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ABSTRACT 

Motivation: Host factors of influenza virus replication often are often found in key topological 

positions within protein-protein interaction networks. This work explores how protein states can 

be manipulated through controllability analysis: the determination of the minimum manipulation 

needed to drive the cell system to any desired state. Here we complete a two-part controllability 

analysis of two protein networks: a host network representing the healthy cell state and an 

influenza A virus-host network representing the infected cell state. This knowledge can be 

utilized to understand disease dynamics and isolate proteins for study as drug target candidates. 

Results: Both topological and controllability analyses provide evidence of wide-reaching 

network effects stemming from the addition of viral-host protein interactions. Virus interacting 

and driver host proteins are significant both topologically and in controllability, therefore playing 

important roles in cell behavior during infection. 24 proteins are identified as holding regulatory 

roles specific to the infected cell.  
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A major step in the ability to predict novel anti-viral drug targets lies in the ability to understand 

how viruses interrupt and take control of healthy host cell functions (Rask-Andersen et al., 

2011). Traditional systems biology approaches for intercellular signaling pathways create 

detailed kinetic models which require experimentally-derived parameters or parameters 

estimated by simulation (Klipp and Liebermeister, 2006; Schoeberl et al., 2002; Aldridge et al., 

2006). Without these key values and extensive training data, complications quickly arise and the 

model can become unattainable. Modeling studies are often focused on specific pathways, 

limiting their reach for analysis to particular cascades of reactions instead of considering the total 

cellular environment. 

Network approaches in systems biology use protein-protein interaction (PPI) data to model cell-

wide systemic changes associated with disease, changes in cell function, or cell fate (Cho et al., 

2012). This provides a holistic understanding of cell behavior by viewing protein as 

interdependent states, regardless of specific interaction mechanisms, allowing for the exploration 

of cell level relationships. The field of network theory is well established and basic network 

metrics like degree and betweenness (Freeman, 1977) have repeatedly been used to reveal the 

importance of specific proteins within biological processes that cannot be found from traditional 

modeling approaches (Zhu et al., 2009; Vinayagam et al., 2014; He and Zhang, 2006; Lopes et 

al., 2015; Barabási et al., 2011).  Disease networks have been used to identify genes involved 

with cancer (Jonsson and Bioinformatics, 2006; Hase et al., 2009; Mani et al., 2008; Mine et al., 

2013), demonstrate that the genes that are responsible for similar diseases are likely to interact 

with each other (Mitchell et al., 2013; Gandhi et al., 2006), and predict novel drug targets (Arrell 

and Terzic, 2010; Pujol et al., 2010).  
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Network studies have been performed for many common viruses including hepatitis C (Germain 

et al., 2014; Chassey et al., 2008), SARS (Mitchell et al., 2013; Moni and bioinformatics, 2014), 

HIV (Moni and bioinformatics, 2014; Murali et al., 2011; Ptak et al., 2008; Shityakov et al., 

2015),  and influenza virus (Schaefer et al., 2013; Shoemaker et al., 2012; Mitchell et al., 2013; 

Korth et al., 2013; Tripathi et al., 2015). Past work studying the effects of influenza virus in the 

context of a PPI network have focused on identifying host factors involved in virus replication 

and improving the prediction of drug targets. Most analysis to date ends with basic topological 

measurements which only provide a general overview of the state of the network, and do not 

fully demonstrate performance under pressure (for example: network behavior in a diseased 

cellular state). The next logical step for analyzing biological networks lies in understanding how 

the network can be manipulated and exploited to manage specific biological properties.   

In classic control theory, controllability is the idea that a deterministic system can be driven to 

any final state in finite time given an external input (Lin, 1974). This is commonly applied to 

linear, time invariant dynamic systems, 

𝑑𝑥(𝑡)
𝑑𝑡

= 𝐴𝑥 𝑡 + 	𝐵𝑢(𝑡) 

where 𝐴 is an 𝑁𝑥𝑁 matrix of state coefficients that describes how 𝑁 molecule states, 𝑥 𝑡 , 

interact within the system and 𝐵 is a matrix of input weights describing how external influences, 

𝑢(𝑡), impact the system. In general, a system is controllable if the controllability matrix,  

𝐶 = [𝐵, 𝐴𝐵, 𝐴0𝐵,… , 𝐴234𝐵] 

is full rank, 𝑁. This means that the system can be manipulated into any desired combination of 

states within all of state space by the defined input, 𝐵. A controllability analysis identifies the 

key components of a system that can be manipulated to drive desired system outcomes (Wuchty, 

2014).  
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An example PPI network in Fig. 1a, has been 

transformed into its state space matrix representation in 

Fig. 1b. With the inclusion of two independent inputs 

(𝑢4 and 𝑢0), the controllability matrix in Fig. 1c is full 

rank. Therefore, the system is fully controllable and it 

is possible to drive the protein concentrations to any 

desired state. Applying the idea of controllability to a 

cell at the onset of viral infection, a virus seeks to 

control of cellular functions (the system of proteins), 

promote virus replication tasks, and reach a final 

infected cell state. While it would be advantageous to 

interpret the infection from this control perspective, 

mathematical limits in large system dimensions 

prevent the direct application of traditional 

controllability methods to PPI networks.  

