  homeostatic model 

25 assessment insulin resistance (HOMA-IR) [67], and Type 2 diabetes [68]. As MR-base only 
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1 contains published GWAS we used the most recently published GWAS for fibrinogen for our 

2 variant-fibrinogen associations [1] but limited to those variants present in our allele score. For 

3 the CHD risk factors we compared causal effect estimates obtained from the inverse variance 

4 weighted method (which assumes no unbalanced horizontal pleiotropy), to those from the 

5 pleiotropy robust MR Egger, and Weighted median methods. All three methodologies were 

6 implemented in MR-base.

7 Statistical analyses were performed in R.[69] Meta-analyses were performed using the R 

8 package metafor.[70] Cox models were estimated via the coxph function in the R package 

9 survival[71] with the exception of SHIP where the survreg function was used with an 

10 exponential distribution to account for the interval censored data. MR-Egger and weighted 

11 median results were performed using the R package MendelianRandomization and Two 

12 Sample MR.[63] MR MBE analyses were performed using the methods given by Hartwig et 

13 al.[60]  The default bandwidth (φ = 1) was used for MR MBE as results did not show 

14 sensitivity to the choice of bandwidth. MR PRESSO analyses were performed using code 

15 available at the MR PRESSO GitHub repository (https://github.com/rondolab/MR-PRESSO) 

16 [61]. We used the robust MR estimates from MR PRESSO which are equivalent to 

17 performing an inverse-variance weighted MR analysis after removing outlying variants, 

18 which may be influenced by horizontal pleiotropy, as identified by MR PRESSO. Results 

19 from the 2SC model are reported in terms of the hazard ratio (HR), while all results that 

20 utilize the prevalent disease GWAS are reported in terms of the odds ratio (OR). All HR and 

21 OR are given per 1 g/L higher fibrinogen. All confidence intervals (CI) reported are 95% CI.

22

23 Sources of Funding

24 Infrastructure for the CHARGE Consortium is supported in part by the National Heart, Lung 

25 and Blood Institute (NHLBI) grant R01HL105756. Cohort-specific funding sources for each 
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1  

2 Figure 1. Study Outline

3 Outline of analyses using the allele score, rs1800790 and 2 Sample MR approaches including 

4 the analytic method used to estimate the causal effect, subject to valid MR assumptions, for 

5 all stages of the analysis. CHD = coronary heart disease; MR = Mendelian Randomization; 

6 MI = myocardial infarction

7
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1

2 Figure 2: CHD Forest Plot

3 Forest plot of the CHD MR analysis for the discovery, replication, and combined sets of 

4 cohorts. Shown beside each cohort name is the sample size and number of incident CHD 

5 events given as (N events; N total). CHD = coronary heart disease; FE = fixed-effects; HR = 

6 hazard ratio; CI = confidence interval
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1

2

3 Figure 3: MI Forest Plot

4 Forest plot of the MI MR analysis for the discovery, replication, and combined sets of 

5 cohorts. Shown beside each cohort name is the sample size and number of incident MI events 

6 given as (N events; N total). MI = myocardial infarction, FE = fixed-effects, HR = hazard 

7 ratio, CI = confidence interval
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1 Supporting Information Legends

2 Supplemental Methods and Tables.doc

3 File containing the Supplemental Online Methods (including cohort specific information) as 

4 well as the Supplemental Tables (1-5)
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Discovery Replication
KORA GENOA ARIC CHS GeneSTAR FHS RS MESA WGHS LURIC SHIP

N 3,788 417 8,815 2,939 594 1,828 834 2,506 27,553 921 3,229
Mean (SD)

MI follow-up time (y) 8.44 (1.52) - 20.8 (6.03) 10.3 (6.0) 6.72 (3.59) 17.9 (5.32) 9.32 (3.16) 6.25 (1.12) 17.5 (3.76) - 11.14 (0.8)**
CHD follow-up time (y) - 10.4 (3.6) 20.0 (6.49) 10.3 (5.9) 6.07 (3.19) 17.9 (5.32) 9.18 (3.24) 6.18 (1.23) 17.4 (3.95) 9.43 (2.55) 11.14 (0.8)**

Age (y) 49.2 (13.9) 58.6 (10.0) 54.2 (5.68) 72.4 (5.4) 51.1 (11.3) 53.8 (10.0) 72.2 (6.83) 62.7 (10.2) 54.6 (7.08) 60.1 (11.5) 46.39 (15.11)
BMI (kg/m2) 27.2 (4.69) 30.6 (6.3) 27.0 (4.86) 26.2 (4.4) 29.3 (6.3) 27.4 (4.93) 26.7 (3.80) 27.7 (5.10) 25.1 (6.78) 27.5 (4.36) 27.0 (4.75)

