## Genome structure and evolution of Antirrhnum majus L.

Miaomiao Li ${ }^{1,7^{*}}$, Dongfen Zhang $^{1^{*}}$, Hui Zhang ${ }^{1,77^{*}}$, Qiang Gao ${ }^{3^{*}}$, Bin Ma ${ }^{3^{*}}$, Chunhai Chen ${ }^{2 *}$, Yingfeng Luo ${ }^{6}$, Yinghao $\mathrm{Cao}^{3}$, Qun $\mathrm{Li}^{1}$, Yu'e Zhang ${ }^{1}$, Han Guo ${ }^{1,7}$, Junhui $\mathrm{Li}^{1,7}$, Yanzhai Song ${ }^{1,7}$, Yue Zhang ${ }^{1,7}$, Lucy Copsey ${ }^{4}$, Annabel Whibley ${ }^{4}$, Yan $\mathrm{Li}^{3}$, Ming qi ${ }^{3}$, Jiawei Wang ${ }^{5}$, Yan Chen ${ }^{2}$, Dan Wang ${ }^{2}$, Jinyang Zhao ${ }^{2}$, Guocheng Liu ${ }^{2}$, Bin $\mathrm{Wu}^{2}$, Lili $\mathrm{Yu}^{2}$, Chunyan $\mathrm{Xu}^{2}$, Jiang $\mathrm{Li}^{2}$, Shancen Zhao ${ }^{2}$, Yijing Zhang ${ }^{5}$, Songnian $\mathrm{Hu}^{6}$, Chengzhi Liang ${ }^{\text {a, }, 3}$, Ye Yin ${ }^{\text {a, }, 2}$, Enrico Coen ${ }^{\text {a, }, 4}$, Yongbiao Xue ${ }^{\text {a, }, 1,6,7}$

${ }^{1}$ State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
${ }^{2}$ BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
${ }^{3}$ State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
${ }^{4}$ John Innes Centre, Norwich, NR4 7UH, United Kingdom
${ }^{5}$ National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
${ }^{6}$ Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
${ }^{7}$ University of Chinese Academy of Sciences, Beijing 100190, China
*These authors contributed equally to this work.
${ }^{\mathrm{a}}$ Correspondence authors:
Yongbiao Xue
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1
West Beichen Road, Chaoyang District, Beijing 100101, China

Tel: 86-10-64801181
Fax: 86-10-64801292
E-mail: ybxue@genetics.ac.cn

Enrico Coen
John Innes Centre, Norwich, NR4 7UH, United Kingdom
Email: enrico.coen@jic.ac.uk

Ye Yin
BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China

Email: yinye@genomics.cn

Chengzhi Liang Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China Email: cliang@genetics.ac.cn


#### Abstract

Snapdragon (Antirrhinum majus L.), a member of Plantaginaceae, is an important model for plant genetics and molecular studies on plant growth and development, transposon biology and self-incompatibility. Here we report a high-quality genome assembly of A. majus cultivated JI7 (A. majus cv.JI7) of a 510 Mb with 37,714 annotated protein-coding genes. The scaffolds covering $97.12 \%$ of the assembled genome were anchored on 8 chromosomes. Comparative and evolutionary analyses revealed that Plantaginaceae and Solanaceae diverged from their most recent ancestor around 62 million years ago (MYA). We also revealed the genetic architectures associated with complex traits such as flower asymmetry and self-incompatibility


including a unique TCP duplication around $46-49$ MYA and a near complete $\psi S$-locus of ca. 2 Mb . The genome sequence obtained in this study not only provides the first genome sequenced from Plantaginaceae but also bring the popular plant model system of Antirrhinum into a genomic age.

## Introduction

The genus Antirrhinum belongs to the Plantaginaceae family and includes about 20 species with the chromosome number of $2 \mathrm{n}=16^{1}$. The cultivated $A$. majus was domesticated as an ornamental in garden over two thousand years ago. Antirrhinum originated in Europe and are mainly distributed in Europe, Asia, and Africa around the Mediterranean coast. Different species in Antirrhinum have obvious differentiation in flower color, fragrance, flower pattern and flowering time; and interspecific hybridization often occurred among them. The genus has evolved two major mating systems, insect pollination (entomophily) and self-incompatibility (SI), to promote out-cross ${ }^{1,2,3}$.

Antirrhinum has served as an excellent system in molecular genetics and developmental biology studies in the past three decades because of its active transposable elements for generating rich mutant resources ${ }^{4}$. Several key genes were first cloned in Antirrhinum including the founding members of MADS (DEFICIENS) and TCP (CYCLOIDEA) gene families, a MYB gene MIXTA controlling petal epidermis formation, three MYB transcription factors encoded by ROSEAL, ROSEAL2 and VENOSA controlling flower color intensity and the SLFs ( $\boldsymbol{S}$-Locus $\boldsymbol{F}$-box) controlling self-incompatibility ${ }^{5-13}$. Most of these genes were identified by a representative "cut and paste" transposon-tagging systems in Antirrhinum involved in flower development, floral-organ identity and inflorescence architecture ${ }^{1,14}$.