Advances in network theory have created alternative 

methods of network controllability evaluation which 

survey each node’s (protein’s) importance in the 

ability of an external set of inputs to fully control the 

network. Controllability classification is founded in “driver node” calculations: identifying the 

network components which must be manipulated for the system to be fully controlled (analogous 

to determining the non-zero elements of the 𝐵 matrix in classic controllability). Without 

manipulation, driver nodes will remain unaffected by changes to the rest of the system, rendering 
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Figure 1: (a) An example protein-protein interaction 
network with three proteins and two protein translation 
process inputs. The state space representation (b) of the 
same network demonstrates that the change in state of a 
protein’s concentration is a function of its current state 
and an input process.  A classic controllability analysis 
(c) demonstrates that this system is fully controllable 
and could, therefore, be driven to any possible 
state change in every protein.   
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the total system uncontrollable. A set of driver nodes (size 𝑁6) that is capable of controlling the 

total network is called a minimum input set (MIS). The MIS is not unique and the number of 

possible MISs scales exponentially with the size of the network (Jia and Barabási, 2013). After a 

primary MIS is calculated, two methods of controllability node classification can be used.  

In the first method by Liu et al. 34, the MIS is re-calculated (size 𝑁6′) after removing each node 

from the network. The node is then classified by its effect on the manipulation required to 

control the network, represented by the MIS (Liu et al., 2011). The absence of: an indispensable 

node increases the number of driver nodes (𝑁6′ > 𝑁6), a dispensable node decreases the number 

of driver nodes (𝑁6′ < 𝑁6), and a neutral node has no effect on the number of driver nodes (𝑁6′ 

= 𝑁6). This method has previously been applied to many network types such as gene regulatory 

networks, food webs, citation networks, and PPI networks to better understand what drives the 

dynamics of each system (Liu et al., 2011; Vinayagam et al., 2016). While it is useful to observe 

the structural changes to the network in the absence of singular nodes, this method only 

considers one possible MIS. In a second classification method by Jia et al. (Jia et al., 2013), a 

node is classified by its role across all possible MISs. A critical node is included in all possible 

MISs, an intermittent node is included in some possible MISs, and a redundant node is not 

included in any possible MISs. This method places each node in the broader context of all 

possible control configurations.  

In total, this study aims to determine key host factors in the progression of influenza infection for 

the prediction of novel antiviral targets. We have completed a two-part controllability analysis of 

a host PPI network (HIN) and a hybrid network of human host PPI data combined with influenza 

A virus-host protein interaction data (VIN). The controllability characteristics of influenza virus 

interacting host proteins and driver proteins are compared to the characteristics of the total 
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network. A set of host factors which hold value, both topologically and in controllability, are 

identified as candidates for further study based on their specialized behavior during influenza 

infection.  

RESULTS 

Topology of the Host Interaction Network and Virus Integrated Network  

The directed PPI network from Vinayagam et al (Vinayagam et al., 2011) was restricted to 

confident interactions (see Methods), creating a network containing 6,281 proteins and 31,079 

interactions. This network will be referred to as the “Host Interaction Network” (HIN). Influenza 

A virus-host interactions from Watanabe et al (Watanabe et al., 2014) were narrowed to 2,592 

interactions between 11 influenza A virus (IAV) proteins (HA, M1, M2, NA, NP, NS1, NS2, PA, 

PB1, PB2, and PB1-F2 proteins) and 752 “IAV interacting proteins” found in the HIN. After the 

integration into the HIN, the network contains 6,292 proteins and 33,671 interactions. This 

network will be referred to as the “Virus Integrated Network” (VIN).  