Fibrinogen (g/L) 2.63 (0.60) 3.19 (0.80) 2.95 (0.61) 3.14 (0.61) 3.83 (1.08) 3.14 (0.61) 3.95 (0.87) 3.35 (0.70) 3.59 (0.78) 3.69 (0.90) 2.95 (0.68)
log(Fibrinogen) 0.94 (0.22) 1.11 (0.36) 3.97 (0.11) 1.13 (0.19) 1.30 (0.27) 1.12 (0.19) 1.35 (0.21) 1.19 (0.20) 1.25 (0.22) 1.28 (0.26) 1.06 (0.22)
HDL (mg/dL) 57.9 (17.0) 52.5 (14.3) 51.1 (16.7) 55.8 (15.9) 52.1 (15.8) 51.3 (15.3) 204 (24.5) 52.4 (15.7) 53.1 (16.6) 41.8 (11.7) 57.04 (17.1)
LDL (mg/dL) 137 (41.4) 117 (31.0) 137 (37.6) 134 (35.8) 130 (41.6) 126 (33.0) 104 (12.5) 117 (30.3) 122 (37.3) 121 (33.7) 137.3 (44.2)

N (%)
MI 109 (2.88) - 859 (9.74) 498 (16.9) 30 (5.05) 158 (8.64) 57 (6.83) 62 (2.50) 413 (1.50) - 212 (6.5)

CHD - 77 (18.5) 1,625 (18.4) 942 (32.1) 85 (14.31) 305 (16.7) 113 (13.6) 128 (5.10) 1,035 (3.76) 59 (6.41) 260 (8.0)

Sex (male) 1,854 (48.9) 156 (37.4) 3,983 (45.2) 1,792 (61.0) 321 (54.0) 829 (45.0) 421 (50.5) 1,308 (52.2) 0 (0.00) 499 (54.2) 1,537 (47.6)
Current Smokers 962 (25.4) 47 (11.3) 2,633 (29.9) 322 (11.0) 135 (22.8) 341 (18.7) 144 (17.3) 286 (11.4) 3200 (11.6) 197 (21.4) 1,096 (33.9)
Former Smokers 1,262 (33.3) 157 (37.6) 2,050 (23.3) 1,216 (41.4) 202 (34.0) 404* 429 (51.4) 1,109 (44.4) 10,096 (36.6) 273 (29.6) 1,004 (31.1)
Never Smokers 1,560 (41.2) 213 (51.0) 4,109 (46.6) 1401 (47.7) 257 (43.3) 911* 261 (31.3) 1,104 (44.2) 14,233 (51.7) 451 (49.0) 1,129 (35.0)
Hypertension 1,079 (28.5) 310 (74.3) 2,272 (25.8) 1549 (52.7) 261 (43.94) 563 (30.8) 204 (24.5) 1,097 (43.8) 6,654 (24.2) 625 (67.5) 671 (20.8)

Type 2 Diabetes 565 (14.9) 52 (12.5) 1,659 (18.8) 349 (11.9) 59 (9.93) 129 (7.10) 104 (12.5) 150 (6.70) 0 (0.00) 283 (30.7) 174 (5.4)

Table 1. Clinical Covariates

Clinical covariates for all participating cohorts. KORA did not have incident CHD data and thus did not participate in these analyses. GENOA and 

LURIC had too few incident MI cases for analysis. * For FHS 172 individuals were not current smokers but were not distinguished as former vs 
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never smokers thus percentages were not computed for these categories and the N for those with information is given. ** For SHIP only interval 

censored data was available. Follow-up time represents the time from initial exam to final exam. BMI = body mass index; CHD = coronary heart 

disease; HDL = high-density lipoprotein cholesterol; LDL = low-density lipoprotein cholesterol; MI = myocardial infarction; NA = not available
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Table 2. Multi-variant, Pleiotropy Robust MR Methods

To further examine potential effects of pleiotropy we ran several multi-variant, pleiotropy 

robust models including MR Egger, Weighted Mode Based Estimator (MBE), Weighted 

Median, and MR PRESSO. Each uses a different means to account for pleiotropy and has 

different assumptions used to estimate the causal effect in the presence of pleiotropy. Odds 

ratios are per 1 g/L increase in genetically determined fibrinogen. CHD = coronary heart 

disease; CI = confidence interval; MI = myocardial infarction; MR = mendelian 

randomization

Method Robust to pleiotropy by … CHD Causal OR 
(95% CI)

MI Causal OR 
(95% CI)

MR Egger Intercept-based adjustment 
for global effect of 
pleiotropy

0.98 (0.70, 1.39) 0.89 (0.63, 1.26)

Weighted MBE (phi =1) Assuming causal effect is 
most common shared 
effect across variants

1.09 (0.89, 1.33) 0.98 (0.79, 1.21)

Weighted Median Assuming most (> 50%) 
genetic instruments are 
unaffected by pleiotropy

1.12 (0.91, 1.37) 1.03 (0.82, 1.29)

MR PRESSO Assuming <50% of 
genetic instruments have 
horizontal pleiotropy

1.18 (0.98, 1.42) 1.17 (0.98, 1.40)
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