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Abstract:	340	
	341	
Birth	weight	(BW)	variation	is	influenced	by	fetal	and	maternal	genetic	and	non-genetic	342	
factors,	and	has	been	reproducibly	associated	with	future	cardio-metabolic	health	343	
outcomes.	These	associations	have	been	proposed	to	reflect	the	lifelong	consequences	of	344	
an	adverse	intrauterine	environment.	In	earlier	work,	we	demonstrated	that	much	of	the	345	
negative	correlation	between	BW	and	adult	cardio-metabolic	traits	could	instead	be	346	
attributable	to	shared	genetic	effects.	However,	that	work	and	other	previous	studies	did	347	
not	systematically	distinguish	the	direct	effects	of	an	individual’s	own	genotype	on	BW	and	348	
subsequent	disease	risk	from	indirect	effects	of	their	mother’s	correlated	genotype,	349	
mediated	by	the	intrauterine	environment.	Here,	we	describe	expanded	genome-wide	350	
association	analyses	of	own	BW	(n=321,223)	and	offspring	BW	(n=230,069	mothers),	which	351	
identified	278	independent	association	signals	influencing	BW	(214	novel).	We	used	352	
structural	equation	modelling	to	decompose	the	contributions	of	direct	fetal	and	indirect	353	
maternal	genetic	influences	on	BW,	implicating	fetal-	and	maternal-specific	mechanisms.	354	
We	used	Mendelian	randomization	to	explore	the	causal	relationships	between	factors	355	
influencing	BW	through	fetal	or	maternal	routes,	for	example,	glycemic	traits	and	blood	356	
pressure.	Direct	fetal	genotype	effects	dominate	the	shared	genetic	contribution	to	the	357	
association	between	lower	BW	and	higher	type	2	diabetes	risk,	whereas	the	relationship	358	
between	lower	BW	and	higher	later	blood	pressure	(BP)	is	driven	by	a	combination	of	359	
indirect	maternal	and	direct	fetal	genetic	effects:	indirect	effects	of	maternal	BP-raising	360	
genotypes	act	to	reduce	offspring	BW,	but	only	direct	fetal	genotype	effects	(once	361	
inherited)	increase	the	offspring’s	later	BP.	Instrumental	variable	analysis	using	maternal	362	
BW-lowering	genotypes	to	proxy	for	an	adverse	intrauterine	environment	provided	no	363	
evidence	that	it	causally	raises	offspring	BP.	In	successfully	separating	fetal	from	maternal	364	
genetic	effects,	this	work	represents	an	important	advance	in	genetic	studies	of	perinatal	365	
outcomes,	and	shows	that	the	association	between	lower	BW	and	higher	adult	BP	is	366	
attributable	to	genetic	effects,	and	not	to	intrauterine	programming.367	
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Birth	weight	(BW)	is	an	important	predictor	of	newborn	and	infant	survival,	a	key	indicator	368	
of	pregnancy	outcomes	for	mothers	as	well	as	for	offspring,	and	is	observationally	369	
associated	with	future	risk	of	adult	cardio-metabolic	diseases	in	the	offspring.	370	
	371	
Observational	associations	between	lower	BW	and	later	cardio-metabolic	diseases	are	often	372	
assumed	to	reflect	adaptations	made	by	a	developing	fetus	in	response	to	an	adverse	373	
intrauterine	environment,	such	as	maternal	malnutrition.	This	concept	has	been	termed	the	374	
Developmental	Origins	of	Health	and	Disease	(DOHaD)	hypothesis1.	Support	of	the	DOHaD	375	
hypothesis	is	primarily	from	animal	models	(reviewed	in	2).	Observational	studies	of	famine-376	
exposed	populations	support	prenatal	programming	in	relation	to	body	size	and	diabetes,	377	
but	not	other	cardio-metabolic	health	measures	(reviewed	in	3).	However,	DOHaD	cannot	378	
provide	a	complete	explanation	for	the	relationship	between	lower	BW	and	increased	risk	of	379	
cardio-metabolic	disease.	Other	likely	contributing	factors	are	(i)	environmental	380	
confounding,	leading	to	phenotypic	associations	across	the	life-course4,	and	(ii)	shared	381	
genetic	effects	operating	at	the	population	level,	as	demonstrated	in	our	recent	work	382	
showing	overlap	between	genetic	variants	influencing	BW	and	adult	cardio-metabolic	383	
diseases5.	Genetic	associations	between	BW	and	later	cardio-metabolic	diseases	may	arise	384	
from	the	direct	effects	of	the	same	inherited	genetic	variants	at	different	stages	of	the	life-385	
course6.	However,	consideration	of	an	individual’s	own	genotype	in	isolation	cannot	exclude	386	
potential	confounding	by	any	indirect	effects	of	the	correlated	maternal	genotype	(r≈0.5)	on	387	
the	intrauterine,	and	possibly	postnatal,	environment.	Evidence	for	maternal	indirect	effects	388	
on	BW	and	later	offspring	disease	risk	could	indicate	the	role	of	the	intrauterine	389	
environment	in	later-life	disease	etiology.	390	
	391	
To	date,	65	genomic	loci	have	been	associated	with	BW	in	genome-wide	association	studies	392	
(GWAS),	implicating	biological	pathways	that	may	underlie	observational	associations	with	393	
adult	disease5,7-9.	However,	most	of	these	studies	did	not	distinguish	between	maternal	and	394	
fetal	genetic	influences	on	BW.	Evidence	from	monogenic	human	models10	and	variance	395	
components	analyses11	demonstrate	that	BW	is	influenced	both	by	genotypes	inherited	by	396	
the	fetus	and	by	maternal	genotypes	that	influence	the	intrauterine	environment.	To	date,	397	
GWAS	of	own	BW5	and	offspring	BW7,	which	have	focused	on	the	fetal	and	maternal	398	
genome	respectively,	have	produced	overlapping	signals	due	to	the	correlation	between	399	
maternal	and	fetal	genotypes.	Identified	BW	variants	might	have	(i)	a	direct	fetal	effect	only,	400	
(ii)	an	indirect	maternal	effect	only,	or	(iii)	some	combination	of	the	two.	Performing	401	
separate	GWAS	analyses	of	own	or	offspring	BW	precludes	full	resolution	of	the	origin	of	402	
the	identified	genetic	effects.	For	example,	some	association	signals	identified	in	a	GWAS	of	403	
own	BW	may	in	fact	be	the	exclusive	consequence	of	strong	indirect	maternal	effects	(and	404	
vice	versa).		405	
	406	
To	address	these	issues,	we	performed	greatly-expanded	GWAS	of	own	BW	(n=321,223)	and	407	
offspring	BW	(n=230,069	mothers)	using	data	from	the	EGG	Consortium	and	the	UK	Biobank	408	
(2017	release).	We	applied	a	statistical	method	that	we	recently	developed,	which	utilises	409	
structural	equation	modelling	(SEM),	to	partition	genetic	effects	on	BW	into	maternal	and	410	
fetal	components	at	genome-wide	significant	loci7,12.	We	then	extended	the	method	to	411	
estimate	maternal-	and	fetal-specific	genetic	effects	across	the	genome	in	a	computationally	412	
efficient	manner,	and	used	the	results	for	downstream	analyses.	Our	ability	to	resolve	413	
maternal	and	fetal	genetic	contributions	provides	substantial	insights	into	the	underlying	414	
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biological	regulation	of	BW	and	into	the	origins	of	observational	relationships	with	type	2	415	
diabetes	(T2D)	and	blood	pressure	(BP).416	
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RESULTS	417	
	418	
Meta-analyses	of	fetal	and	maternal	GWAS		419	
We	conducted	GWAS	meta-analyses	of	own	(fetal)	genetic	variants	on	own	BW	420	
(Supplementary	Figure	1,	Supplementary	Tables	1	and	2)	and	maternal	genetic	variants	on	421	
offspring	BW	(Supplementary	Figure	2,	Supplementary	Tables	3	and	4)	in	individuals	of	422	
European	ancestry.	We	then	performed	approximate	conditional	and	joint	multiple-SNP	423	
analysis	(COJO13)	and	a	trans-ethnic	meta-analysis	to	identify	further	independent	SNPs	424	
(Methods).	The	GWAS	meta-analysis	of	own	BW	(N=321,223)	identified	211	independent	425	
single	nucleotide	polymorphisms	(SNPs)	at	genome-wide	significance	(P<5x10-8)	426	
(Supplementary	Figures	3,	4,	5a,	Supplementary	Table	5,	and	Methods).	The	GWAS	meta-427	
analysis	of	offspring	BW	(N=230,069	mothers)	identified	105	independently	associated	SNPs	428	
(P<5x10-8;	Supplementary	Figures	3,	4,	5b,	Supplementary	Table	5,	and	Methods).		When	429	
we	applied	a	more	stringent	significance	threshold	that	accounts	for	the	large	number	of	430	
low	frequency	SNPs	imputed	in	the	UK	Biobank	and	EGG	studies	(P<6.6x10-9;	see	Kemp	et	al.	431	
14	for	details	of	the	derivation	of	this	threshold),	147	of	the	211	SNPs	from	the	GWAS	meta-432	
analysis	of	own	BW	and	72	of	the	105	SNPs	from	the	GWAS	meta-analysis	of	offspring	BW	433	
remained	significant	(Supplementary	Table	5).		434	
		435	
SNPs	at	52	genome-wide	significant	loci	(within	500Kb)	were	identified	in	the	GWAS	of	both	436	
own	BW	and	offspring	BW.	Of	these,	11	loci	had	the	same	lead	SNP	and	a	further	31	loci	had	437	
fetal	and	maternal	lead	SNPs	correlated	with	r2	≥	0.1.	Colocalization	analysis	indicated	27/31	438	
of	these	maternal	and	fetal	lead	SNP	pairs	were	likely	tagging	the	same	BW	signal	(posterior	439	
probability	>	0.5).	Therefore,	we	identified	a	total	of	278	independent	association	signals,	440	
represented	by	305	SNPs	(Supplementary	Figure	4	and	Supplementary	Table	5).	Of	the	305	441	
genome-wide	significant	SNPs,	238	were	novel	representing	214	independent	association	442	
signals,	four	of	the	identified	SNPs	are	rare	(minor	allele	frequency	(MAF)<1%)	and	21	are	443	
low-frequency	(1%≤MAF<5%).	Three	of	the	rare	variants	(YKT6/GCK,	ACVR1C	and	MIR146B)	444	
alter	BW	by	more	than	double	the	effect	(>100g	per	allele)	of	the	first	common	variants	445	
identified9.	In	the	independent	Norwegian	MoBa-HARVEST	study	(N=13,934	mother-446	
offspring	duos),	the	variance	in	BW	explained	by	fetal	genetic	variation	was	larger	than	that	447	
explained	either	by	maternal	genetic	variation	or	the	covariance	between	the	two.	The	fetal	448	
genotype	at	the	genome-wide	significant	SNPs	explained	7%	of	the	variance	in	BW,	whereas	449	
the	maternal	genotype	explained	3%	and	the	covariance	explained	-0.5%	(in	total,	the	450	
genome-wide	significant	SNPs	explained	9%	of	the	variance	in	BW,	calculated	as	the	sum	of	451	
variances	explained	by	the	fetal	genotype,	maternal	genotype,	plus	twice	the	covariance).	452	
Maternal	genome-wide	complex	trait	analysis	(M-GCTA11),	which	estimates	SNP	heritability	453	
and	partitions	this	quantity	into	maternal	and	fetal	components,	estimated	that	a	total	of	454	
39.8%	of	the	variance	in	BW	could	be	explained	by	tagged	fetal	genetic	variation	(28.5%),	455	
tagged	maternal	genetic	variation	(7.6%)	and	twice	the	covariance	between	the	two	(3.7%)..		456	
	457	
We	integrated	data	from	several	sources	to	highlight	possible	causal	genes	underlying	the	458	
identified	associations,	including	gene-level	expression	data	across	43	tissues	(from	GTEx	459	
v6p15),	placental	expression	quantitative	trait	loci	(eQTL16),	topologically	associating	460	
domains	(TADs)	identified	in	human	embryonic	stem	cells17,18	and	non-synonymous	SNPs	461	
(see	Supplementary	Table	5	and	Methods).	Several	genes	were	highlighted	by	multiple	462	
approaches;	however,	further	functional	studies	are	required		to	confirm	causality.		463	
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Structural	equation	model	to	estimate	maternal	and	fetal	effects		464	
We	next	partitioned	the	305	genome-wide	significant	SNPs	into	five	categories	based	on	465	
their	maternal	and/or	fetal	genetic	contributions	to	BW.	To	achieve	this,	we	used	structural	466	
equation	modelling	(SEM)	that	accounts	for	the	correlation	between	fetal	and	maternal	467	
genotypes	and	therefore	potential	confounding	of	the	maternal	and	fetal	effects	on	each	468	
other12.	Briefly,	the	model	uses	the	self-reported	BW	data	from	the	individuals	in	the	UK	469	
Biobank,	along	with	the	BW	data	of	the	first	offspring	of	the	UK	Biobank	women.	We	model	470	
both	grand-maternal	and	offspring	genotypes	(which	were	absent	in	the	UK	Biobank)	as	471	
latent	factors,	in	addition	to	the	genotype	data	of	the	UK	Biobank	individual	472	
(Supplementary	Figure	17).	The	model	is	robust	to	missing	data	and	measurement	error,	so	473	
we	could	include	individuals	from	the	UK	Biobank	who	have	reported	either	their	own	474	
(including	women	and	men)	or	their	offspring’s	BW	(women	only),	but	not	both.	Likewise,	475	
we	can	also	include	summary	statistics	from	the	EGG	consortium	to	improve	the	estimation	476	
of	the	maternal	and	fetal	effects	(see	Methods	for	full	details).	The	model	provides	477	
unbiased	estimates	of	the	maternal	and	fetal	genetic	effects	on	BW.	We	analysed	257,734	478	
individuals	of	European	descent	from	the	UK	Biobank	(85,518	women	with	their	own	and	479	
their	offspring’s	BW,	98,235	men	or	women	with	their	own	BW,	and	73,981	women	with	480	
only	their	offspring’s	BW)	and	incorporated	the	summary	statistics	from	the	EGG	481	
Consortium	European	meta-analysis	of	own	BW	(N=80,745)	and	offspring	BW	(N=19,861;	482	
Figure	1,	Supplementary	Figures	4,	6	and	Supplementary	Table	5).	Using	the	confidence	483	
intervals	around	the	SEM-adjusted	maternal	and	fetal	effect	estimates,	we	identified	83	484	
SNPs	with	fetal-only	effects,	45	SNPs	with	maternal-only	effects,	36	SNPs	with	directionally-485	
concordant	fetal	and	maternal	effects,	and	24	SNPs	with	directionally-opposing	fetal	and	486	
maternal	effects	(Supplementary	Figure	7).	For	example,	rs10830963	at	MTNR1B	was	487	
identified	in	both	the	own	BW	(P=2.8x10-11)	and	offspring	BW	(P=9.1x10-39)	GWAS,	but	the	488	
SEM	analysis	revealed	that	its	effect	on	BW	was	exclusively	maternal	(PSEMfetal=0.7,	489	
PSEMmaternal=4.6x10-19).	Conversely,	rs28457693	at	PTCH1/FANCC	(own	BW	GWAS:	P=9.9x10-490	
26;	offspring	BW	GWAS:	P=3.7x10-9)	showed	evidence	of	a	fetal	effect	only	(PSEMfetal=1.7x10-9,	491	
PSEMmaternal=0.2).	SNP	rs560887	at	G6PC2	was	identified	only	in	the	GWAS	of	offspring	BW	492	
(P=1.2x10-14),	but	was	found	to	have	directionally-opposing	maternal	and	fetal	effects	on	493	
BW	(PSEMfetal=2.8x10-8,	PSEMmaternal=5.4x10-14).	At	present,	these	categories	are	suggestive	as	494	
the	current	sample	size	has	insufficient	statistical	power	to	detect	small	genetic	effects,	495	
particularly	maternal	effects.	There	were	117	SNPs	that	were	unclassified,	and	some	of	the	496	
SNPs	that	were	classified	as	fetal	only,	for	example,	may	have	had	a	small	maternal	effect	497	
that	was	undetected	with	the	current	sample	size.	Asymptotic	power	calculations	showed	498	
that	with	the	current	sample	size	we	had	80%	power	to	detect	fetal	(maternal)	effects	that	499	
explained	0.006%	(0.008%)	of	the	variance	in	BW	(α=0.05).	However,	there	was	strong	500	
consistency	with	traditional	conditional	linear	regression	modelling	in	N=18,873	mother-501	
offspring	pairs	(Supplementary	Table	6	and	Methods),	and	overall,	the	method	gave	a	clear	502	
indication	as	to	which	genetic	associations	are	driven	by	the	maternal	or	fetal	genomes,	503	
respectively.	504	
	505	
To	extend	the	estimates	of	adjusted	maternal	and	fetal	effects	genome-wide,	we	developed	506	
a	weighted	linear	model	(WLM)	that	yields	a	good	approximation	to	the	SEM	(see	507	
Methods),	with	equivalent	estimates	for	the	305	genome-wide	significant	SNPs	508	
(Supplementary	Figure	8).	This	was	necessary	because	the	SEM	is	too	computationally	509	
intensive	to	fit	to	a	large	number	of	SNPs	across	the	genome.	The	resulting	adjusted	fetal	510	
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and	maternal	genotype	effect	estimates	on	BW	from	the	WLM	are	hereafter	referred	to	as	511	
WLM-adjusted	estimates.	Using	linkage	disequilibrium	(LD)	score	regression19,	we	observed	512	
that	the	genetic	correlation	between	the	WLM-adjusted	maternal	and	fetal	effects	(rg=0.10,	513	
P=0.12)	was	substantially	lower	than	that	between	the	unadjusted	effects	from	the	original	514	
GWAS	(rg=0.82,	P<0.01),	indicating	that	the	WLM	largely	accounts	for	the	underlying	515	
correlation	between	fetal	and	maternal	genotypes.	No	additional	novel	loci	were	identified	516	
in	the	WLM-adjusted	analyses.	We	used	these	WLM-adjusted	estimates	in	downstream	517	
analyses	to	identify	fetal-specific	and	maternal-specific	mechanisms	that	regulate	BW	and	to	518	
investigate	the	genetic	links	between	BW	and	adult	traits.	519	
	520	
Maternal-	and	fetal-specific	tissues	and	mechanisms	underlying	BW	regulation	521	
Using	the	WLM-adjusted	estimates,	we	observed	differences	in	enrichment	between	the	522	
maternal	and	fetal	profiles	of	gene	expression	across	tissues,	and	of	regulatory	pathways.	523	
Tests	of	global	enrichment	of	BW	SNP	associations	across	tissues	sampled	from	the	GTEx	524	
project15	using	LD-SEG20,	indicated	that	the	only	tissues	reaching	significance	after	525	
Bonferroni	correction	was	enrichment	for	maternal-specific	SNP	associations	for	genes	526	
expressed	in	connective/bone	tissues	(Supplementary	Figure	9).	Integration	of	epigenetic	527	
signatures	defined	by	the	Roadmap	Epigenomics	project	highlighted,	after	Bonferroni	528	
correction,	a	significant	enrichment	of	maternal-specific	effects	in	the	ovary	for	histone	529	
modification	marks	(H3K4me1)	and	regions	of	open	chromatin	(Supplementary	Table	7);	no	530	
significant	enrichment	was	detected	for	other	signatures.	Gene-set	enrichment	analysis	531	
using	WLM-adjusted	effect	estimates	also	implicated	different	gene	sets	having	fetal-532	
specific	influences	on	BW	(Supplementary	Table	8)	to	those	having	maternal-specific	533	
influences	(Supplementary	Table	9).		534	