However, it remains unclear what constitutes their genomic architectures and how they evolve without the genome structure of the regions containing these genes. Here, we report a high-quality genome sequence of $A$. majus of 510 Mb assembled with 37,714 annotated protein-coding genes combining using whole-genome shotgun sequencing of Illumina short reads and single-molecule, real time (SMRT) sequencing long reads from Pacific Biosciences (PacBio) platform. Most of the assembled sequences were anchored to chromosomes to form 8 pseudomolecules using a genetic map. Furthermore, comparative genomic analysis revealed that Antirrhinum was derived from related families about 62 MYA and a whole genome duplication event occurred around 46-49 MYA. We also showed a near complete genomic structure of the pseudo $(\psi) S$-locus of $A$. majus of ca. 2 Mb , which consists of 102 genes from $R A D$ to SLF37 genes ${ }^{15}$. The genome sequence provided in this study will accelerate genomic and evolutionary studies on this classical model species.

## Results

## Genome sequencing, assembly and annotation of $A$. majus

We sequenced a highly inbred Antirrhinum line (A. majus cv. JI7 with eight linkage groups) using the combination Illumina short read and Pacific Biosciences (PacBio) long read sequencing technologies by the genotyping-by-sequencing (GBS) method ${ }^{16}$. The genome size was estimated to be about 520 M based on kmer distribution. We used Canu to correct and assemble PacBio reads into contigs and using SSPACE for scaffolding with Mate-paired short reads. The assembled genome size was 510 Mb with a contig and scaffold N50 sizes of 733 kb and $3,742 \mathrm{~kb}$, respectively (Figure 1, Table 1, Supplementary Figure1 and Supplementary Table 1-2). To anchor Antirrhinum genome sequence to chromosomes, we used JoinMap 4.1 to designed marks from re-sequencing 48 recombinant inbred lines (RIL) that derived from $A$. majus crossed to the self-incompatible species A. charidemi. Eight linkage groups covered 496.9 Mb , representing $97.12 \%$ of the assembled Antirrhinum genome. The
largest chromosome 2 was estimated ca. 75.4 Mb , whereas the smallest chromosome 4 ca .50 .9 Mb and chromosome 8 ca .57 .0 Mb . The average ratio of physical to genetic distance was estimated to be $753.6 \mathrm{~kb} / \mathrm{cM}$. The rate of genetic and physical distance showed lower recombination rate at the pericentromeric regions of chr4, chr6, chr7 and chr8, together with the locations of their centromeres. Validations by known genetic markers and FISH (fluorescence in situ hybridization) showed that the linkage groups represent a high-quality physical map (Supplementary Figure 2-4 and Supplementary Table 3).

To validate genome quality and integrity, the completeness of the assembled euchromatic portion was examined by comparing 25,651 public ESTs of Antirrhinum from NCBI (http://www.ncbi.nlm.nih.gov/nucest/?term=EST\ Antirrhinum) and $96.59 \%$ EST sequences were mapped on the assembled genome. Next, we did the alignments between three Bacterial Artificial Chromosome (BAC) sequences and the assembled Antirrhinum genome, indicating an average $98.3 \%$ of euchromatin coverage. We also used BUSCO analysis to compare the quality of the assembled Antirrhinum genome sequence to that of other published plant genomes and showed a high quality of the assembled sequence data (Supplementary Figure 5-7).

We predicted a total of 37,714 protein-coding genes with an average transcript length of 3,166 bp by using Antirrhinum EST sequences and RNA-seq data from six major tissues: leaf, root, stem, stamen, pistil and pollen (http://bioinfo.sibs.ac.cn/Am/, Supplementary Excel 1). Approximately $89.11 \%$ of all genes could be functionally annotated. The average gene density in Antirrhinum is one gene per 15.5 kb , which is about three times lower than Arabidopsis (one gene/4.5 kb) and slightly higher than tomato (one gene $/ 25.7 \mathrm{~kb}$ ). Genes are also distributed unevenly, being more abundant in the ends of chromosomal arms. We also identified 981 transfer RNA, 800 microRNA, 10 ribosomal RNA and 622 small nuclear RNA families. A total of 268.3 $\mathrm{Mb}(43.8 \%)$ sequences were annotated as repeats including a wealth of class I
(Retrotransposon: 182.8 Mb ), class II (DNA transposon: 41.1 Mb ) elements, accounting for $52.6 \%$ of the assembled genome (Supplementary Table 4-7).