Degree and betweenness calculations were completed for the HIN and VIN. As expected, the 

only proteins which display a shift in degree between the two networks are the 752 IAV 

interacting proteins (Marked in blue in Fig. 2a). The degree shift of the group of IAV interacting 

proteins is significant as compared to all proteins in both the VIN (log scaled median of IAV 

interacting proteins: 1.04; log scaled median of all proteins: 0.70; student t-test of log scaled data 

p-value < 2.20x10-16) and the HIN (log scaled median of IAV interacting proteins: 0.85; log 

scaled median of all proteins: 0.70; Student t-test of log scaled data p-value: 5.97x10-12). The 

degree distributions of both networks are proven to be scale free (Fig. S1).  
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Because betweenness is sensitive to the information flow through all proteins instead of only 

neighboring proteins, 2,735 proteins exhibit an increase in betweenness after the addition of IAV 

interactions. Of these proteins, 207 proteins’ log betweenness exhibits an increase of 2 or more 

in the VIN compared to the HIN (Fig. 2b). This suggests that the addition of IAV interactions 

has an effect on network topology that reaches over 3.5 times the number of host proteins that 

are directly interacting with IAV proteins. The betweenness shift in the group of IAV interacting 

host proteins is significant as compared to all proteins in both the VIN (Log scaled median of 

IAV interacting proteins: 3.23; Log scaled median of all proteins: 2.82; Student t-test of log 

scaled data p-value: 2.20x10-16) and the HIN (Log scaled median of IAV interacting proteins 

3.22; Log scaled median of all proteins: 2.82; Student t-test of log scaled data p-value: 2.13x10-

15). This is a result of being the limited protein set responsible for information flow from the viral 

proteins to the rest of the network.  

Driver proteins  

Driver proteins (nodes) are the foundation of both types of controllability calculations, 

representing the protein set which must be manipulated for the system to be fully controlled. The 
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Figure 2: (a) Degree of the VIN vs degree of the HIN where the IAV interacting proteins are marked in blue. The degree 
distributions of the networks are scale free. (b) Difference in betweenness between the VIN and HIN for proteins which exhibit 
a difference greater than one.  
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proteins are identified through maximum matching algorithms (Hopcroft and Karp, 1973). The 

HIN and VIN both require 𝑁6 = 2,463 driver proteins to achieve controllability, suggesting that 

the magnitude of network control is unchanged by the influence of the IAV interactions. 

However, the identity of driver proteins shifts slightly as the 11 viral proteins replace 11 host 

proteins within the primary MIS as drivers in the VIN. Table 1 lists their identities along with the 

shortest distance to an IAV protein in the network, and protein degree and betweenness). Of 

these 11 host proteins, only five are directly interacting with IAV proteins. One of the remaining 

proteins is two steps (two interactions and one connecting protein) from any IAV protein, and the 

remaining five proteins are three steps from any IAV protein. The number of paths between viral 

proteins and the group of shifting proteins are reflective of the number of paths between viral 

proteins and all host proteins (Fisher test p-value: 0.99). This supports the idea that viral 

interactions have lasting effects on the system’s control structure, affecting proteins which are 

multiple paths away.  

 

Entrez 
ID Gene Name 

Shortest 
Distance 
to IAV 
Protein 

Degree Betweenness 

10658 CUGBP, Elav-Like Family Member 1 (CELF1) 1 4 (4) 81 (81) 
1969 EPH Receptor A2 (EPHA2) 1 14 (13) 93 (0) 
6733 SRSF Protein Kinase 2 (SRPK2) 1 6 (2) 6023 (6023) 

10318 TNFAIP3 Interacting Protein 1 (TNIP1) 1 7 (7) 115 (115) 
2997 Glycogen Synthase 1 (GYS1) 3 4 (4) 384 (384) 

10949 Heterogeneous Nuclear Ribonucleoprotein A0 
(HNRNPA0) 2 9 (2) 5 (0) 

64112 Modulator of Apoptosis 1 (MOAP1) 1 8 (8) 6942 (6931) 
10419 Protein Arginine Methyltransferase 5 (PRMT5) 3 26 (17) 6996 (4743) 
10262 Splicing Factor 3b Subunit 4 (SF3B4) 3 13 (7) 82 (44) 
23321 Tripartite Motif Containing 2 (TRIM2) 3 2 (2) 15 (15) 
81603 Tripartite Motif Containing 8 (TRIM8) 3 3 (3) 0 (0) 

Table 1: Identities of proteins that are drivers in the HIN but not the VIN with the shortest number of paths to an Influenza A 
viral protein. Degree and betweenness of the proteins of the VIN is provided (with the values from the HIN in parenthesis).  
Only 45% of these proteins are directly interacting with the viral proteins, demonstrating the cascade effect caused by the 
inclusion of viral interactions.   
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Lastly, an analysis was performed to observe the network metrics of proteins that are both IAV 

interacting and driver proteins, totaling 8.9% of all driver proteins. There is a significant increase 

in the betweenness of driver proteins depending on their status as IAV interacting or IAV non-

interacting proteins (Fisher test p-value: 2.20x10-16) where there is no significant difference in 

degree of the same groups (Fisher test p-value: 0.7161). This is further evidence that the addition 

of virus interactions to the network magnifies information flow through the proteins most 

involved in controlling network behavior.  