A	major	determinant	of	BW	is	the	duration	of	gestation.	We	performed	LD	score	regression	535	
analysis19	to	investigate	the	genetic	correlation	between	published	maternal	genotype	536	
effects	on	gestational	duration21	and	the	WLM-adjusted	BW	effects.	(To	date,	there	is	no	537	
published	GWAS	of	fetal	genotype	and	gestational	duration.)	We	found	a	substantial	genetic	538	
correlation	with	the	WLM-adjusted	maternal	effects	on	offspring	BW	(rg=0.63;	P=2.1x10-5;	539	
Supplementary	Table	10;	see	Methods),	but	not	with	the	WLM-adjusted	fetal	effects	on	540	
own	BW	(rg=-0.10,	P=0.35).	Gestational	duration	was	unavailable	for	>85%	of	individuals	in	541	
the	GWAS	analyses,	due	to	the	large	UK	Biobank	sample	without	gestational	duration,	so	it	542	
is	possible	that	some	identified	association	signals	influence	BW	primarily	by	altering	the	543	
timing	of	delivery.	We	looked	up	the	305	genome-wide	significant	BW-associated	SNPs	in	544	
the	published	maternal	GWAS	of	gestational	duration21	(Supplementary	Table	11)	and	545	
followed	up	6	SNPs	in	13,206	mother-child	pairs	(P<1.6x10-4	with	gestational	duration,	546	
corrected	for	305	tests,	Methods).	Meta-analyzing	the	results	from	the	mother-child	pairs	547	
with	summary	data	from	23andMe21	strengthened	associations	with	gestational	duration	at	548	
four	of	the	six	loci	(EBF1,	AGTR2,	ZBTB38	and	KCNAB1;	Supplementary	Table	12).	The	549	
precise	causal	relationship	between	fetal	growth	and	gestational	duration	at	these	loci	550	
requires	further	investigation,	however,	the	majority	of	associations	with	BW	do	not	appear	551	
to	be	driven	by	associations	with	gestational	duration.		552	
	553	
	554	
	555	
Maternal-	and	fetal-specific	genetic	correlations	between	BW	and	adult	traits	556	
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The	305	genome-wide	significant	BW-associated	SNPs	were	collectively	associated	with	a	557	
wide	variety	of	other	phenotypes	in	previously-published	GWAS	and	in	the	UK	Biobank	558	
(Supplementary	Table	13;	see	Methods).	At	the	genome-wide	level,	we	previously	reported	559	
genetic	correlations	between	own	BW	and	several	adult	cardio-metabolic	disease	traits5,	for	560	
example	systolic	blood	pressure	(SBP;	rg=-0.22,	P=5.5x10-13),	but	at	that	time	were	unable	to	561	
distinguish	the	direct	fetal	genotype	contribution	from	the	indirect	contribution	of	maternal	562	
genotype.	To	understand	these	distinct	contributions,	we	calculated	genetic	correlations	563	
using	LD	score	regression19	between	WLM-adjusted	fetal	and	maternal	SNP	effect	estimates	564	
and	GWAS	estimates	for	a	large	range	of	health-related	traits	(Figure	2,	Supplementary	565	
Table	10	and	Methods).	For	many	traits,	for	example	adult	height,	the	WLM-adjusted	fetal	566	
effect	on	own	BW	(rg=0.28,	P=8.1x10-16)	showed	a	similar	genetic	correlation	to	the	WLM-567	
adjusted	maternal	effect	on	offspring	BW	(rg=0.29,	P=5.1x10-16).	However,	for	others,	we	568	
observed	differing	fetal-specific	and	maternal-specific	genetic	correlations.	For	example,	for	569	
several	glycemic	traits	(T2D,	2-hour	glucose,	fasting	glucose,	fasting	insulin),	there	were	570	
directionally-opposite	fetal	(own	BW)	and	maternal	(offspring	BW)	genetic	correlations.	571	
Moreover,	the	genetic	correlations	with	glycemic	traits	that	were	estimated	using	the	WLM-572	
adjusted	effects	were	substantially	larger	than	those	estimated	using	the	unadjusted	573	
effects,	demonstrating	the	importance	of	accounting	for	the	maternal-fetal	genotype	574	
correlation	(e.g.	fasting	glucose:	WLM-adjusted	fetal	effect	on	own	BW	rg=-0.25,	P=8.2x10-6;	575	
unadjusted	fetal	effect	on	own	BW	rg=-0.11,	P=0.005;	WLM-adjusted	maternal	effect	on	576	
offspring	BW	rg=0.20,	P=0.003;	unadjusted	maternal	effect	on	offspring	BW	rg=0.08,	P=0.09).	577	
Cardiovascular	traits	showed	directionally	consistent	WLM-adjusted	maternal	and	WLM-578	
adjusted	fetal	genetic	correlations,	but	with	different	strengths.	For	example,	the	genetic	579	
correlation	between	SBP	and	WLM-adjusted	maternal	effects	on	offspring	BW	(rg=-0.23,	580	
P=9.2x10-10)	was	stronger	than	that	between	SBP	and	WLM-adjusted	fetal	effects	on	own	581	
BW	(rg=-0.14,	P=9.8x10-5).		582	
	583	
Using	genetics	to	estimate	causal	effects	of	intrauterine	exposures	on	birth	weight	584	
The	separation	of	direct	fetal	genotype	effects	from	indirect	maternal	genotype	effects	on	585	
BW	offers	the	novel	opportunity	to	estimate	the	unconfounded	causal	influences	of	586	
intrauterine	exposures	using	Mendelian	randomization	(MR)	analyses.	The	principle	of	MR	is	587	
similar	to	that	of	a	randomized	controlled	trial:	parental	alleles	are	randomly	transmitted	to	588	
offspring	and	are	therefore	generally	free	from	confounding22,23.	Consequently,	an	589	
association	between	a	maternal	genetic	variant	for	an	exposure	of	interest,	and	offspring	590	
BW,	after	accounting	for	fetal	genotype,	provides	evidence	that	the	maternal	exposure	is	591	
causally	related	to	offspring	BW	(Figure	3A).	Previous	attempts	to	estimate	causal	effects	of	592	
maternal	exposures	on	offspring	BW	were	limited	by	an	inability	to	adjust	for	fetal	genotype	593	
in	adequately-powered	samples24.	However,	this	limitation	can	now	be	overcome	by	using	594	
WLM-adjusted	estimates	in	a	two-sample	setting.	We	applied	two-sample	MR25	to	estimate	595	
causal	effects	of	maternal	exposures	on	offspring	BW,	focusing	on	height,	glycemic	traits	596	
and	SBP.	We	selected	SNPs	known	to	be	associated	with	each	exposure,	and	regressed	the	597	
WLM-adjusted	maternal	effect	sizes	on	BW	for	those	SNPs	against	the	effect	estimates	for	598	
the	maternal	exposure,	weighting	by	the	inverse	of	the	variance	of	the	maternal	exposure	599	
effect	estimates.	In	the	same	way,	we	used	the	WLM-adjusted	fetal	effects	to	estimate	the	600	
casual	effect	of	the	offspring’s	genetic	potential	on	their	own	BW,	and	compared	the	results	601	
with	the	estimated	maternal	causal	effects.		602	
	603	
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Height	and	birth	weight	604	
We	used	the	WLM-adjusted	estimates	to	investigate	the	relationship	between	maternal	605	
height	and	offspring	BW.	Classical	animal	experiments26	have	demonstrated	that	larger	606	
maternal	size	can	support	greater	fetal	growth.	This	is	supported	by	observational	human	607	
data	showing	that	offspring	height	shifts	from	being	closer	to	maternal	than	paternal	height	608	
percentile	in	infancy	towards	mid-parental	height	in	adulthood,	the	latter	reflecting	the	609	
predominant	role	of	inherited	genetic	variation27.	However	several	observational	studies	610	
have	provided	mixed	evidence	regarding	correlations	between	maternal	or	paternal	height	611	
and	offspring	BW:	some	studies	show	a	stronger	correlation	with	maternal	than	paternal	612	
height28,29,	which	would	be	consistent	with	a	role	for	intrauterine	effects	(since	both	parents	613	
contribute	equally	to	offspring	genotype),	while	others	show	that	maternal	height	is	as	614	
strongly	correlated	with	offspring	BW	as	paternal	height30-32.	The	MR	analysis,	using	693	615	
height-associated	SNPs	as	the	instrumental	variable33	(Supplementary	Table	14),	estimated	616	
that	a	1	SD	(6cm)	higher	maternal	height	is	causally	associated	with	a	0.11	SD	(95%CI:	0.10,	617	
0.13)	higher	offspring	BW	(Figure	3B),	independent	of	the	direct	fetal	effects.	This	estimate	618	
was	similar	in	magnitude	to	that	obtained	using	the	WLM-adjusted	fetal	effects	on	own	BW	619	
(0.11	SD	(95%CI:	0.09,	0.13)),	which	reflects	the	role	of	inherited	height	alleles	620	
(Supplementary	Table	15).	Both	a	previous	study34	and	complementary	analysis	using	621	
transmitted	and	non-transmitted	alleles	in	mother-offspring	pairs	(comparison	of	effects	of	622	
maternal	non-transmitted	height	alleles	with	alleles	transmitted	to	offspring	in	N=3,485	and	623	
4,962	mother-offspring	pairs,	respectively)	estimated	a	much	larger	contribution	of	direct	624	
fetal	effects	than	indirect	maternal	effects	to	offspring	BW	(Supplementary	Table	16),	625	
however	the	sample	sizes	in	both	analyses	were	relatively	small.	To	test	whether	the	626	
maternal	height	effect	might	be	influencing	BW	by	increasing	gestational	duration,	as	627	
previously	reported34,	we	applied	the	same	MR	analysis	to	maternal	genotype	effects	on	628	
gestational	duration21,	but	found	little	supportive	evidence	(P=0.12;	Supplementary	Table	629	
15).	The	MR	results	from	the	current	study	are	consistent	with	the	hypothesis	that	greater	630	
maternal	height	causally	increases	BW,	and	that	this	effect	is	independent	of	the	direct	BW-631	
raising	effect	of	height	alleles	inherited	by	the	fetus.	For	the	maternal	effect,	we	cannot	rule	632	
out	causal	pathways	other	than	the	greater	availability	of	space	for	fetal	growth:	causal	633	
associations	between	greater	height	and	more	favourable	socio-economic	position35,	for	634	
example,	could	enhance	maternal	nutritional	status	and	result	in	higher	offspring	BW.	We	635	
also	cannot	exclude	the	contribution	of	assortative	mating36	to	these	results:	correlation	636	
between	maternal	and	paternal	height	genotypes	could	lead	to	similar	maternal	and	fetal	637	
MR	estimates.		638	
	639	
Glycemic	traits	and	birth	weight		640	
We	used	the	WLM-adjusted	estimates	to	assess	the	causal	effect	of	maternal	fasting	glucose	641	
levels	on	BW	with	precision	that	was	not	achievable	previously24	due	to	the	inability	to	642	
adjust	for	direct	fetal	effects	in	a	large	sample.	Maternal	glucose	is	a	key	determinant	of	643	
fetal	growth:	it	crosses	the	placenta,	stimulating	the	production	of	fetal	insulin	which	644	
promotes	growth37,	and	as	a	consequence,	strong,	positive	associations	are	seen	between	645	
maternal	fasting	glucose,	or	fetal	insulin	levels,	and	offspring	BW38.	In	a	randomized	clinical	646	
trial	of	women	with	gestational	diabetes	mellitus,	glucose	control	was	shown	to	reduce	647	
offspring	BW39.	Therefore,	we	anticipated	detecting	a	positive	causal	effect	of	maternal	648	
glucose	on	offspring	BW.	Indeed,	the	MR	analysis	using	33	fasting	glucose-associated	SNPs	649	
(Supplementary	Table	14),	estimated	an	0.18	SD	(95%CI:	0.13,	0.23)	higher	offspring	BW	650	
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due	to	1	SD	(0.4mmol/L)	higher	maternal	fasting	glucose,	independent	of	the	direct	fetal	651	
effects	(Supplementary	Table	15;	Figure	3C).	A	large	part	of	the	genetic	variation	underlying	652	
fasting	glucose	levels	is	implicated	in	pancreatic	beta	cell	function	and	thus	overlaps	with	653	
the	genetics	of	insulin	secretion.	To	estimate	the	causal	effect	of	insulin	secretion	on	BW,	654	
we	used	18	SNPs	as	instrumental	variables	that	are	associated	with	disposition	index	(DI),	655	
which	is	a	measure	of	insulin	response	to	glucose,	adjusted	for	insulin	sensitivity.	Low	values	656	
of	DI	are	associated	with	higher	T2D	risk.	Alleles	that	increase	insulin	secretion	in	the	657	
mother	tend	to	decrease	her	glucose	levels,	which	consequently	reduces	insulin-mediated	658	
growth	of	the	fetus.	This	was	reflected	in	the	negative	causal	estimate	from	the	MR	analysis	659	
of	the	effect	of	maternal	DI	on	offspring	BW	(-0.17	SD	per	1	SD	higher	maternal	DI	(95%CI:	-660	
0.26,	-0.08);	Supplementary	Table	15).	In	contrast,	we	estimated	that	BW	was	0.10	SD	661	
(95%CI:	0.02,	0.19)	higher	per	1	SD	genetically	higher	fetal	DI	(Methods),	highlighting	that	662	
genetic	variation	underlying	insulin	secretion	plays	a	key	role	in	fetal	growth,	and	suggesting	663	
that	the	genetic	effects	on	DI	are	similar	in	fetal	and	adult	life.	664	
	665	
BW	associations	with	previously-reported	GWAS	SNPs	for	fasting	glucose,	T2D,	insulin	666	
secretion	and	insulin	sensitivity	loci	were	directionally	consistent	with	the	overall	genetic	667	
correlations	and	supported	the	opposing	contributions	of	fetal	versus	maternal	glucose-668	
raising	alleles	on	BW	(Supplementary	Figures	10-13).	Taken	together	with	the	WLM-669	
adjusted	genetic	correlations,	the	MR	results	underline	the	importance	of	fetal	insulin	in	670	
fetal	growth	and	demonstrate	that	fetal	genetic	effects	link	lower	BW	with	reduced	insulin	671	
secretion	and	higher	T2D	risk	in	later	life6.However,	further	work	will	be	needed	to	672	
investigate	the	role	of	maternal	indirect	genetic	effects	in	the	relationship	between	high	BW	673	
and	higher	future	risk	of	T2D.	The	latter	relationship	may	be	driven	by	(i)	maternal	genetic	674	
predisposition	to	T2D	resulting	in	raised	glycemia	in	pregnancy	and	high	offspring	BW,	then	675	
later	offspring	T2D	through	inheritance	of	maternal	risk	alleles,	or	(ii)	a	programming	effect	676	
of	exposure	to	high	maternal	glucose	on	later	offspring	T2D	risk,	or	(iii)	a	combination	of	the	677	
two.	The	proportion	of	the	negative	BW-T2D	covariance	explained	by	fetal	genotype	effects	678	
on	own	BW	was	estimated	to	be	36%	(95%CI:	15,	57;	Supplementary	Table	17),	though	this	679	
is	likely	an	underestimate	since	current	methods	cannot	adjust	for	the	opposing	effects	of	680	
maternal	genotypes.	681	
	682	
Blood	pressure	and	birth	weight	683	
Observational	studies	of	the	relationship	between	BW	and	later	life	BP	have	produced	684	
mixed	findings:	some	studies	indicate	that	lower	BW	is	associated	with	higher	later-life	BP	685	
and	related	comorbidities40,	whereas	others	have	shown	that	this	relationship	could	be	686	
driven	by	a	statistical	artifact	due	to	adjusting	for	current	weight41,42.	We	previously	showed	687	
that	genetic	factors	account	for	a	large	proportion	of	an	association	between	lower	BW	and	688	
higher	BP5,	but	it	was	not	clear	whether	this	was	due	to	direct	fetal	genotype	effects,	or	689	
indirect	maternal	effects,	or	a	combination	of	the	two.	We	explored	this	contested	690	
association	further	using	several	complementary	analyses.	The	estimate	of	the	BW-SBP	691	
covariance	explained	was	higher	when	using	the	maternal	genotyped	SNP	associations	with	692	
offspring	BW	(65%	(95%CI:	57,	74%)),	than	when	using	the	fetal	genotype	associations	with	693	
own	BW	(56%	(95%CI:	48,	64%);	Supplementary	Table	17).	A	similar	pattern	was	seen	with	694	
the	BW-DBP	covariance	(72%	(95%CI:	58,	85%)	explained	using	the	maternal	genotyped	SNP	695	
associations	with	offspring	BW	and	56%	(95%CI:	46,	67%)	explained	using	the	fetal	genotype	696	
associations	on	own	BW;	Supplementary	Table	17).	Together	with	the	larger	maternal	than	697	