To detect the intragenomic organization in A. majus, self-alignment analysis was employed to reveal the duplicated and triplication regions between and within chromosomes. A whole genome triplication occurred between chromosome 1, 7 and 8 , between chromosome 4, 6 and 8 . Paralogous relationships among eight Antirrhinum chromosomes revealed 45 major duplications and 2 triplications by dot plot analyses. Collectively, forty-seven major intra-syntenic blocks spanning 1,841 pairs of paralogous genes were identified on the eight chromosomes (Figure 1, Supplementary Excel 2).

Taken together, the Antirrhinum genome generated in this study represents a high-quality chrome-scale genome map.

## Comparative genomics and evolution of $A$. majus

To compare Antirrhinum genome with other plant genomes, we first examined the synteny of Antirrhinum chromosomes. The results showed that homologous genes in Antirrhinum chromosomes 1, 4, 5, 6, 7 and 8 are collinear to tomato chromosome 6/7/11, 3/8, 1/4/5, 2/3, 12 and 9 , respectively, indicating that these chromosomes shared similar evolutionary histories (Figure 2a). Base on the collinearity of gene pairs, we calculated the density distribution of synonymous substitution rate per gene ( $K s$ ) between collinear paralogous genes and inferred the time of whole-genome duplication (WGD) events in Antirrhinum. A peak at around 0.57-0.60 showed a recent WGD in Antirrhinum occurred around 46-49 Mya corresponding to a $\beta$ event ${ }^{17}$ (Figure 2b). We then compared the complexity of gene families between Antirrhinum and other species and showed that 9,503 gene families are shared by Antirrhinum, Arabidopsis, rice, and tomato. 6,677 genes families were possibly contracted in

Antirrhinum while the other 3,778 gene families expanded including the F-box protein family being expanded significantly (Figure 2c).

To examine the Antirrhinum genome evolution, we performed all-against-all comparison analyses for the evolution of gene families and constructed a phylogenetic tree of nine angiosperm species (A. majus, A. thaliana, A. trichopoda, C. papaya, $O$. sativa, P. hybrida, P. mume, S.lycopersicum, S. tuberosumand V. vitis) based on the shared 2114 single-copy genes of Antirrhinum. The divergence times of C. papaya-A. thaliana (55.1~90.6 million years ago) and dicot-monocot (123.9~228.5 million years ago) were used for calibration derived from the published data (Figure 2d). Taken together, these results showed that Antirrhinum lineage was split from potato and tomato lineages around 97 MYA with its own recent WGD event occurred about 46-49 MYA.

## Evolution of floral asymmetry and TCP family

A. majus has served as the genetic model of floral symmetry. Recent studies have revealed the floral asymmetry in A. majus is largely controlled by two TCP family TFs (CYC and DICH) ${ }^{7,8,18}$. To explore their evolution, we compared the composition and number of TCP family in several sequenced angiosperms with floral symmetry information. Both eudicot and monocot share a CYC/DICH embedded CYC/TB1 clade, while radial flower basal angiosperm A. trichopoda lacks any members of class II CYC/TB 1 clade, suggesting that class I and class II CIN clade were more ancient than class II CYC/TB1 clade, and the initial role for CYC/TB1 clade was not likely involved in floral symmetry control (Figure 3 and Supplementary Excel 3).

We identified a total of 30 putative functional TCP family genes, including 13 class I genes, 10 class II CIN clade genes and 7 class II CYC/TB1 clade genes. Syntenic block and $K s$ analyses of the orthologous gene pairs revealed that the recent whole genome duplication and tandem duplication contributed to the expansion of

TCP family members, especially for the CYC/DICH embedded CYC/TB1 clade (Figure 3 and Supplementary Table 8). Previous studies indicated CYC and DICH have overlapping expression patterns in floral meristems in A. majus and the fully radial flower only appeared in CYC/DICH double mutants, suggesting the genetic robustness of zygomorphic flower control. To estimate the time of CYC and DICH duplication event, we performed $K s$ analysis of the syntenic block embedding CYC/DICH with 79 homologous gene pairs (Supplementary Table 8). Interestingly, the results indicated this syntenic block was retained from a whole genome duplication event taken place during the time span of the zygomorphic flower emergences (about 60 million years ago). Furthermore, downstream CYC/DICH, two genes (DIV and DRIF) in RAD/DIV module have homologous copies with similar Ks as CYC/DICH, while DRIF is located at a WGD derived syntenic block ${ }^{19,20,21}$. Those analyses showed that the master regulators of zygomorphic flower were retained from the recent whole genome duplication, revealing the evolutionary base for the zygomorphic flower maintenance in A. majus and perhaps other close relatives.