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fetal	genetic	correlations	(Figure	2),	these	results	point	to	the	predominant	importance	of	698	
indirect	maternal	effects	of	BP	genetics	on	offspring	BW	(Supplementary	Figures	14	and	699	
15).	In	line	with	this,	MR	analyses	indicated	that	a	1SD	(10mmHg)	higher	maternal	SBP	is	700	
causally	associated	with	a	0.15	SD	(95%CI:	-0.19,	-0.11)	lower	offspring	BW,	independent	of	701	
the	direct	fetal	effects.	In	contrast,	there	was	no	fetal	effect	of	SBP	on	their	own	BW,	after	702	
adjusting	for	the	indirect	maternal	effect	(-0.01	SD	per	10mmHg,	95%	CI:	-0.05,	0.03;	703	
Supplementary	Tables	14	and	15;	Figure	3D).	Similar	results	were	seen	in	the	WLM-704	
adjusted	MR	analyses	of	DBP	on	both	offspring	and	own	BW.	705	
	706	
Estimating	the	causal	effect	of	BW-lowering	intrauterine	exposures	on	offspring	SBP	707	
Having	established	(i)	substantial	negative	genetic	covariance	between	BW	and	SBP	and	(ii)	708	
indirect	causal	effects	of	maternal	SBP-raising	genotypes	on	lower	offspring	BW,	a	key	709	
question	is	whether	maternal	SNPs	that	reduce	offspring	BW	through	intrauterine	effects	710	
are	also	associated	with	higher	SBP	in	their	adult	offspring.	Such	an	association	would	711	
suggest	that	the	maternal	intrauterine	effects	also	cause	the	later	BP	effect	(i.e.	possibly	712	
through	developmental	adaptations)	(Figure	4A;	Supplementary	Figure	16).	To	investigate	713	
this	possibility,	we	tested	the	conditional	association	between	maternal	and	offspring	714	
genetic	scores	for	BW	and	offspring	SBP	as	measured	in	3,886	mother-offspring	pairs	in	the	715	
UK	Biobank,	with	sensitivity	analyses	in	1,749	father-offspring	pairs.	The	fetal	genetic	score	716	
for	lower	BW	was	associated	with	higher	offspring	SBP,	even	after	adjustment	for	maternal	717	
(or	paternal)	BW	genetic	score.	However,	when	adjusted	for	fetal	genotypes,	the	maternal	718	
allele	score	for	lower	BW	was	associated	with	lower	(not	higher)	offspring	SBP	719	
(Supplementary	Table	18).	Taken	together,	our	results	demonstrate	that	the	observed	720	
negative	correlation	between	BW	and	later	SBP	is	driven	by	(i)	the	causal	effect	of	higher	721	
maternal	SBP	on	lower	offspring	BW	(Figure	3D),	in	combination	with	(ii)	the	subsequent	722	
transmission	of	SBP-associated	alleles	to	offspring,	which	then	increase	offspring	SBP	723	
(Figure	4B),	rather	than	by	long-term	developmental	compensations	to	adverse	in	utero	724	
conditions.	725	
	726	
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DISCUSSION	727	
	728	
In	greatly-expanded	GWAS	and	follow-up	analyses	of	own	and	offspring	BW,	we	have	729	
identified	214	novel	association	signals	and	have	partitioned	the	genetic	effects	on	BW	into	730	
direct	fetal	and	indirect	maternal	(intrauterine)	effects,	both	for	genome-wide	significant	731	
SNPs,	and	for	SNPs	across	the	genome.	Further	analyses	using	these	partitioned	effects	732	
indicated	both	fetal-specific	and	maternal-specific	mechanisms	and	tissues	involved	in	the	733	
regulation	of	BW,	and	also	mechanisms	with	directionally-opposing	effects	in	the	fetus	and	734	
mother	(e.g.	insulin	secretion,	fasting	glucose).		735	
	736	
The	variety	of	phenotypes	associated	with	the	identified	BW	SNPs,	and	pathways	737	
highlighted,	illustrate	that	fetal	growth	is	the	result	of	many	different	processes43.	We	used	738	
the	knowledge	that	subsets	of	BW-associated	SNPs	influence	BP	while	others	influence	739	
glycemic	traits,	or	height,	together	with	the	WLM-adjusted	estimates	of	maternal	and	fetal	740	
effects	on	BW	to	achieve	a	deeper	level	of	insight	into	the	relationships	between	BW	and	741	
these	adult	traits.	MR	analyses	using	the	WLM-adjusted	estimates	showed	(i)	evidence	that	742	
both	direct	fetal	and	indirect	maternal	effects	of	height-raising	genotypes	contribute	to	743	
higher	offspring	BW,	(ii)	that	fetal,	and	not	maternal,	genotype	effects	explain	the	negative	744	
genetic	correlation	between	BW	and	later	T2D,	and	(iii)	that	the	negative	genetic	correlation	745	
between	BW	and	adult	SBP	is	the	result	of	both	indirect	SBP-raising	effects	of	maternal	746	
genotypes	reducing	offspring	BW,	and	direct	effects	of	fetal	genotypes	on	higher	adult	SBP.	747	
The	resolution	of	maternal	vs.	fetal	effects	was	higher	in	these	MR	analyses	than	has	748	
previously	been	achieved	using	analyses	of	available	mother-child	pairs44,	due	to	greater	749	
statistical	power.	Recently,	a	number	of	studies	have	attempted	to	use	MR	methodology	to	750	
investigate	causal	links	between	BW	and	later	T2D45-47.	However,	such	naïve	MR	analyses	751	
using	two-sample	approaches	in	unrelated	sets	of	individuals,	which	do	not	properly	752	
account	for	the	correlation	between	maternal	and	fetal	genotype	effects,	may	result	in	753	
erroneous	conclusions	regarding	causality.	Future	investigations	into	causal	links	between	754	
BW	and	later	T2D	or	other	disease	outcomes	will	require	larger	samples	than	are	currently	755	
available,	that	have	maternal	and	offspring	genotypes	in	addition	to	offspring	later-life	756	
disease	outcomes.	757	
	758	
There	are	some	limitations	to	this	study.	Although	we	were	able	to	fit	the	full	SEM	at	the	759	
305	genome-wide	significant	SNPs,	we	were	unable	to	fit	the	SEM	at	all	SNPs	across	the	760	
genome.	We	have	shown	previously	how	a	two	degree	of	freedom	test	based	on	this	SEM	761	
(i.e.	where	maternal	and	fetal	paths	are	constrained	to	zero)	can	have	greater	power	to	762	
detect	associated	loci,	particularly	when	maternal	and	fetal	genetic	effects	on	the	763	
phenotype	are	similar	in	magnitude	(including	situations	where	the	effects	operate	in	764	
opposite	directions).		However,	we	are	currently	unable	to	fit	the	SEM	nor	conduct	an	765	
equivalent	test	in	a	computationally	feasible	manner	across	the	genome.	If	such	a	test	were	766	
developed,	it	would	provide	greater	power	than	the	current	one	degree	of	freedom	tests	767	
used	in	the	WLM-adjusted	analyses,	particularly	for	SNPs	where	maternal	and	fetal	genetic	768	
effects	operate	in	opposite	directions,	and	could	therefore	be	used	for	locus	detection	in	769	
future	analyses.	Additionally,	there	are	a	number	of	limitations	relating	to	the	MR	analyses.	770	
First,	the	MR	results	concern	BW	variation	within	the	normal	range	and	do	not	necessarily	771	
reflect	the	effects	of	extreme	environmental	events	(e.g.	famine),	which	may	exert	772	
qualitatively	different	effects	and	produce	long-term	developmental	compensations	in	773	
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addition	to	low	BW.	Additionally,	we	have	assumed	a	linear	relationship	between	BW	and	774	
later	life	traits,	which	is	an	oversimplification,	particularly	for	T2D:	higher	BW	is	associated	775	
with	later	T2D	risk,	in	addition	to	lower	BW,	particularly	in	populations	with	a	high	776	
prevalence	of	T2D.	MR	is	not	well	placed	to	examine	the	effects	of	extreme	events,	or	non-777	
linear	relationships,	and	alternative	methodology	will	be	necessary	to	investigate	life-course	778	
associations	in	this	context.	Second,	BW	is	the	end	marker	of	a	developmental	process,	with	779	
critical	periods	during	the	process	that	may	make	the	fetus	particularly	sensitive	to	780	
environmental	influences.	The	MR	analyses	could	therefore	be	masking	effects	at	certain	781	
critical	periods.	We	would	need	to	look	at	maternal	exposures	on	intrauterine	growth	782	
trajectories	or	the	specific	function	of	the	genetic	variants	on	BW	to	interrogate	this	further.	783	
Third,	we	have	assumed	that	genetic	variants	identified	in	large	GWAS	of	SBP	and	glycemic	784	
traits	in	males	and	non-pregnant	females	are	similarly	associated	in	pregnant	women.	This	785	
assumption	is	reasonable,	given	that	genetic	associations	are	generally	similar	in	pregnant	786	
vs	non-pregnant	women,	though	there	is	some	indication	that	genetic	effects	on	SBP	are	787	
weaker	in	pregnancy	(see	Table	2,	eTable	5	and	eTable	6f	in	Tyrrell	et	al.	24).	Fourth,	we	have	788	
not	investigated	the	potential	gender	difference	in	the	associations	between	BW	and	later	789	
life	traits.	There	is	evidence	that	the	association	between	BW	and	both	T2D48	and	SBP49	is	790	
stronger	in	females	than	males.	However,	to	perform	the	MR	analyses,	we	would	require	791	
male	and	female-specific	effect	sizes	for	each	of	the	exposures,	which	are	currently	not	792	
available.	Finally,	we	have	assumed	that	the	critical	period	of	exposure	to	maternal	indirect	793	
genetic	effects	is	pregnancy,	and	that	the	estimates	do	not	reflect	pre-pregnancy	effects	on	794	
primordial	oocytes	or	post-natal	effects44.	However,	since	we	have	used	BW-associated	795	
SNPs,	the	maternal	effects	are	most-likely	mediated	in	utero.	While	we	cannot	rule	out	796	
postnatal	effects50,	our	analysis	of	offspring	SBP	associations	with	BW-associated	SNPs	in	797	
father-child	pairs	showed	different	associations	compared	with	mother-child	pairs,	implying	798	
postnatal	effects	were	unlikely.		799	
	800	
To	conclude,	the	systematic	separation	of	fetal	from	maternal	genetic	effects	in	a	well-801	
powered	study	has	enhanced	our	understanding	of	the	regulation	of	BW	and	of	its	links	with	802	
later	cardiometabolic	health.	In	particular,	we	show	that	the	association	between	lower	BW	803	
and	higher	adult	BP	is	attributable	to	genetic	effects,	and	not	to	intrauterine	programming.	804	
In	successfully	separating	fetal	from	maternal	genetic	effects	and	using	them	in	Mendelian	805	
randomization	analyses,	this	work	sets	a	precedent	for	future	studies	seeking	to	understand	806	
the	causal	role	of	the	intrauterine	environment	in	later-life	health.	807	
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ONLINE	METHODS	808	
	809	
Ethics	statement	810	
All	human	research	was	approved	by	the	relevant	institutional	review	boards	and	conducted	811	
according	to	the	Declaration	of	Helsinki.	The	UK	Biobank	has	approval	from	the	North	West	812	
Multi-Centre	Research	Ethics	Committee	(MREC),	which	covers	the	UK.	Participants	of	all	813	
studies	provided	written	informed	consent.	Ethical	approval	for	the	ALSPAC	study	was	814	
obtained	by	the	ALSPAC	Ethics	and	Law	Committee	and	the	local	Research	Ethics	815	
Committees.		816	
	817	
Statistical	tests	818	
Details	of	statistical	tests	used	in	the	various	analyses	are	reported	under	the	appropriate	819	
headings	below.	All	tests	were	two-sided,	unless	otherwise	stated.	820	
	821	
UK	Biobank	phenotype	preparation	822	
The	UK	Biobank	is	a	study	of	502,655	participants51.	A	total	of	280,315	participants	reported	823	
their	own	birth	weight	(BW)	in	kilograms	at	either	the	baseline	visit	or	at	least	one	of	the	824	
follow-up	visits.	Participants	reporting	being	part	of	a	multiple	birth	were	excluded	from	our	825	
analyses	(N=7,706).	For	participants	reporting	BW	at	more	than	one	visit	(N=11,214),	the	826	
mean	value	of	the	reported	BWs	was	used,	and	if	the	mean	difference	between	any	2	time	827	
points	was	>1kg,	the	participant	was	excluded	(N=74).	Data	on	gestational	duration	were	828	
not	available;	however,	in	order	to	exclude	likely	pre-term	births,	participants	with	BW	829	
values	<2.5kg	or	>4.5kg	were	excluded	(N=36,330).	The	remaining	BW	values	were	Z-score	830	
transformed	separately	in	males	and	females	for	analysis.	831	
Female	participants	were	also	asked	to	report	the	BW	of	their	first	child.	A	total	of	216,839	832	
women	reported	the	BW	of	their	first	child	on	at	least	one	assessment	center	visit.	Values	833	
were	recorded	to	the	nearest	whole	pound,	and	were	converted	to	kilograms	for	our	834	
analyses.	Where	women	reported	the	BW	of	the	first	child	at	multiple	time	points	835	
(N=11,353)	these	were	averaged	and	women	were	excluded	if	the	mean	difference	between	836	
any	2	offspring	BW	measurements	was	>1kg	(N=31).	Women	who	reported	the	BW	of	their	837	
first	child	<2.2kg	or	>4.6kg	were	excluded	(N=6,333).	BW	of	first	child	was	regressed	against	838	
age	at	first	birth	and	assessment	center	location.	Residuals	from	the	regression	model	were	839	
converted	to	Z-scores	for	analysis	(sex	of	the	first	child	was	not	available,	so	we	were	unable	840	
to	calculate	sex-specific	Z-scores).	841	
		842	
UK	Biobank	ethnicity	classification	and	genome-wide	association	analysis	843	
We	analysed	data	from	the	May	2017	release	of	imputed	genetic	data	from	the	UK	Biobank,	844	
a	resource	extensively	described	elsewhere51.	Given	the	reported	technical	error	with	non-845	
HRC	imputed	variants,	we	focused	exclusively	on	the	set	of	~40M	imputed	variants	from	the	846	
HRC	reference	panel.		847	
In	addition	to	the	quality	control	metrics	performed	centrally	by	the	UK	Biobank,	we	defined	848	
a	subset	of	“white	European”	ancestry	samples.	To	do	this,	we	generated	ancestry	849	
informative	principal	components	(PCs)	in	the	1000	genomes	samples.	The	UK	Biobank	850	
samples	were	then	projected	into	this	PC	space	using	the	SNP	loadings	obtained	from	the	851	
principal	components	analysis	using	the	1000	genomes	samples.	The	UK	Biobank	852	
participants’	ancestry	was	classified	using	K-means	clustering	centered	on	the	3	main	1000	853	
genomes	populations	(European,	African,	South	Asian).	Those	clustering	with	the	European	854	
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cluster	were	classified	as	having	European	ancestry.	The	UK	Biobank	participants	were	855	
asked	to	report	their	ethnic	background.	Only	those	reporting	as	either	“British”,	“Irish”,	856	
“White”	or	“Any	other	white	background”	were	included	in	the	clustering	analysis.	In	total,	857	
217,397	participants	with	a	valid	measure	of	their	own	BW	and	190,406	women	with	a	valid	858	
measure	of	BW	of	first	child	were	classified	as	European	and	included	in	analyses.	For	trans-859	
ethnic	analyses	all	participants	with	valid	phenotypes	were	included	regardless	of	ancestry	860	
(N=227,530	participants	with	a	valid	measure	of	their	own	BW	and	N=210,208	with	a	valid	861	
measure	of	the	BW	of	their	first	child).	862	
Association	analysis	was	conducted	using	a	linear	mixed	model	implemented	in	BOLT-LMM	863	
v2.352	to	account	for	population	structure	and	relatedness.	Only	autosomal	genetic	variants	864	
which	were	common	(MAF>1%),	passed	QC	in	all	106	batches	and	were	present	on	both	865	
genotyping	arrays	were	included	in	the	genetic	relationship	matrix	(GRM).	For	the	genome-866	
wide	association	study	(GWAS)	of	the	participants’	own	BW,	genotyping	array	and	year	of	867	
birth	were	included	as	covariates	in	all	models.	For	the	GWAS	of	the	BW	of	the	first	child,	868	
genotyping	array	and	genotyping	release	(interim	vs.	full)	were	included	as	covariates	in	the	869	
regression	model,	and	indels,	regions	of	long	range	LD	(as	defined	in	51)	and	SNPs	with	870	
Hardy-Weinberg	equilibrium	P-values<1x10-6	were	excluded	from	the	GRM.	871	
	872	
GWAS	of	own	birth	weight		873	
European	ancestry	meta-analysis	of	own	birth	weight:	The	European	ancestry	GWAS	meta-874	
analysis	of	own	BW	consisted	of	two	components:	(i)	80,745	individuals	from	35	studies	875	
participating	in	the	EGG	Consortium	from	Europe,	USA	and	Australia;	and	(ii)	217,397	876	
individuals	of	white	European	origin	from	the	UK	Biobank.	Studies	from	the	EGG	Consortium	877	
conducted	genome-wide	association	analysis	of	own	BW	that	was	Z-score	transformed	878	
separately	in	males	and	females,	and	adjusted	for	study-specific	covariates,	including	879	
gestational	duration,	where	available	(Supplementary	Table	1).	GWASs	were	imputed	up	to	880	
the	1000	Genomes53	(1000G)	reference	panel.	We	combined	the	sex-specific	BW	association	881	
summary	statistics	across	the	EGG	studies	in	a	fixed-effects	meta-analysis,	implemented	in	882	
GWAMA54,	and	subsequently	combined	the	resulting	summary	statistics	with	the	UK	883	
Biobank	summary	statistics	using	a	second	fixed-effects	meta-analysis	(max	N=297,142).	884	
Variants	failing	GWAS	quality	control	filters,	reported	in	less	than	50%	of	the	total	sample	885	
size	in	the	EGG	component,	or	with	MAF<0.1%,	were	excluded	from	the	European	ancestry	886	
meta-analysis.	We	also	performed	a	fixed-effects	meta-analysis	of	the	association	summary	887	
statistics	for	16,095	directly	genotyped	SNPs	on	the	X-chromosome	from	the	UK	Biobank	888	
and	the	meta-analysis	of	the	EGG	studies	(max	N=270,929)	using	GWAMA54.	A	locus	was	889	
defined	as	a	gap	of	≥500kb	between	any	genome-wide	significant	SNPs,	and	the	lead	SNP	890	
within	each	locus	was	the	SNP	with	the	smallest	P-value.	The	set	of	lead	SNPs	from	each	891	
locus	will	be	referred	to	as	our	genome-wide	significant	SNPs.	892	
We	were	concerned	that	self-reported	BW	as	adults	in	the	UK	Biobank	would	not	be	893	
comparable	with	that	obtained	from	more	stringent	collection	methods	used	in	the	EGG	894	
studies.	We	conducted	a	heterogeneity	test	using	Cochran’s	Q	statistic55,	as	implemented	in	895	
GWAMA54,	to	assess	the	difference	in	allelic	effects	between	the	European	EGG	meta-896	
analysis	and	the	European	subset	of	the	UK	Biobank,	and	we	were	unable	to	detect	897	
evidence	of	heterogeneity	at	lead	SNPs	after	Bonferroni	correction	(all	P>0.00029;	898	
Supplementary	Table	5).	However,	we	acknowledge	that	the	power	to	detect	evidence	for	899	
heterogeneity	using	the	Cochran’s	Q	statistic	when	comparing	two	groups	is	low	and	we	use	900	
it	here	to	highlight	any	SNPs	with	large	differences	in	allelic	effects.	Although	none	of	the	901	
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SNPs	reached	the	Bonferroni	corrected	threshold,	there	was	an	enrichment	for	low	P,	with	902	
more	than	double	the	expected	number	of	SNPs	with	P<0.05	(18/173;	Supplementary	Table	903	
5).	In	addition,	the	UK	Biobank	lacked	information	on	gestational	duration,	which	could	904	
impact	the	strength	of	association	compared	to	the	results	obtained	from	the	EGG	studies	905	
which	adjusted	for	gestational	duration.	Therefore,	we	conducted	a	further	sensitivity	906	
analysis	to	specifically	assess	the	impact	of	adjustment	for	gestational	duration	testing	for	907	
heterogeneity	in	allelic	effects	at	lead	SNPs	between	EGG	studies	which	adjusted	for	908	
gestational	duration	(N=43,964)	and	the	European	subset	of	the	UK	Biobank.	The	only	locus	909	
where	the	lead	SNP	showed	significant	heterogeneity,	after	Bonferroni	correction,	was	910	
rs1482852	at	the	LOC339894/CCNL1	signal	(Phet=0.00015),	which	was	a	locus	showing	the	911	
strongest	association	with	own	BW	and	genome-wide	significant	in	both	EGG	and	the	UK	912	
Biobank	components	independently.		913	
There	is	potential	for	individuals	to	be	in	both	the	UK	Biobank	and	EGG	studies	(i.e.	the	914	
same	individual	in	both	the	UK	Biobank	and	a	study	within	EGG)	and	this	might	lead	to	false	915	
positive	association	signals.	We	performed	a	bivariate	linkage-disequilibrium	(LD)	score	916	
regression19	analysis	using	the	European	UK	Biobank	GWAS	and	European	EGG	meta-917	
analysis	summary	statistics	of	own	BW,	and	observed	a	regression	intercept	of	0.0266	918	
(0.0077),	indicating	that	the	equivalent	of	approximately	3,524	individuals	were	in	both	919	
GWAS	analyses.		920	
Univariate	LD	score	regression56	of	the	European	ancestry	meta-analysis	of	own	BW	921	
estimated	the	genomic	inflation	as	1.08,	indicating	that	the	majority	of	genome-wide	922	
inflation	of	the	test	statistics	was	due	to	polygenicity.	To	assess	the	impact	of	this	inflation	923	
on	the	European	ancestry	meta-analysis,	we	re-calculated	the	association	P-values	after	924	
adjusting	the	test	statistics	for	the	LD	score	regression	intercept.	On	the	basis	of	this	925	
adjusted	analysis,	the	lead	SNP	at	22	loci	(out	of	173)	no	longer	reached	genome-wide	926	
significance	(Supplementary	Table	5).	927	
	928	
Approximate	conditional	and	joint	multiple-SNP	(COJO)	analysis	to	identify	additional	929	
independent	signals	for	own	birth	weight:	Approximate	COJO	analysis13	was	performed	in	930	
GCTA57	using	the	European	ancestry	meta-analysis	summary	statistics	to	identify	931	
independent	association	signals	attaining	genome-wide	significance	(P<5x10-8).	The	LD	932	
reference	panel	was	made	up	of	344,246	unrelated	UK	Biobank	participants	defined	by	the	933	
UK	Biobank	as	having	British	ancestry	and	SNPs	were	restricted	to	those	present	in	the	HRC	934	
reference	panel.	At	each	locus,	only	SNPs	labelled	by	GCTA	as	“independent”	and	not	in	LD	935	
with	the	original	lead	SNP	(R2<0.05)	were	listed	as	secondary	SNPs.		936	
	937	
Trans-ethnic	meta-analysis	of	own	birth	weight:	To	identify	any	further	independent	BW-938	
associated	SNPs,	we	conducted	a	trans-ethnic	meta-analysis	combining	three	components:	939	
(i)	80,745	individuals	from	the	European	ancestry	component	within	EGG;	(ii)	12,948	940	
individuals	from	nine	studies	within	EGG	from	diverse	ancestry	groups:	African	American,	941	
Afro-Caribbean,	Mexican,	Chinese,	Thai,	Filipino,	Surinamese,	Turkish	and	Moroccan;	and	942	
(iii)	227,530	individuals	of	all	ancestries	from	the	UK	Biobank.	The	same	strategy	and	variant	943	
filtering	criteria	were	applied	as	in	the	European	meta-analysis	of	own	BW	(Supplementary	944	
Figure	1).	None	of	the	lead	SNPs	showed	evidence	of	heterogeneity	in	BW	allelic	effects	945	
across	the	three	components	after	Bonferroni	correction	(all	Cochran’s	Q	P>0.169;	946	
Supplementary	Table	5).	Univariate	LD	score	regression56	of	the	trans-ethnic	meta-analysis	947	
estimated	the	genomic	inflation	as	1.08.	After	adjustment	of	the	test	statistics	for	the	LD	948	
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score	regression	intercept,	the	lead	SNP	at	8	loci	(out	of	11	that	were	added	to	our	genome-949	
wide	significant	loci	from	the	trans-ethnic	meta-analysis	that	were	not	identified	in	the	950	
European	meta-analysis)	dropped	below	genome-wide	significance	(Supplementary	Table	951	
5).	952	
	953	
GWAS	of	offspring	birth	weight		954	
European	ancestry	meta-analysis	of	offspring	birth	weight:	The	European	ancestry	GWAS	955	
meta-analysis	of	offspring	BW	consisted	of	three	components:	(i)	12,319	individuals	from	10	956	
European	GWAS	imputed	up	to	the	HapMap	2	reference	panel;	and	(ii)	two	European	GWAS	957	
imputed	up	to	the	HRC	panel	(855	individuals	from	EFSOCH	and	6,687	individuals	from	958	
ALSPAC);	and	(iii)	190,406	individuals	of	white	European	origin	from	the	UK	Biobank.	Studies	959	
from	the	EGG	Consortium	conducted	genome-wide	association	analysis	on	offspring	BW	960	
that	was	Z-score	transformed,	and	adjusted	for	sex,	gestational	duration	and	ancestry	961	
informative	principal	components	where	necessary,	(Supplementary	Table	3).	We	then	962	
combined	the	BW	association	summary	statistics	across	the	10	HapMap	2	imputed	EGG	963	
studies	in	a	fixed-effects	meta-analysis,	implemented	in	GWAMA54.	We	conducted	a	second	964	
European	ancestry	fixed-effects	meta-analysis	to	combine	the	association	summary	965	
statistics	from	the	EGG	meta-analysis	with	the	UK	Biobank,	EFSOCH	and	ALSPAC	(max	966	
N=210,267).	The	same	strategy	and	variant	filtering	criteria	were	applied	as	in	the	meta-967	
analysis	of	own	BW.	We	also	performed	a	fixed-effects	meta-analysis	of	the	association	968	
summary	statistics	for	18,137	directly	genotyped	SNPs	on	the	X-chromosome	from	the	UK	969	
Biobank	and	the	meta-analysis	of	the	EGG	studies	(max	N=197,093)	using	GWAMA54.	None	970	
of	the	lead	SNPs	showed	evidence	of	heterogeneity	in	BW	allelic	effects,	after	Bonferroni	971	
correction	(Cochran’s	Q	P>0.00060),	between	the	UK	Biobank	and	EGG	studies	and	there	972	
was	no	enrichment	for	low	P,	with	only	1/81	SNPs	with	P<0.05	(Supplementary	Table	5).		973	
Using	bivariate	LD	score	regression19,	we	observed	a	regression	intercept	of	0.0165	974	
(0.0063),	indicating	that	the	equivalent	of	approximately	1,015	individuals	were	in	both	the	975	
EGG	and	UK	Biobank	GWAS	analyses	of	offspring	BW.		976	
Univariate	LD	score	regression56	of	the	European	ancestry	meta-analysis	estimated	the	977	
genomic	inflation	as	1.05.	Similar	to	the	own	BW	GWAS	results,	we	recalculated	the	P-978	
values	after	adjusting	the	test	statistics	for	this	LD	score	intercept	and	the	lead	SNP	at	8	loci	979	
(out	of	81)	dropped	below	genome-wide	significance	(Supplementary	Table	5).	980	
	981	
Approximate	conditional	and	joint	multiple-SNP	(COJO)	analysis	to	identify	additional	982	
independent	signals	for	offspring	birth	weight:	We	performed	approximate	COJO	analysis13	983	
using	the	European	ancestry	meta-analysis	summary	statistics	of	offspring	BW,	using	the	984	
same	reference	panel	as	in	the	own	BW	analysis.	Similarly	to	the	analysis	of	own	BW,	SNPs	985	
labelled	by	GCTA	as	“independent”	and	not	in	LD	with	the	original	lead	SNP	(R2<0.05)	were	986	
listed	as	secondary	SNPs	associated	with	offspring	BW.	987	
	988	
Trans-ethnic	meta-analysis	of	offspring	birth	weight:	We	conducted	a	trans-ethnic	meta-989	
analysis	combining	three	components:	(i)	12,319	individuals	from	10	European	GWAS	990	
imputed	up	to	the	HapMap	2	reference	panel;	and	(ii)	two	European	GWAS	imputed	up	to	991	
the	HRC	panel	(855	individuals	from	EFSOCH	and	6,686	individuals	from	ALSPAC);	and	(iii)	992	
210,208	individuals	of	all	ancestry	from	the	UK	Biobank.	The	same	strategy	and	variant	993	
filtering	criteria	were	applied	as	in	the	European	meta-analysis	of	offspring	BW	994	
(Supplementary	Figure	2).	None	of	the	lead	SNPs	showed	evidence	of	heterogeneity	in	BW	995	
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allelic	effects,	after	Bonferroni	correction	(Cochran’s	Q	P>0.00054),	between	the	UK	Biobank	996	
and	EGG	studies;	however,	there	was	an	enrichment	for	low	P,	with	3/14	SNPs	with	P<0.05	997	
(expected	1;	Supplementary	Table	5).	Univariate	LD	score	regression56	of	the	trans-ethnic	998	
meta-analysis	estimated	the	genomic	inflation	as	1.04.	We	adjusted	the	test	statistics	for	999	
this	LD	score	regression	intercept,	and	the	corresponding	adjusted	P-values	for	the	lead	SNP	1000	
at	6	loci	(out	of	14	that	were	added	to	our	genome-wide	significant	loci	from	the	trans-1001	
ethnic	meta-analysis	that	were	not	identified	in	the	European	meta-analysis)	dropped	below	1002	
genome-wide	significance	(Supplementary	Table	5).	1003	
	1004	
Colocalization	methods	1005	
For	each	signal	where	we	identified	different	lead	SNPs	in	the	GWAS	of	own	BW	and	1006	
offspring	BW,	we	performed	co-localization	analysis	using	the	method	implemented	in	the	1007	
"coloc"	R	package58.	For	each	signal,	we	input	the	regression	coefficients,	their	variances	1008	
and	SNP	minor	allele	frequencies	for	all	SNPs	500kb	up	and	downstream	of	the	lead	SNP	1009	
from	the	European	meta-analysis.	We	used	the	coloc.abf()	function	to	calculate	posterior	1010	
probabilities	that	the	own	BW	and	offspring	BW	lead	SNPs	were	independent	(H3)	or	shared	1011	
the	same	associated	variant	(H4).	Default	values	were	used	for	the	prior	probabilities	in	the	1012	
coloc.abf()	function.	We	call	variants	the	same	signal	if	the	H4	posterior	probability	was	1013	
greater	than	0.50,	and	different	signals	if	the	H3	posterior	probability	was	greater	than	0.50.		1014	
	1015	
Estimation	of	genetic	variance	explained	1016	
Firstly,	we	estimated	the	proportion	of	BW	variance	explained	by	fetal	genotypes,	maternal	1017	
genotypes	and	the	covariance	between	the	two	at	the	278	genome-wide	significant	signals	1018	
in	the	Norwegian	Mother	and	Child	Cohort	Study	(MoBa-HARVEST;	N=13,934	mother-1019	
offspring	pairs;	https://www.fhi.no/en/studies/moba/).	This	sample	was	independent	of	1020	
samples	contributing	to	the	discovery	meta-analyses,	apart	from	a	small	potential	overlap	1021	
with	mothers	from	the	MoBa-2008	sample	that	was	included	in	the	GWAS	of	offspring	BW	1022	
(affecting	a	maximum	of	0.07%	of	the	meta-analysis	sample).	For	the	27	signals	that	had	a	1023	
maternal	and	fetal	SNP,	the	fetal	SNP	was	used	in	the	analysis.	This	was	to	avoid	any	1024	
collinearity	in	the	model	due	to	the	high	correlation	between	the	maternal	and	fetal	SNPs.	1025	
One	SNP,	rs77553582,	was	not	available	in	MoBa-HARVEST,	so	we	used	a	proxy	SNP,	1026	
rs2024344,	in	the	analysis	(r2=0.998	between	rs77553582	and	rs2024344).	We	excluded	1027	
multiple	births,	babies	of	non-European	descent,	born	before	37	weeks	of	gestation,	born	1028	
with	a	congenital	anomaly	or	still-born.	BW	was	Z-score	transformed	and	all	models	were	1029	
adjusted	for	sex,	gestational	duration	and	the	first	4	ancestry	informative	principal	1030	
components.	We	conducted	a	linear	regression	analysis	in	R59	using	13,934	mother-offspring	1031	
pairs	where	offspring	BW	was	regressed	on	the	maternal	and	fetal	genotypes	at	all	278	SNPs	1032	
simultaneously.	The	proportion	of	variance	explained	by	fetal	genotypes	at	the	278	1033	
genome-wide	significant	signals	was	calculated	as:	1034	