To further explore TCP family evolution among other zygomorphic flower species, we extended the syntenic block and $K s$ analyses to $M$. truncatula, belonging to legume ${ }^{22}$. The results showed that $M$. truncatula independently undergone a recent whole genome duplication event around the similar time as $A$. majus without similar duplicated CYC/DICH copies, suggesting that $A$. majus harbored a unique genetic mechanism for zygomorphic flower (Supplementary Figure 8). Though we could not couple the genetic events with the appearance of zygomorphic flower, our TCP family analysis on representative angiosperms indicated that the genetic origins of zygomorphic flower were ancient and occurred around the late period of Cretaceous about 60 MYA (Figure 3).

Previous phylogenetic analysis suggested that zygomorphic flower independently evolved from actinomorphic ancestors for more than 25 times ${ }^{23}$.Our
findings indicated that gene duplications are involved in a genetic robustness of zygomorphic flower evolution by maintaining copies of master regulators.

## Structure of the $\psi S$-locus in $A$. majus and its gene collinearity in SI species

Previously, we found the Antirrhinum $S$-locus is located in a heterochromatin region on the short arm of chromosome 8 through cytological investigation ${ }^{24}$. To reveal a complete pseudo $(\psi) S$-locus in self-compatible $A$. majus, we scan conserved regions (FBA/FBK domain) of $S L F$ gene family in the assembled $A$. majus genome, we identified the $S$ genes located in the short arm of chromosome 8 and examined their expressions inside the $\psi S$-locus region. The locus consists of 37 SLF genes (SLF1-SLF37) covering 874 kb composed of three scaffolds $S c 29, S c 276$ and Sc184 (Figure 4a). Six pseudogenes with FBA domains were inferred to be loss-of-function in evolution. No S-RNase was found in and near the region, suggesting it might be lost in self-compatible A. majus. RAD gene locates in the upstream of SLF1 gene about 1 Mb , consistent with previous studies showing its linkage with the $S$-locus ${ }^{24}$; and the region contains 102 genes from $R A D$ to $S L F 37$. Most $S L F$ genes are expressed in pollen or anther indicating they could be related to pollination and fertilization.

Taken together, these results showed that we obtained a near complete $\psi S$-locus with the largest numbers of $S$ genes annotated in a plant genome (Figure 4b and Supplementary Excel 4-6).

To explore the $S$-locus structures between SC and SI species, we compared the $\psi S$-locus sequence with nine assembled TAC (Transformation-competent artificial chromosome) sequences from four $S$ haplotypes of self-incompatible $A$. hispancum and uncovered high gene collinearity between AhSLF12 and AhSLF13 except for AhSLF32 located in $S_{2}, S_{4}$ and $S_{5}$ haplotypes of A. hispanicum (Figure 4c). An intra-chromosome inversion around the $S$-locus occurred in the $S_{2}$ haplotype of $A$. hispanicum as described previously. However, no apparent large collinearity was found between A. majus and TAC sequences containing the $S$-RNase gene, supporting
that the region containing $S$-RNase was deleted in the $\psi S$-locus. We found one orthologous pseudo-gene in A. majus, AmSLF18 on chromosome 8, which has a complete corresponding coding sequence region and expressed in the $S_{4}$ haplotype, suggesing a recent duplication event (Figure 4c, Supplementary Excel 7).

To examine the evolution of SLF and $S$-RNase genes, the $K a$ and $K s$ rate of the twelve collinear SLF gene pairs showed that the values of SLFs are lower than that of $S$-RNase in Antirrhinum, and the allelic $S L F$ genes showed a $\mathrm{Ka} / \mathrm{Ks}=0.41$, consistent with a negative frequency-dependent selection detected previously. Only SLF14 appears to be a positively selected gene $(\mathrm{Ka} / \mathrm{Ks}>1)$ (Supplementary Excel 8). The average divergence time of these SLF orthologous genes was estimated to be 4 million years ago consistent with the early Antirrhinum species divergence of less than 5.3 million years. The average divergence time of these $S$-RNases is estimated to be around 90 MYA, consisting with the species divergence between Antirrhinum and Solanaceae species (Supplementary Excel 9).

Taken together, our results showed that the Antirrhinum $S$-locus is shaped by allelic synteny, purifying selection, gene conversion, transposition and pseudogenization.

## Discussion

In this study, we have successfully obtained a chromosome-scale fine genome of $A$. majus, representing the first sequenced genome in Plantaginaceae. This genome provides a useful resource for evolutionary and molecular studies on key genes controlling complex traits in the classical eudicot model species. The comparison of 404 gene families' expansions and 191 contractions in A. majus genome with those of nine other fully sequenced diverse plant species showed several specific evolutionary paths of important gene families, such as those involved in metabolism and signaling pathways. Furthermore, the absence of a recent WGT in Antirrhinum genome makes it a key diploid genome that promises to provide important insights into plant genome
evolution. Recently, small RNAs in natural hybrid zone of A. majus using this genome sequence as a reference have revealed an inverted duplication acting as steep clines by nature selection in evolution of flower color pattern ${ }^{25}$.