2𝑝#(1 − 𝑝#)𝛽)*
+

𝑣𝑎𝑟(𝐵𝑊)

+12

#34

	1035	

Where	pi	is	the	effect	allele	frequency	of	the	ith	SNP,	𝛽)* 	is	the	regression	coefficient	for	the	1036	
effect	of	the	offspring’s	genotype	at	the	ith	SNP	on	offspring	BW	and	var(BW)	is	the	variance	1037	
of	offspring	BW	(which	is	approximately	1	as	BW	was	Z-score	transformed).	A	similar	1038	
formula	was	used	to	calculate	the	variance	explained	by	maternal	genotypes:	1039	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 17, 2018. ; https://doi.org/10.1101/442756doi: bioRxiv preprint 

https://doi.org/10.1101/442756
http://creativecommons.org/licenses/by/4.0/


	 26	

2𝑝#(1 − 𝑝#)𝛽5*
+

𝑣𝑎𝑟(𝐵𝑊)

+12

#34

	1040	

Where	𝛽5* 	is	the	regression	coefficient	for	the	effect	of	the	maternal	genotype	at	the	ith	1041	
SNP	on	offspring	BW.	Finally,	a	similar	formula	was	used	to	calculate	twice	the	covariance:	1042	

2𝑝#(1 − 𝑝#)𝛽)*𝛽5*

𝑣𝑎𝑟(𝐵𝑊)