Complex traits, such as zygomorphic type flower in Antirrhinum, often couple with different gene duplication events. The zygomorphic structure in Antirrhinum occurred in late period of Cretaceous, consistent with its role in facilitating insect-mediated pollination. We demonstrated that the morphology of floral organ was associated with several gene duplication events and revealed the divergence of $A$. majus from other angiosperms. Although Antirrhinum did not experience a whole genome triplication, the duplicated region containing TCP genes on chromosomes 6 and 8 are closely associated with zygomorphic flower type, showing its unique evolutionary manner because no similar mechanism had been found in closely related species. For examples, one separated whole genome duplication led to partial zygomorphic type species of Glycine; and a MADS box family gene change resulting in symmetrical flowers in Orchidaceae ${ }^{26,27}$. In general, the ancient species are mostly radial symmetry and the newly derived species with symmetrical flowers. Studies on Antirrhinum floral mutants supported that these two copies play a role in controlling symmetrical flower, which makes the petals polar, and the flower structure tends to be upright and is beneficial to the use of light and attracting pollinators. This mechanism could be further verified by genetic analysis in a relative species.

SI also is a complex trait controlled by the $S$-locus ${ }^{2,3}$. The fine genomic structure of the $\psi S$-locus from $A$. majus showed that the large number of pollen SLFs could be a result of recombination suppression, gene duplication, purifying selection and frequency-dependent selection ${ }^{28}$. These evolutionary processes could be the intrinsic mechanisms to maintain the low allelic diversity of orthologous SLFs because extensive divergence would lead to self-inactivation of S-RNase resulting in loss of SI. The deletion of S-RNase in cultivated $A$. majus could be directly associated with the loss of SI, resulting in an irreversible evolutionary process, because loss of
self-incompatibility of SI species often results in compatible ones and SC species are difficult or almost impossible to reverse back to self-incompatible species (Doll's Law) ${ }^{29}$. The high microcollinearity of the $S$-locus between SI and SC of Antirrhinum indicated that the deletion of $S$-RNase in SC species was a recent event. Some mutated SLF genes in different haplotypes were also evolved recently. Loss of $S$-RNase at the $S$-locus would have little consequence for the pollen phenotype while duplications would lead to expression of two types of SLFs which could inactivate a broader range of incoming S-RNases. Further genome analysis of additional SI species of Antirrhinum should provide an insight into its evolutionary status.

Intriguingly, the physical size of the $S$-locus in S. lycopersicum ( 17 Mb , containing 17 SLF genes) is much larger than that in A. majus ( 2 Mb , containing 37 $S L F$ genes) ${ }^{30}$. This appears to indicate that increasing the gene numbers through in-locus unequal crossovers and repetitive element enrichments by a hitchhike effect could result in its large physical size and low gene density of the $S$-locus in tomato. Rich retrotransposons and unique small regulatory RNAs associated with the $S$-loci of Solanum and Antirrhinum, respectively, appear to indicate the differential epigenetic modifications could contribute to the locus density puzzle between these species.

In conclusion, the high-quality genome sequence obtained in this work could be used as a reference genome for Plantaginaceae and will be helpful for genetic, genomic and evolutionary studies in both Antirrhinum and other flowering plants.

## URLs

Genome assembly data has been deposited at NCBI BioProject ID under accession codes PRJNA227267 and Biosample ID under accession codes SAMN02991092. We built the website of Antirrhinum genome http://bioinfo.sibs.ac.cn/Am.

## Methods

Methods and any associated references are available in the online version of the paper.

## Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2013CB945102) and the National Natural Science Foundation of China (31401045 and 31221063). We thank Zhixi Tian for help of CACTA transposon analyses.

## Author contributions

Y.X., H.Z., D.Z. and M.L. designed the experiments; M.L., D.Z. and Y.X. wrote the manuscript. Q.G, B.M., C.C., Y.L., Q.L., Y.Z., H.G., J.L., Y.Z., Y.S., L.C., A.W., Y.C., Y.L., M.Q., J.W., Y.C., D.W., J.Z., G.L., B.W., L.Y., C.X., J.L., S.Z., Y.Z, S.H., C.L., Y.Y., E.C. and Y.X. analyzed the data and performed the experiments.

## References

1 Schwarz-Sommer, Z., Davies, B. \& Hudson, A. An everlasting pioneer: the story of Antirrhinum research. Nat Rev Genet 4, 655-664, doi:10.1038/nrg 1127 (2003).

2 Nettancourt, D. Incompatibility in angiosperms. (Springer-Verlag Berlin Heidelberg New York) (1977).

3 Franklin-Tong, V. E. Self-incompatibility in flowering plants. (Springer) (2008).
4 Coen, E. S., Carpenter, R. \& Martin, C. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47, 285-296 (1986).

5 Sommer, H., Beltrán, J.P. \&Huijser, P. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9, 605-13 (1990).

6 Tröbner, W., Ramirez, L. \& Motte, P. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11 4693-4704 (1992).

7 Luo, D., Carpenter, R., Vincent, C., Copsey, L. \& Coen, E. Origin of floral asymmetry in Antirrhinum. Nature 383, 794-799 (1996).

8 Luo, D., Carpenter, R., Copsey, L., Vincent. C, Clark. J, \& Coen, E. Control of Organ Asymmetry in Flowers of Antirrhinum. Cell 99, 367-376 (1999).

9 Glover, B. J., Perez-Rodrigues, M. \& Martin, C. Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor. Development 125, 3497-3508 (1998)

10 Schwinn, K., Venail, J., Shang, Y., Mackay, S., Alm, V., Butelli, E., Oyama, R., Bailey, P., Davies, K. \& Martin, C. A small family of MYB $\square$ regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18, 831-851 (2006).

11 Lai, Z. et al. An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol Biol 50, 29-42 (2002).

12 Lee, H. S., Huang, S. \& Kao, T. S proteins control rejection of incompatible pollen in Petunia inflata. Nature 367, 560-563, doi:10.1038/367560a0 (1994).

13 Qiao, H. et al. The F-box protein AhSLF-S2 controls the pollen function of S-RNase-based self-incompatibility. Plant Cell 16, 2307-2322, doi:10.1105/tpc.104.024919 (2004).

14 Hudson, A., Critchley, J. \& Erasmus, Y. The genus Antirrhinum (snapdragon): a flowering plant model for evolution and development. CSH Protoc. doi: 10.1101/pdb.emo100 (2008).

15 Corley, S.B., Carpenter, R., Copsey, L. \&Coen, E. Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proc Natl Acad Sci U S A. 102(14):5068-73 (2005).

16 Sonah, H., Bastien, M., Iquira, E., Tardivel, A., Le 'gare ', G., Boyle, B., Normandeau, E., Laroche, J., Larose, S., Jean, M., et al. An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS One 8: e54603 (2013).

17 Bowers, J. E., Chapman, B. A., Rong, J. \& Paterson, A. H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433-438, doi:10.1038/nature01521 (2003).

18 Cubas P., Lauter N., Doebley J. \& Coen E. The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 18, 215-222 (1999).

19 Preston, J.C., Martinez, C.C.\&Hileman, L.C. Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome. Proc Natl Acad Sci U S A. 108 (6):2343-8 (2011)

20 Raimundo, J., Sobral, R., Bailey, P., Azevedo, H., Galego, L., Almeida, J., Coen, E.\&Costa MM. A subcellular tug of war involving three MYB-like proteins underlies a molecular antagonism in Antirrhinum flower asymmetry. Plant J. 75 (4):527-38 (2013).

21 Reardon, W., Gallagher, P., Nolan, K.M., Wright, H., Cardeñosa-Rubio, M.C., Bragalini, C., Lee, C.S., Fitzpatrick, D.A., Corcoran, K., Wolff, K., Nugent, J,M. Different outcomes for the MYB floral symmetry genes DIVARICATA and RADIALIS during the evolution of derived actinomorphy in Plantago. New Phytol. 202(2):716-25 (2014).

22 Young, N.D. et al., The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480 (7378):520-4 (2011).

23 Donoghue, M., Ree, R.\&Baum, D. Phylogeny and the evolution of flower symmetry in the Asteridae. Trends in Plant Science 3:311-317 (1998).

24 Yang, Q., Zhang, D., Li, Q., Cheng, Z. \& Xue, Y. Heterochromatic and genetic features are consistent with recombination suppression of the self-incompatibility locus in Antirrhinum. Plant J 51, 140-151 (2007).

25 Bradley, D., Xu, P., Mohorianu, II., Whibley, A., Field, D., Tavares, H., Couchman, M., Copsey, L., Carpenter, R., Li, M., Li, Q., Xue, Y., Dalmay, T.\& Coen, E. Evolution of flower color pattern through selection on regulatory small RNAs. Science 358 (6365):925-928 (2017).

26 Feng, X., Zhao, Z., Tian, Z., Xu, S., Luo, Y., Cai, Z., Wang, Y., Yang, J., Wang, Z., Weng, L., Chen, J., Zheng, L., Guo, X., Luo, J., Sato, S., Tabata, S., Ma, W., Cao, X., Hu, X.\&Sun C, Luo D. Control of petal shape and floral zygomorphy in Lotus japonicus. Proc Natl Acad Sci U S A. 103 (13):4970-5 (2006).