+12

#34

	1043	

	1044	
Secondly,	we	used	maternal	genome-wide	complex	trait	analysis11	(M-GCTA)	to	estimate	1045	
the	proportion	of	variance	explained	in	BW	by	genome-wide	SNPs,	or	SNPs	they	tag,	in	the	1046	
fetal	genome,	the	maternal	genome,	the	covariance	between	the	two	or	environmental	1047	
factors	in	MoBa-HARVEST.	The	same	phenotype	was	used	as	in	the	previous	analysis	and	1048	
the	model	was	adjusted	for	sex	and	gestational	duration.	Mothers	or	offspring	were	1049	
excluded	if	they	were	related	to	others	in	the	sample,	using	a	genetic	relationship	cut-off	1050	
0.025,	leaving	N=7,910	mother-offspring	pairs	available	for	analysis.		1051	
	1052	
Identifying	eQTL	linked	genes	1053	
To	identify	specific	eQTL	linked	genes,	we	used	the	FUSION	tool60	on	the	v6p	release	of	the	1054	
GTEx	data15.	FUSION	is	a	gene-based	data	aggregation	and	integration	method	which	1055	
incorporates	information	from	gene-expression	data	and	GWAS	data	to	translate	evidence	1056	
of	association	with	a	phenotype	from	the	SNP-level	to	the	gene.	Only	gene	level	results	from	1057	
the	adjusted	model	were	taken	forward	for	consideration.	The	threshold	for	statistical	1058	
significance	was	estimated	using	the	Bonferroni	method	for	multiple	testing	correction	1059	
across	all	tested	tissues	(tissue	N=44,	P<6x10-7).	Each	of	the	genes	implicated	by	this	analysis	1060	
survived	multiple	test	correction	and	were	independent	from	other	proximal	genes	tested	in	1061	
a	joint	model.		1062	
	1063	
Placenta	eQTL	look	ups	1064	
We	annotated	genome-wide	significant	BW-associated	SNPs	with	gene	expression	data	1065	
(293/305	SNPs	available)	from	placental	samples	of	European	ancestry	from	the	Rhode	1066	
Island	Child	Health	Study16	(RICHS;	N=123	with	fetal	genotype,	including	71	with	BW	1067	
appropriate	for	gestational	age,	15	small	for	gestational	age,	and	37	large	for	gestational	1068	
age).	We	annotated	genome-wide	significant	BW-associated	SNPs	on	our	list	that	had	1069	
genome-wide	empirical	FDR<0.01	for	association	with	one	or	more	transcripts	and	r2>0.7	1070	
with	a	lead	eQTL	SNP.	1071	
	1072	
TAD	pathways	1073	
Topologically	associating	domains	(TAD)	pathway	analysis	was	performed	using	software	1074	
described	in	Way	et	al.17.	Briefly,	the	software	uses	publicly	available	TAD	boundaries,	1075	
identified	in	human	embryonic	stem	cells	and	fibroblasts	using	a	Hidden	Markov	Model18,	to	1076	
prioritize	candidate	genes	at	GWAS	SNPs.	These	TAD	boundaries	are	stable	across	different	1077	
cell	types	and	therefore	can	be	used	to	identify	genomic	regions	where	non-coding	causal	1078	
variants	will	most	likely	impact	tissue-independent	function.	1079	
	1080	
	1081	
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Structural	equation	model	for	estimating	adjusted	maternal	and	fetal	effects	of	the	1082	
genome-wide	significant	variants	1083	
The	structural	equation	modelling	(SEM)	approach	used	to	estimate	maternal	and	fetal	1084	
effects	that	are	independent	of	the	fetal	and	maternal	genotype	respectively	has	been	1085	
described	elsewhere12.	Briefly,	to	estimate	the	parameters	for	the	SEM-adjusted	fetal	and	1086	
maternal	effects	on	BW,	we	use	three	observed	variables	available	in	the	UK	Biobank;	the	1087	
participant’s	genotype,	their	own	self-reported	BW,	and	in	the	case	of	the	UK	Biobank	1088	
women,	the	BW	of	their	first	child	(Supplementary	Figure	17).	Additionally,	the	model	1089	
comprises	two	latent	(unobserved)	variables,	one	for	the	genotype	of	the	UK	Biobank	1090	
participant’s	mother	and	one	for	the	genotype	of	the	participant’s	offspring.	From	1091	
biometrical	genetics	theory,	these	latent	genetic	variables	are	correlated	0.5	with	the	1092	
participant’s	own	genotype,	so	we	fix	the	path	coefficients	between	the	latent	and	observed	1093	
genotypes	to	be	0.5.	Participants	who	only	report	their	own	BW	(including	males),	1094	
contribute	directly	to	estimation	of	the	fetal	effect	of	genotype	on	BW	and	also	indirectly	to	1095	
estimation	of	the	maternal	effect	on	BW	since	their	observed	genotype	is	correlated	with	1096	
their	mother’s	unmeasured	latent	genotype	at	the	same	locus.	Similarly,	summary	statistics	1097	
from	the	EGG	meta-analysis	of	the	unadjusted	fetal	effect	(i.e.	the	European	GWAS	meta-1098	
analysis	of	own	BW)	can	be	incorporated	into	the	model	in	this	manner.	Participants	who	1099	
report	only	their	offspring’s	BW	(including	mother’s	reporting	BW	of	their	male	offspring),	1100	
contribute	directly	to	estimation	of	the	maternal	effect	on	BW	and	indirectly	to	the	estimate	1101	
of	the	fetal	effect	on	BW,	since	their	observed	genotype	is	correlated	with	their	offspring’s	1102	
latent	genotype	at	the	same	locus.	Again,	summary	statistics	from	the	EGG	meta-analysis	of	1103	
the	unadjusted	maternal	effect	(i.e.	the	European	GWAS	meta-analysis	of	offspring	BW)	can	1104	
be	incorporated	into	the	model	this	way.	These	five	components	are	fit	to	the	five	subsets	1105	
of	data	(i.e.	the	UK	Biobank	participants	with	complete	data,	the	UK	Biobank	participants	1106	
with	their	own	BW	and	genotype	data	only,	EGG	summary	statistics	for	the	unadjusted	fetal	1107	
effect	of	genotype	on	BW,	the	UK	Biobank	participants	with	their	offspring’s	BW	and	1108	
maternal	genotype	only	and	EGG	summary	statistics	for	the	unadjusted	maternal	effect	of	1109	
genotype	on	BW)	and	then	the	likelihoods	from	each	subset	are	combined.	In	addition	to	1110	
fitting	the	SEM	to	estimate	the	SEM-adjusted	maternal	and	fetal	effects,	we	fit	a	second	1111	
model	constraining	the	maternal	and	fetal	effects	to	be	zero	and	conducted	a	two	degree	of	1112	
freedom	Wald	test	to	assess	any	effect	of	the	SNP	on	BW.	There	is	likely	to	be	measurement	1113	
error	in	the	BW	data	in	the	UK	Biobank,	as	well	as	some	of	the	EGG	studies,	due	to	difficulty	1114	
recalling	BW.	Additionally,	the	women	in	UK	Biobank	were	asked	to	recall	their	offspring	BW	1115	
to	the	nearest	pound.	We	have	shown	using	simulations	that	both	random	measurement	1116	
error	(for	example,	due	to	difficulty	in	recall)	and	measurement	error	in	offspring	BW	due	to	1117	
rounding	to	the	nearest	pound	do	not	have	a	substantial	influence	on	the	estimation	of	1118	
either	the	maternal	or	fetal	effects	(see	Warrington	et	al.	12).	We	therefore	do	not	think	that	1119	
the	imprecision	of	the	UK	Biobank	BW	data	will	substantially	influence	the	results	of	1120	
downstream	analyses.	1121	
The	SEM	was	fit	to	data	from	210	genome-wide	significant	fetal	and	105	maternal	SNPs	1122	
from	the	GWAS	meta-analysis;	rs77553582,	was	only	available	in	the	GWAS	of	own	BW	from	1123	
the	EGG	consortium	so	the	SEM	was	not	fit	for	this	SNP	(Supplementary	Figure	4).	In	order	1124	
to	identify	a	subset	of	unrelated	individuals	in	the	UK	Biobank	(as	the	SEM	cannot	easily	1125	
account	for	relatedness	),	we	generated	a	genetic	relationship	matrix	in	the	GCTA	software	1126	
package57	(version	1.90.2)	and	excluded	one	of	every	pair	of	related	individuals	with	a	1127	
genetic	relationship	greater	than	9.375%	(i.e.	approximately	half-way	between	third	and	1128	
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fourth	degree	relatives).	This	gave	us	a	subset	of	382,001	unrelated	individuals	of	European	1129	
descent,	after	the	same	exclusions	were	made	as	in	the	GWAS,	of	which	85,518	individuals	1130	
had	reported	their	own	BW	and	their	offspring’s	BW,	98,235	individuals	reported	their	own	1131	
BW	only,	and	73,981	reported	their	offspring’s	BW	only	(the	remaining	124,267	unrelated	1132	
European	individuals	reported	neither	so	were	excluded	from	the	analysis).	We	fit	linear	1133	
regression	models	to	BW	and	offspring	BW	in	the	European,	unrelated	subset	of	individuals	1134	
and	adjusted	for	sex	(own	BW	only),	assessment	centre	and	the	top	40	ancestry	informative	1135	
principal	components	provided	by	the	UK	Biobank	to	account	for	any	remaining	population	1136	
substructure.	The	residuals	from	this	regression	models	were	Z-score	transformed	for	1137	
analysis.	Because	we	included	the	summary	statistics	from	the	meta-analysis	of	the	EGG	1138	
studies,	rather	than	the	individual	level	data,	we	were	unable	to	account	for	the	small	1139	
subset	individuals	who	contributed	to	both	the	own	BW	and	offspring	BW	GWAS	meta-1140	
analyses.	Based	on	the	results	from	simulations	(not	shown),	we	expect	that	this	non-1141	
independence	will	result	in	very	slightly	smaller	standard	errors	and	increased	type	1	error	1142	
rate,	particularly	for	the	fetal	effect	which	is	estimated	from	a	larger	sample	size	than	was	1143	
available	to	estimate	the	maternal	effect.	Therefore,	we	conducted	a	sensitivity	analysis	1144	
that	first	excluded	EGG	studies	from	the	meta-analysis	of	own	BW	that	contributed	to	both	1145	
GWAS	meta-analyses	of	own	and	offspring	BW	(e.g.	ALSPAC),	and	then	refitted	the	non-1146	
overlapping	data	in	the	SEM;	these	results	are	presented	in	Supplementary	Table	19.	For	1147	
the	four	genome-wide	significant	SNPs	identified	on	the	X	chromosome,	we	fit	a	slightly	1148	
different	SEM	due	to	males	having	double	the	expected	genetic	variance	at	X	linked	loci	1149	
compared	to	females.	We	did	not	incorporate	summary	statistics	from	the	EGG	consortium	1150	
(since	GWAS	results	were	not	stratified	according	to	sex),	so	the	model	only	includes	the	1151	
individual	level	data	from	the	UK	Biobank	(additional	details	on	the	X	chromosome	analysis	1152	
are	provided	in	the	Supplementary	Material	and	Supplementary	Figure	18).	1153	
We	used	the	estimates	from	the	SEM	to	classify	SNPs	into	the	following	five	categories;	1)	1154	
fetal	only:	the	95%	confidence	interval	surrounding	the	fetal	effect	estimate	does	not	1155	
overlap	zero	and	does	not	overlap	the	95%	confidence	interval	around	the	maternal	effect	1156	
estimate.	Additionally,	the	95%	confidence	surrounding	the	maternal	effect	estimate	1157	
overlaps	zero;	2)	maternal	only:	the	95%	confidence	interval	surrounding	the	maternal	1158	
effect	estimate	does	not	overlap	zero	and	does	not	overlap	the	95%	confidence	interval	1159	
around	the	fetal	effect	estimate.	Additionally,	the	95%	confidence	surrounding	the	fetal	1160	
effect	estimate	overlaps	zero;	3)	fetal	and	maternal,	effects	going	in	the	same	direction:	1161	
the	95%	confidence	intervals	around	both	the	maternal	and	fetal	effect	estimates	do	not	1162	
overlap	zero,	and	their	effect	is	in	the	same	direction;	4)	fetal	and	maternal,	effects	going	1163	
in	opposite	direction:	the	95%	confidence	intervals	around	both	the	maternal	and	fetal	1164	
effect	estimates	do	not	overlap	zero,	and	their	effects	are	in	opposite	directions;	and	5)	1165	
unclassified:	SNPs	that	do	not	fall	into	any	of	these	categories,	and	therefore	the	95%	1166	
confidence	intervals	around	the	maternal	and	fetal	effect	estimates	overlap,	and	at	least	1167	
one	overlaps	zero.		1168	
	1169	
Meta-analysis	of	maternal	and	fetal	effects	from	a	conditional	regression	analysis	in	1170	
mother-offspring	pairs	1171	
We	conducted	conditional	association	analyses	for	all	305	genome-wide	significant	SNPs	in	1172	
18,873	mother-offspring	pairs	from	three	studies	(MoBa-HARVEST,	ALSPAC	and	EFSOCH)	1173	
adjusting	for	both	maternal	and	offspring	genotype	and	combined	the	summary	statistics	1174	
for	each	SNP	in	a	fixed	effects	meta-analysis	using	METAL61.	We	compared	the	estimates	of	1175	
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the	maternal	and	fetal	effects	of	this	meta-analysis	to	the	SEM-adjusted	maternal	and	fetal	1176	
effects	using	a	heterogeneity	test,	and	the	results	are	presented	in	Supplementary	Table	6.		1177	
	1178	
Approximation	of	the	SEM	for	genome-wide	analyses		1179	
The	SEM	is	computationally	intensive	to	fit,	making	it	difficult	to	run	on	all	SNPs	across	the	1180	
genome.	Therefore,	we	developed	an	approximation	of	the	SEM	using	a	linear	1181	
transformation	of	the	BW	values	and	ordinary	least	squares	linear	regression,	which	we	1182	
refer	to	as	the	weighted	linear	model	adjusted	(WLM-adjusted)	analyses.	The	full	details	of	1183	
the	derivation	are	provided	in	the	Supplementary	Material.	Briefly,	from	ordinary	least	1184	
squares	regression	we	know	that	the	estimated	fetal	effect	size	from	the	GWAS	of	own	BW,	1185	
𝛽)6789:,	is	calculated	by	dividing	the	sample	covariance	between	BW	and	SNP	by	the	sample	1186	
variance	of	the	SNP.	Similarly,	the	estimated	maternal	effect	from	the	GWAS	of	offspring	1187	
BW,	𝛽56789:,	is	calculated	by	dividing	the	sample	covariance	between	offspring	BW	and	SNP	1188	
by	the	sample	variance	of	the	SNP.	It	follows	that	an	estimate	of	the	fetal	effect	adjusted	for	1189	
the	maternal	genotype	is	(see	Supplementary	Material	for	full	derivation):	1190	

𝛽)89: = −
2
3𝛽56789: +

4
3𝛽)6789: 	1191	

and	an	estimate	of	the	maternal	effect	adjusted	for	the	fetal	genotype	is:	1192	

𝛽589: =
4
3𝛽56789: −

2
3𝛽)6789: 	1193	

If	the	model	is	truly	linear,	then	the	same	estimates	can	be	obtained	by	transforming	the	1194	
reported	BWs	rather	than	the	regression	coefficients62.	Similar	to	the	SEM	analyses,	BW	Z-1195	
scores	in	the	UK	Biobank	participants	were	calculated	from	residuals	of	a	regression	model	1196	
adjusting	for	sex	(own	BW	only)	and	assessment	centre,	after	the	same	exclusions	were	1197	
made	as	in	the	GWAS.	For	the	UK	Biobank	participants	who	reported	both	their	own	BW	1198	
and	the	BW	of	their	offspring	(N=101,541),	we	combined	their	BW	Z-scores	using	the	above	1199	
formulae	and	conducted	a	GWAS	in	BOLT-LMM	52	to	directly	estimate	the	WLM-adjusted	1200	
fetal	and	maternal	effects	for	each	SNP	(see	Supplementary	Figure	19	for	a	flow	diagram	of	1201	
the	full	analysis	pipeline).	For	the	UK	Biobank	participants	who	only	reported	their	own	BW	1202	
(N=115,070),	we	conducted	a	GWAS	of	their	own	BW	Z-score	in	BOLT-LMM	to	estimate	the	1203	
unadjusted	fetal	effect	for	each	SNP	and	then	meta-analyzed	the	results	with	the	1204	
unadjusted	fetal	effect	estimates	from	the	EGG	consortium	using	a	fixed-effects,	inverse-1205	
variance	weighted	meta-analysis	in	METAL61.	We	followed	the	same	procedure	using	1206	
participants	who	only	reported	their	offspring’s	BW	in	the	UK	Biobank	(N=88,846)	and	meta-1207	
analyzed	the	unadjusted	maternal	effect	estimates	with	those	from	the	EGG	consortium.	1208	
The	UK	Biobank	sample	sizes	used	in	this	analysis	are	larger	than	those	used	in	the	SEM	as	1209	
the	GWAS	analyses	are	conducted	in	BOLT-LMM	and	can	therefore	account	for	the	complex	1210	
cryptic	relationships	between	individuals.	To	get	the	WLM-adjusted	maternal	and	fetal	1211	
effect	estimates,	we	combined	the	meta-analysis	results	of	the	unadjusted	maternal	and	1212	
fetal	effects	for	each	SNP	using	the	formulae	above	and	their	corresponding	standard	errors	1213	
(see	Supplementary	Material).	Finally,	we	conducted	another	fixed-effects,	inverse-variance	1214	
weighted	meta-analysis	to	combine	the	WLM-adjusted	maternal	and	fetal	effect	estimates	1215	
from	the	UK	Biobank	participants	with	both	BW	measures	and	the	combined	WLM-adjusted	1216	
effect	estimates	from	the	UK	Biobank	and	EGG	meta-analysis.	A	comparison	of	the	results	1217	
using	this	WLM	method	and	the	full	SEM	for	the	genome-wide	significant	SNPs	is	presented	1218	
in	Supplementary	Figure	8.	1219	
	1220	
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Gene	expression	integration	1221	
In	order	to	identify	which	tissue	types	were	most	relevant	to	genes	involved	in	BW,	we	1222	
applied	LD	score	regression	to	specifically	expressed	genes	(“LDSC-SEG”)20.	We	used	the	1223	
summary	statistics	from	the	GWAS	meta-analysis	of	own	and	offspring	BW	and	the	WLM-1224	
adjusted	meta-analyses,	where	the	summary	statistics	from	the	WLM-adjusted	meta-1225	
analyses	were	used	to	obtain	tissue	specific	enrichments	un-confounded	by	maternal	and	1226	
fetal	genetic	sharing.	The	method	has	been	described	previously20,	but	in	brief	it	takes	each	1227	
tissue,	ranking	genes	by	a	t-statistic	for	differential	expression,	using	sex	and	age	as	1228	
covariates,	and	excluding	all	samples	in	related	tissues.	It	then	takes	the	top	10%	of	ranked	1229	
genes,	and	makes	a	genome	annotation	including	these	genes	(exons	and	introns)	plus	1230	
100kb	on	either	side.	Finally,	it	uses	stratified	LD	score	regression	to	estimate	the	1231	
contribution	of	this	annotation	to	per-SNP	BW	heritability,	adjusting	for	all	categories	in	the	1232	
baseline	model.	We	computed	significance	using	a	block	jackknife	over	SNPs,	and	corrected	1233	
for	the	number	of	tissues	tested.	1234	
	1235	
Gene-set	enrichment	analysis	(MAGENTA)	1236	
Pathway-based	associations	using	summary	statistics	from	the	GWAS	meta-analysis	of	own	1237	
and	offspring	BW	and	WLM-adjusted	meta-analysis	for	both	the	maternal	and	fetal	effect	1238	
were	tested	using	MAGENTA63.	Briefly,	the	software	maps	each	gene	to	the	SNP	with	the	1239	
lowest	P-value	within	a	110kb	upstream	and	40kb	downstream	window.	This	P-value	is	1240	
corrected	for	factors	such	as	SNP	density	and	gene	size	using	a	regression	model.	Genes	1241	
within	the	HLA	region	were	excluded.	The	observed	number	of	gene	scores	within	a	given	1242	
pathway	with	a	ranked	gene	score	above	a	given	threshold	(95th	or	75th	percentile)	was	1243	
calculated.	This	statistic	was	compared	with	1,000,000	randomly	permuted	pathways	of	the	1244	
same	size	to	calculate	an	empirical	P-value	for	each	pathway.	We	considered	pathways	with	1245	
false	discovery	rate	(FDR)	<	0.05	to	be	of	interest.	The	3,230	biological	pathways	tested	1246	
were	from	the	BIOCARTA,	Gene	Ontology,	KEGG,	PANTHER	and	READTOME	databases	along	1247	
with	a	small	number	of	custom	pathways.	1248	
	1249	
Gestational	duration	associations	1250	
We	extracted	the	305	genome-wide	significant	BW-associated	SNPs	from	the	summary	1251	
statistics	in	a	recent	GWAS	of	gestational	duration21.	The	full	table	of	23andMe	summary	1252	
statistics	was	obtained	directly	from	23andMe.	For	BW	SNPs	that	were	also	associated	with	1253	
gestational	duration	(P<1.6x10-4,	corrected	for	305	tests),	we	followed	them	up	in	13,206	1254	
mother-child	pairs	from	the	MoBa-HARVEST,	ALSPAC	and	EFSOCH	studies.	Preterm	births	1255	
(gestational	duration	<37	weeks)	were	removed	before	analysis,	and	gestational	duration	1256	
and	BW	were	both	z-score	transformed.	We	conducted	linear	regression	analyses	to	test	the	1257	
association	between	maternal	or	fetal	genotype	(unadjusted	genotype	effects)	and	1258	
gestational	duration,	BW	or	gestational	duration	adjusted	for	BW.	Additionally,	we	1259	
conducted	linear	regression	analyses	for	the	same	three	outcomes	including	both	the	1260	
maternal	and	fetal	genotypes	(adjusted	effects).	The	association	analysis	results	were	1261	
combined	using	inverse	variance	weighted	meta-analysis.	We	also	combined	the	unadjusted	1262	
maternal	SNP-gestational	duration	associations	with	the	23andMe	summary	statistics	from	1263	
Zhang	et	al.21	using	P	value	based	meta-analysis	implemented	in	METAL61.	1264	
	1265	
	1266	
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Association	between	birth	weight-associated	SNPs	and	a	variety	of	traits	in	the	UK	1267	
Biobank	1268	
We	performed	GWAS	on	78	traits	in	the	UK	Biobank	using	BOLT-LMM	in	an	analogous	way	1269	
to	analysis	of	own	BW.	Association	statistics	for	the	305	genome-wide	significant	BW-1270	
associated	SNPs	were	then	extracted	from	the	results.	Phenotype	definitions	for	the	78	1271	
traits	are	described	in	Frayling	et	al.64.	Additionally,	for	the	305	genome-wide	significant	1272	
BW-associated	SNPs,	and	those	in	high	LD	with	the	305	SNPs	(r2>0.8),	we	searched	the	1273	
NHGRI	GWAS	catalog	(https://www.ebi.ac.uk/gwas/;	accessed	16th	January	2018)	for	1274	
reported	GWAS	associations	with	other	traits.	These	are	reported	in	Supplementary	Table	1275	
13.	1276	
	1277	
Linkage-Disequilibrium	(LD)	score	regression		1278	
LD	score	regression	was	used	to	estimate	the	genetic	correlation	between	two	1279	
traits/diseases	and	has	been	described	in	detail	elsewhere19.	Briefly,	the	LD	score	is	a	1280	
measure	of	how	much	genetic	variation	each	variant	tags;	so	if	a	variant	has	a	high	LD	score	1281	
then	it	is	correlated	with	many	nearby	variants.	Variants	with	high	LD	scores	are	more	likely	1282	
to	tag	true	signals	and	hence	provide	greater	chance	of	overlap	with	genuine	signals	1283	
between	GWAS.	The	method	uses	summary	statistics	from	the	GWAS	meta-analyses	of	BW	1284	
and	the	other	traits	of	interest,	calculates	the	cross-product	of	test	statistics	at	each	SNP,	1285	
and	then	regresses	the	cross-product	on	the	LD	Score.	Bulik-Sullivan	et	al.	19	show	that	the	1286	
slope	of	the	regression	is	a	function	of	the	genetic	correlation	between	traits.	Individuals	1287	
contributing	to	the	summary	statistics	of	both	GWAS	meta-analyses,	and	population	1288	
stratification	within	either	GWAS,	will	only	influence	the	intercept	of	the	regression	and	1289	
therefore	not	bias	the	genetic	correlation.	1290	
We	used	LDHub65	(ldsc.broadinstitute.org/)	to	perform	LD	score	regression	between	BW	1291	
and	a	large	range	of	traits	and	diseases.	LDHub	is	a	centralized	database	which	contains	1292	
curated	summary	statistics	from	GWAS	analyses	of	over	775	traits	and	diseases,	including	1293	
the	recent	release	of	summary	statistics	from	GWAS	analyses	of	many	phenotypes	in	the	UK	1294	
Biobank	(http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-1295	
for-337000-samples-in-the-uk-biobank).	Due	to	the	different	LD	structure	across	ancestry	1296	
groups,	the	summary	statistics	from	the	European	only	BW	analyses	were	uploaded	to	1297	
LDHub	and	genetic	correlations	were	calculated	for	all	available	phenotypes.	We	conducted	1298	
four	separate	analyses	in	LDHub:	one	for	the	GWAS	of	own	BW,	one	for	the	GWAS	of	1299	
offspring	BW,	one	for	the	WLM-adjusted	fetal	effect	on	own	BW	and	the	final	one	for	the	1300	
WLM-adjusted	maternal	effect	on	offspring	BW.	1301	
To	calculate	the	genetic	correlation	between	the	maternal	and	fetal	effect	estimates	from	1302	
the	unadjusted	and	WLM-adjusted	analyses,	and	also	between	gestational	duration	and	the	1303	
WLM-adjusted	maternal	and	fetal	effects,	we	used	the	scripts	provided	by	the	developer	1304	
(https://github.com/bulik/ldsc).	1305	
	1306	
Mendelian	randomization	analyses	of	maternal	and	fetal	exposures	on	offspring	birth	1307	
weight	1308	
Two	sample	Mendelian	randomization	analyses	were	performed	for	a	number	of	exposures	1309	
with	own	BW	or	offspring	BW	as	outcomes.	The	exposures	included	height	(SD	units,	where	1310	
1SD	=	6cm),	fasting	glucose	(SD	units,	where	1	SD	=	0.4mmol/L),	disposition	index	of	insulin	1311	
secretion	(calculated	from	oral	glucose	tolerance	test	(OGTT)	results	as	Corrected	Insulin	1312	
Response	x	10,000	/	√	(Fasting	Plasma	Glucose	x	Fasting	Insulin	x	Mean	Glucose	during	1313	
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OGTT	x	Mean	Insulin	During	OGTT)66),	insulin	sensitivity	(calculated	as	fasting	insulin	1314	
adjusted	for	BMI)	and	systolic	and	diastolic	blood	pressure	(mmHg).	The	SNP-exposure	1315	
associations	were	taken	from	external	studies	(Supplementary	Table	14).	The	SNP-outcome	1316	
associations	were	taken	from	the	current	European	GWAS	meta-analyses	of	own	BW,	1317	
offspring	BW,	WLM-adjusted	fetal	effect	on	own	BW	and	WLM-adjusted	maternal	effect	on	1318	
offspring	BW.	Two	sample	Mendelian	randomization	regresses	effect	sizes	of	SNP-outcome	1319	
associations	against	effect	sizes	of	SNP-exposure	associations,	with	an	inverse-variance	1320	
weighted	(IVW)	analysis	giving	similar	results	to	the	commonly	used	two-stage	least	squares	1321	
analysis	in	a	single	sample67.	We	performed	several	sensitivity	analyses	to	assess	the	impact	1322	
of	genetic	pleiotropy	on	the	causal	estimates	including	MR-Egger68,	Weighted	Median	1323	
(WM)69	and	Penalized	Weighted	Median	(PWM)69	approaches	(see	Supplementary	Table	15	1324	
for	results).	Details	of	the	R	code	for	the	MR	analyses	are	provided	elsewhere68,69	.		1325	
Due	to	the	strong	negative	correlation	between	estimates	of	the	maternal	and	fetal	genetic	1326	
effects	on	BW,	we	conducted	simulations	to	confirm	that	this	correlation	did	not	bias	the	1327	
results	of	downstream	MR	analyses;	these	simulations	are	described	in	the	Supplementary	1328	
Material.	1329	
	1330	
Transmitted/non-transmitted	allele	scores	in	ALSPAC	1331	
Allelic	transmission	was	determined	for	4,962	mother/offspring	pairs	in	ALSPAC.	We	first	1332	
converted	maternal	and	fetal	genotypes	into	best	guess	genotypes	where	SNPs	of	interest	1333	
had	been	imputed.	Where	one	or	both	of	the	mother/offspring	pair	were	homozygous,	1334	
allelic	transmission	is	trivial	to	determine.	Where	both	mother	and	offspring	were	1335	
heterozygous	for	the	SNP	of	interest	we	used	phase	imputation	generated	using	SHAPEIT270	1336	
to	examine	the	haplotypes	in	the	region	of	the	SNP	of	interest	to	determine	allelic	1337	
transmission.	Weighted	allele	scores	were	then	generated	for	maternal	non-transmitted,	1338	
shared	(maternal	transmitted)	and	paternally	inherited	fetal	alleles	for	systolic	blood	1339	
pressure	(SBP),	diastolic	blood	pressure	(DBP),	fasting	glucose,	insulin	secretion	and	insulin	1340	
sensitivity.	Associations	were	tested	between	the	weighted	allele	scores	and	BW.	1341	
	1342	
Covariance	between	BW	and	adult	traits	explained	by	genotyped	SNPs	1343	
The	genetic	and	residual	covariance	between	BW	and	several	quantitative	and/or	disease	1344	
phenotypes	was	calculated	in	the	UK	Biobank	in	the	BOLT-LMM52	implementation	of	the	1345	
REML	method,	using	directly	genotyped	SNPs.	We	included	215,444	individuals	with	data	on	1346	
own	BW	and	190,406	with	data	on	offspring	BW.	All	individuals	were	classified	as	being	of	1347	
European	ancestry.	SNPs	with	minor	allele	frequency	<	1%,	evidence	of	deviation	from	1348	
Hardy-Weinberg	equilibrium	(P≤1x10-6)	or	overall	missing	rate	>	0.015	were	excluded,	1349	
resulting	in	524,307	SNPs	for	analysis.	Ninety-five	per	cent	confidence	intervals	for	the	1350	
proportion	of	covariance	explained	by	variants	directly	genotyped	were	calculated	as	1351	
gcov/(gcov+rcov)	±	1.96*gcovSE/abs(gcov+rcov)	where	gcov	is	genetic	covariance,	rcov	is	1352	
residual	covariance	and	gcovSE	is	the	standard	error	for	gcov	and	abs	is	the	absolute	value.	1353	
Details	of	the	phenotype	preparation	for	the	adult	traits	is	provided	in	the	Supplementary	1354	
Material.		1355	
	1356	
Testing	for	association	between	maternal	SNPs	associated	with	offspring	birth	weight	and	1357	
later-life	offspring	blood	pressure	1358	
Using	the	UK	Biobank,	we	tested	whether	maternal	SNPs	associated	with	offspring	BW	were	1359	
also	associated	with	offspring	blood	pressure	in	later	life.	The	UK	Biobank	released	kinship	1360	
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information	generated	in	KING71,	which	included	the	kinship	coefficients	and	IBS0	estimates.	1361	
We	defined	parent/offspring	pairs	using	the	kinship	coefficient	and	IBS0	cut-offs	1362	
recommended	in	Manichaikul	et	al.71.	There	were	6,276	parent/offspring	pairs,	of	which	1363	
5,901	were	of	European	descent	and	5,635	unique	pairs	with	blood	pressure	data	(for	1364	
parents	who	had	multiple	offspring	with	blood	pressure	data,	only	the	oldest	offspring	was	1365	
included	in	the	analysis);	3,886	mother/offspring	pairs	and	1,749	father/offspring	pairs.	We	1366	
tested	the	relationship	between	unweighted	allelic	scores	of	BW-associated	SNPs	in	1367	
mothers	and	offspring	SBP	(see	Supplementary	Material	for	SBP	phenotype	preparation)	1368	
before	and	after	adjusting	for	offspring	genotypes	at	the	same	loci.	We	examined	1369	
unweighted	allelic	scores	consisting	of	all	autosomal	genome-wide	significant	BW-1370	
associated	SNPs	available	in	the	UK	Biobank	(300	SNPs),	103	autosomal	SNPs	that	showed	1371	
evidence	of	a	maternal	effect,	and	a	subset	of	44	autosomal	SNPs	that	showed	evidence	1372	
only	of	maternal	effects	on	BW.	We	also	looked	at	the	SNPs	previously	associated	with	SBP	1373	
(Supplementary	Table	14)	as	a	sensitivity	analysis	to	rule	out	the	possibility	of	postnatal	1374	
pleiotropic	effects	of	SNPs	contaminating	our	results,	we	also	tested	the	relationship	1375	
between	allelic	scores	of	BW-associated	SNPs	in	fathers	and	offspring	SBP	after	adjusting	for	1376	
offspring	genotype.	All	analyses	were	adjusted	for	offspring	age	at	SBP	measurement,	sex	1377	
and	assessment	center.		1378	
	1379	
Data	availability	1380	
The	genotype	and	phenotype	data	are	available	upon	application	from	the	UK	Biobank	1381	
(http://www.ukbiobank.ac.uk/).	Individual	cohorts	participating	in	the	EGG	consortium	1382	
should	be	contacted	directly	as	each	cohort	has	different	data	access	policies.	GWAS	1383	
summary	statistics	from	this	study	are	available	on	publication	via	the	EGG	website	1384	
(https://egg-consortium.org/).	1385	
	1386	
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Figures:	1387	
	1388	
Figure	1:	Structural	equation	modelling	(SEM)-adjusted	fetal	and	maternal	effects	for	the	1389	
289	genome-wide	significant	SNPs	that	were	identified	in	the	GWAS	of	either	own	birth	1390	
weight	(BW;	left	panel)	or	offspring	BW	(right	panel)	with	minor	allele	frequency	greater	1391	
than	5%.	The	colour	of	each	point	indicates	the	SEM-adjusted	fetal	effect	on	own	BW	1392	
association	P-value	and	the	shape	of	each	point	indicates	the	SEM-adjusted	maternal	effect	1393	
on	offspring	BW	association	P-value.	SNPs	which	are	labelled	with	the	name	of	the	closest	1394	
gene	are	those	which	were	identified	in	the	GWAS	of	own	BW	but	whose	effects	are	1395	
mediated	through	the	maternal	genome	(left	panel)	and	SNPs	that	were	identified	in	the	1396	
GWAS	of	offspring	BW	but	whose	effects	are	mediated	through	the	fetal	genome	(right	1397	
panel).	SNPs	are	aligned	to	the	BW	increasing	allele	from	the	GWAS.	1398	
	1399	