27 Zhang et.al The Apostasia genome and the evolution of orchids. Nature 2017 549(7672):379-383 (2017).

28 Wright, S. The distribution of self-sterility alleles in populations. Genetics 24, 538-552 (1939).

29 Igic, B., and Kohn, J.R. The distribution of plant mating systems: study bias against obligately outcrossing species. Evolution 60, 1098-1103 (2006).

30 Li, W. \& Chetelat, R. T. Unilateral incompatibility gene uil.1 encodes an S-locus F-box protein expressed in pollen of Solanum species. Proc Natl Acad Sci U S A 112, 4417-4422 (2015).

Figures

Figure 1. Genomic structure overview of Antirrhinum majus JI7.
(I) Duplications of genomic paralogous sequences; (II) GC content.In II, III, IV, and V, deep colors show high density genes or repeat sequence regions; (III) Simple sequence repeats; (IV) Gene density; (V) Retroelement density; (VI) Recombination rate. Deep color shows high recombination rates.); (VII) Eight Antirrhinum chromosomes with physical distances including low copy number repetitive elements: telomere repeat TTTAGGG (green), 5S rDNA (orange), pericentromeric repeats CentA1 and CentA2 (purple).
a


Figure 2. Genome evolution of $\boldsymbol{A}$. majus.
a Synteny blocks among chromosomes of A. majus, S. lycopersicum and A. thaliana. The numbers represent individual chromosomes. The selected syntenic gene number more than fifty.
b Density distributions of Ks for paralogous genes.
c A Venn diagram of shared orthologues among four species. Each number represents a gene family number. Venn diagram of annotated gene families showing shared
orthologous groups among the genomes of A. majus, S. lycopersicum, A. thaliana, and O. sativa.
d Phylogenetic tree of 10 angiosperm species including their divergence time based on orthologues of single-gene families. The number in each node indicates the number of gene families. A. trichopoda used as an outgroup. Bootstrap values for each node are above $100 \%$.


Figure 3. Evolution of flower symmetry and TCP gene family.

Left shows a phylogenetic tree of the flowering plants derived from their divergence time based on orthologues of single-gene families. Three red stars show the whole genome triplication and two green stars the duplication events. "B" represents bilateral flower symmetry and " $R$ " radial flower symmetry; Asterid, Rosid, Basal rosid, Basal eudicot, Monocot and Basal angiosperm represent their clades, respectively. Total numbers of TCP family genes, Class I-PCF, Class II-CIN and Class II-CYC/TB1 are shown from left to right. * indicates the sequenced genome of species of Medicago truncatula with flower radial symmetry, but flowers of most Medicago species are of bilateral symmetry. ** indicates Lotus comiculatus in which three TCP genes were identified but a functional TCP gene was not detected in its genome. Four-pointed stars denote bilateral symmetry flowers with their photos from PPBC (http://www.plantphoto.cn).


Figure 4. Genomic features of the $\psi S$-locus of $A$. majus and its synteny with the $S$-locus regions of $A$. hispanicum.
a Chromosomal locations of three scaffolds covering the $\psi S$-locus region of $A$. majus. A genetic recombination map of chromosome 8 is shown on the top panel. The $x$-axis shows its physical distance and the $y$-axis its genetic distance. A schematic representation of chromosome 8 is shown in the middle panel with a red dot indicating its centromere. The $\psi S$-locus is depicted as a blue box on its short arm. A vertical red line in chromosome indicates $R A D$ gene. The low panel shows three scaffolds of $S c 29, S c 276$, and $S c 184$ covering the $\psi S$-locus region.
b Transcriptional profiles of the $\psi S$-locus and its flanking regions of $A$. majus. The light yellow shadow denotes the predicted $\psi S$-locus region (SLF1-SLF37). This region between $R A D$ and SLF37 contains a total number of 102 annotated genes. The bottom part is a schematic representation of the $S L F$ genes. Orange squares indicate the $\psi S L F$ genes and green arrows the other annotated genes (I: a putative MYB family transcription factor; II and III, putative RNA-binding proteins; and IV, a putative phosphate-dependent transferase)
c The synteny of the $S$-locus regions between $A$. majus and $S_{1}, S_{2}, S_{4}$ and $S_{5}$
haplotypes of A. hispanicum. Different colors indicate syntenic and inversion regions
between the $\psi S$-locus and $S_{l}\left(S_{l a}, S_{l b}\right.$ and $\left.S_{1 c}\right), S_{2}, S_{4}\left(S_{4 a}, S_{4 b}\right.$ and $\left.S_{4 c}\right)$ or $S_{5}\left(S_{5 a}\right.$ and $\left.S_{5 b}\right)$ haplotypes of $A$. hispanicum.