	 	1400	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 17, 2018. ; https://doi.org/10.1101/442756doi: bioRxiv preprint 

https://doi.org/10.1101/442756
http://creativecommons.org/licenses/by/4.0/


	 35	

Figure	2:	Genome-wide	genetic	correlation	between	birth	weight	(BW)	and	a	range	of	1401	
traits	and	diseases	in	later	life.	Genetic	correlation	(rg)	and	corresponding	95%	confidence	1402	
intervals	between	BW	and	the	traits	were	estimated	using	linkage	disequilibrium	(LD)	score	1403	
regression	in	LD	Hub.	Genetic	correlations	were	estimated	from	the	summary	statistics	of	1404	
the	weighted	linear	model	(WLM)-adjusted	fetal	genome-wide	association	study	(GWAS;	1405	
WLM-adjusted	fetal	effect	on	own	BW)	and	the	WLM-adjusted	maternal	GWAS	(WLM-1406	
adjusted	maternal	effect	on	offspring	BW).	The	genetic	correlation	estimates	are	colour	1407	
coded	according	to	their	intensity	and	direction	(red	for	positive	correlation	and	blue	for	1408	
negative	correlation).	HOMA-B/IR,	homeostasis	model	assessment	of	beta-cell	1409	
function/insulin	resistance;	HbA1c,	hemoglobin	A1c;	ADHD,	attention	deficit	hyperactivity	1410	
disorder.	See	Supplementary	Table	10	for	the	references	for	each	of	the	traits	and	diseases	1411	
displayed	and	the	genetic	correlation	results	for	other	traits	and	diseases.		1412	
	1413	

1414	
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Figure	3.	Mendelian	randomization	to	assess	the	causal	effect	of	maternal	intrauterine	1415	
exposures	on	offspring	birth	weight	(adapted	from	Lawlor	et	al.	44)	1416	
A.	Diagram	demonstrating	how	Mendelian	randomization	may	be	used	to	assesses	the	1417	
causal	effect	of	a	maternal	exposure	on	offspring	birth	weight	(BW).	The	analysis	assumes	1418	
that:	(i)	maternal	genotype	(instrumental	variable,	IV)	is	robustly	associated	with	maternal	1419	
(intrauterine)	exposure;	(ii)	confounders	of	the	maternal	exposure-offspring	outcome	1420	
association	are	not	associated	with	the	maternal	genetic	IV;	(iii)	the	maternal	genetic	IV	is	1421	
only	associated	with	offspring	BW	through	its	association	with	the	maternal	intrauterine	1422	
exposure,	and	through	no	other	pathway.	Since	maternal	and	fetal	genotypes	are	correlated	1423	
(r	=	0.5),	it	is	essential	to	account	for	the	offspring	genotype	in	this	analysis.	1424	
The	continuous,	thin	arrow	represents	the	relationship	between	the	genetic	instrument	and	1425	
intrauterine	exposure.	The	dashed	arrows	represent	potential	confounding	via	maternal	1426	
characteristics.	The	dotted	arrows	represent	potential	violation	of	assumption	3	via	the	1427	
offspring	genotype.	The	thick	arrow	represents	the	causal	effect	of	interest	estimated	in	1428	
Mendelian	randomization	analyses,	after	accounting	for	offspring	genotype	effects.		1429	
	1430	
B.	Higher	offspring	BW	is	caused	both	by	direct	fetal	genetic	effects	of	height-raising	alleles	1431	
and	indirect	effects	of	maternal	height-raising	alleles.	Maternal	indirect	effects	of	height-1432	
raising	alleles	may	increase	offspring	BW	by	increasing	the	space	available	for	growth,	but	1433	
we	cannot	rule	out	alternative	pathways	e.g.	the	contribution	of	assortative	mating,	which	1434	
would	cause	the	maternal	indirect	association	estimates	to	be	correlated	with	direct	fetal	1435	
effects.		1436	
	1437	
C.	Higher	maternal	fasting	glucose	levels	are	causally	associated	with	higher	offspring	BW.	1438	
Conversely,	in	the	offspring,	a	genetic	score	of	alleles	known	to	raise	adult	fasting	glucose	1439	
levels	is	associated	with	lower	BW,	indicating	that	these	alleles	have	opposite	maternal	and	1440	
fetal	effects	on	BW.	This	is	likely	due	to	their	effects	on	insulin:	variants	that	lower	maternal	1441	
insulin	levels	lead	to	higher	maternal	glucose,	which	crosses	the	placenta	and	stimulates	1442	
fetal	insulin-mediated	growth.	However,	the	same	variants	in	the	fetus	cause	lower	fetal	1443	
insulin	levels,	and	consequently,	reduced	fetal	insulin-mediated	growth.	1444	
	1445	
D.	Higher	maternal	blood	pressure	is	causally	associated	with	lower	offspring	BW.	After	1446	
adjusting	for	maternal	effects,	there	was	no	evidence	of	an	effect	of	the	offspring’s	own	SBP	1447	
genetic	score	on	their	own	BW.	1448	
	1449	
SEP,	socio-economic	position;	BW,	birth	weight;	FPG,	fasting	plasma	glucose;	SBP,	systolic	1450	
blood	pressure.	1	SD	of	BW	=	484g9,44	1451	
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Figure	4.	Mendelian	randomization	to	assess	the	causal	effect	of	intrauterine	growth	on	1453	
offspring	adult	outcomes,	using	maternal	intrauterine	exposures	that	influence	fetal	1454	
growth.	1455	
A.	Diagram	demonstrating	how	Mendelian	randomization	may	be	used	to	assesses	the	1456	
causal	effect	of	intrauterine	exposures	that	affect	fetal	growth	on	later-life	offspring	1457	
outcomes.	The	analysis	assumptions	are	the	same	as	in	any	Mendelian	randomization	1458	
analysis	(see	Figure	3).	The	instrumental	variable	should	be	associated	with	offspring	birth	1459	
weight	(BW)	independently	of	offspring	genotype,	so	it	is	again	essential	to	adjust	the	1460	
analysis	for	the	offspring	genotype.	1461	
The	continuous,	thin,	arrow	represents	the	relationship	between	the	genetic	instrument	1462	
and	intrauterine	exposure.	The	long-dashed	arrows	denote	the	(maternal	and	possibly	fetal)	1463	
genotype	associations	with	BW;	these	arrows	highlight	the	assumption	that	the	genetic	1464	
variation	is	influencing	the	offspring	adult	outcome	via	intrauterine	growth	pathways,	not	1465	
BW.	The	short-dashed	arrows	represent	potential	confounding	via	maternal	and	offspring	1466	
characteristics.	The	dotted	arrow	represents	potential	violation	of	assumption	3	of	1467	
Mendelian	randomization	analysis	(see	Figure	3	legend)	via	the	offspring	genotype.	The	1468	
thick	arrow	represents	the	causal	effect	of	interest	estimated	in	Mendelian	randomization	1469	
analyses,	after	accounting	for	offspring	genotype	effects.		1470	
We	have	not	specifically	conducted	this	Mendelian	randomization	analysis	as	we	do	not	1471	
have	effect	estimates	for	the	SNP-maternal	intrauterine	exposures	influencing	fetal	growth.	1472	
However,	we	have	used	the	presence/absence	and	direction	of	association	in	3,886	mother-1473	
offspring	pairs	from	the	UK	Biobank	to	indicate	whether	the	intrauterine	environment	was	1474	
causing	changes	in	adult	SBP	(see	Supplementary	Table	18	for	full	results).	1475	
	1476	
B.	Taken	together,	our	results	demonstrate	that	the	observed	negative	correlation	between	1477	
BW	and	later	SBP	may	be	driven	by	the	causal	effect	of	higher	maternal	SBP	on	lower	1478	
offspring	BW	(red	arrow),	in	combination	with	the	subsequent	transmission	of	SBP-1479	
associated	alleles	to	offspring	(green	arrow),	which	then	increase	offspring	SBP,	rather	than	1480	
by	long-term	developmental	compensations	to	adverse	in	utero	conditions.		1481	
	1482	
SEP,	socio-economic	position;	BW,	birth	weight;	SBP,	systolic	blood	pressure.		1483	
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