## Table 1 Statistics for the Antirrhinum genome and gene annotation

| Estimate of genome size | 520 Mb |
| :---: | :---: |
| GC content | $35.50 \%$ |
| N50 length (contig) | 0.73 Mb |
| Longest contig | 3.74 Mb |
| Total size of assembled contigs | 510.00 Mb |
| N50 length (scaffold) | 2.62 Mb |
| Longest scaffold | 9.90 Mb |
| Total size of assembled scaffolds | 511.70 Mb |
| Number of gencs | 37714 |
| Average gene length | 3166 bp |
| Gene density | 73.95 Mb |
| Transcripts number | 52780 |
| Average CDS length | 1036 bp |
| Average protein length | 344 aa |
| Average cxon length | 245 bp |
| Average intron length | 314 bp |
| Tandem repeat | 13.03 Mb |

## Figures



Figure 1. Genomic structure overview of Antirrhinum majus JI7.
(I) Duplications of genomic paralogous sequences; (II) GC content.In II, III, IV, and V, deep colors show high density genes or repeat sequence regions; (III) Simple sequence repeats; (IV) Gene density; (V) Retroelement density; (VI) Recombination rate. Deep color shows high recombination rates.); (VII) Eight Antirrhinum chromosomes with physical distances including low copy number repetitive elements: telomere repeat TTTAGGG (green), 5S rDNA (orange), pericentromeric repeats

CentA1 and CentA2 (purple).

## a



Figure 2. Genome evolution of $\boldsymbol{A}$. majus.
a Synteny blocks among chromosomes of A. majus, S. lycopersicum and A. thaliana. The numbers represent individual chromosomes. The selected syntenic gene number more than fifty.
b Density distributions of Ks for paralogous genes.
c A Venn diagram of shared orthologues among four species. Each number represents a gene family number. Venn diagram of annotated gene families showing shared orthologous groups among the genomes of A. majus, S. lycopersicum, A. thaliana, and O. sativa.
d Phylogenetic tree of 10 angiosperm species including their divergence time based
on orthologues of single-gene families. The number in each node indicates the number of gene families. A. trichopoda used as an outgroup. Bootstrap values for each node are above $100 \%$.


Figure 3. Evolution of flower symmetry and TCP gene family.
Left shows a phylogenetic tree of the flowering plants derived from their divergence time based on orthologues of single-gene families. Three red stars show the whole genome triplication and two green stars the duplication events. "B" represents bilateral flower symmetry and "R" radial flower symmetry; Asterid, Rosid, Basal rosid, Basal eudicot, Monocot and Basal angiosperm represent their clades, respectively. Total numbers of TCP family genes, Class I-PCF, Class II-CIN and Class II-CYC/TB1 are shown from left to right. * indicates the sequenced genome of species of Medicago truncatula with flower radial symmetry, but flowers of most Medicago species are of bilateral symmetry. ** indicates Lotus comiculatus in which three TCP genes were identified but a functional TCP gene was not detected in its genome. Four-pointed stars denote bilateral symmetry flowers with their photos from PPBC (http://www.plantphoto.cn).


Figure 4. Genomic features of the $\psi S$-locus of $A$. majus and its synteny with the

## $S$-locus regions of $A$. hispanicum.

a Chromosomal locations of three scaffolds covering the $\psi S$-locus region of A. majus. A genetic recombination map of chromosome 8 is shown on the top panel. The x -axis shows its physical distance and the $y$-axis its genetic distance. A schematic representation of chromosome 8 is shown in the middle panel with a red dot indicating its centromere. The $\psi S$-locus is depicted as a blue box on its short arm. A vertical red line in chromosome indicates $R A D$ gene. The low panel shows three scaffolds of $S c 29, S c 276$, and $S c 184$ covering the $\psi S$-locus region.
b Transcriptional profiles of the $\psi S$-locus and its flanking regions of $A$. majus. The light yellow shadow denotes the predicted $\psi S$-locus region (SLF1-SLF37). This region between $R A D$ and SLF37 contains a total number of 102 annotated genes. The bottom part is a schematic representation of the $S L F$ genes. Orange squares indicate the $\psi S L F$ genes and green arrows the other annotated genes (I: a putative MYB family transcription factor; II and III, putative RNA-binding proteins; and IV, a putative phosphate-dependent transferase)
c The synteny of the $S$-locus regions between $A$. majus and $S_{1}, S_{2}, S_{4}$ and $S_{5}$ haplotypes of A. hispanicum. Different colors indicate syntenic and inversion regions
between the $\psi S$-locus and $S_{l}\left(S_{l a}, S_{l b}\right.$ and $\left.S_{I c}\right), S_{2}, S_{4}\left(S_{4 a}, S_{4 b}\right.$ and $\left.S_{4 c}\right)$ or $S_{5}\left(S_{5 a}\right.$ and $\left.S_{5 b}\right)$
haplotypes of $A$. hispanicum.