Liu Controllability  

Liu controllability was calculated (see Methods) for all proteins of the HIN and VIN (as shown 

in Table 2 with and without parentheses, respectively). The addition of IAV interactions to the 

network has no effect on the distribution of Liu classification of host proteins, meaning that the 

Liu classification of the “IAV Interacting proteins” also does not change with the addition of 

viral interactions. Upon entry to the VIN, the 11 IAV proteins are classified as neutral, meaning 

their removal does not alter the number of driver proteins required to control the VIN (ND = 

ND’). This reveals that singular viral proteins do not make integral changes to the control 

structure of the VIN.  

Table 2: Liu types of all proteins, driver proteins, and virus interacting proteins in the VIN (HIN in parenthesis) 
 All Proteins Driver Proteins IAV Interacting Proteins 

Indispensable 1,169 (1,169) 0 (0) 186 (186) 
Neutral 2,669 (2,658) 803 (799) 312 (312) 
Dispensable 2,454 (2,454) 1,660 (1,664) 254 (254) 

 
While none of the proteins change Liu classification between networks, the replacement of host 

protein driver proteins with viral proteins creates a small change in Liu type distribution for 

driver proteins. Of the 11 displaced host proteins (found in Table 1), seven are neutral in the HIN 
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(meaning that their removal from the network does not change the number of driver proteins) 

and four are redundant in the HIN (meaning their removal reduces the number of driver proteins 

needed). Of the five host proteins that are both drivers and IAV interacting, four are neutral and 

one is redundant. The most notable change in degree and betweenness between the HIN and VIN 

is PRMT5, with an increase of 9 and 2,250, respectively. Overall, Liu classification results 

suggest that the HIN is stable against potential changes in the control structure that could be 

caused by the addition of IAV interactions.  

We next developed an analysis to test if IAV is selectively targeting host proteins based on 

controllability characteristics. 10,000 random sets of 752 proteins (the number of IAV interacting 

proteins) were pulled from the host proteins of the VIN. Their Liu type distributions were plotted 

against the percent classification of IAV interacting proteins, driver proteins, and all proteins in 

the VIN (Fig. 3a-c). The randomly sampled sets closely resemble all proteins of the network, 

suggesting that the true IAV interacting protein set’s Liu control behavior is not a coincidence of 

network construction (one-sided p-values of 0.50, 0.52, and 0.49 for indispensable, neutral, and 

dispensable, respectively). IAV interacting proteins tend to be indispensable when compared to 

the percentage of all proteins that are indispensable (Fig. 3a). This suggests that viruses prefer to 

interact with proteins that are vital to cellular control. Additionally, driver proteins are very 

likely to be dispensable proteins compared to the percent of all proteins that are dispensable (Fig. 

3c). Further, the mean and median log degree and betweenness of the randomly sampled protein 

sets is lower than the same measurements of the true IAV interacting set (Fig. 4), signifying that 

virus interacting proteins are in positions of network significance. Overall, the Liu controllability 

results of IAV interacting proteins suggest that the virus may be selectively targeting host 

proteins based on controllability characteristics. 
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Figure 4: Density plots of a) mean (blue) and median (green) log degree of random IAV interacting protein sets and b) mean 
(blue) and median (green) log betweenness of random IAV interacting protein. Values for the true IAV interaction set shown as 
vertical lines, evidence that host proteins that directly interact with viral proteins are in positions of network significance.  
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Figure 3: a-c) Density plots of distribution of Liu type for 10,000 random pulls of 752 proteins (number of virus interacting 
proteins in network). d-f) Density plots of distribution of Jia type for 10,000 random pulls of 752 proteins (number of virus 
interacting proteins in network). Values for IAV interacting proteins (red), driver proteins (green), and all proteins (blue) 
are pictured for all figures.  
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Jia Controllability  

Jia controllability was calculated (see Methods) for all proteins of the HIN and VIN (as shown in 

Table 3 with and without parentheses, respectively). Unlike in Liu controllability, there is a small 

disturbance to Jia type distributions of host proteins after the addition of IAV-host interactions. 

There are 24 host proteins that shift from being classified as critical (a member of all MISs) to 

intermittent (a member of some MISs) proteins. Identities of these proteins can be found in Table 

4 along with the shortest distance to an IAV protein in the network and protein degree and 

betweenness. The two most notable changes in degree and betweenness between the HIN and 

VIN is EPH receptor A2 with an increase of 1 and 93, respectively, and transferrin receptor, with 

an increase of 3 and 164, respectively. All 24 proteins are drivers and IAV interacting. There are 

only two proteins (EPHA2 and HNRNPA0) that are also members of the set of 11 proteins that 

are removed from the MIS after the addition of IAV interactions to the network. 45% of IAV 

interacting proteins are never drivers, suggesting that they are always manipulated by 

neighboring proteins. IAV interacting proteins are not enriched for driver proteins (Fisher test p-

value: 0.14).  

 
Table 3: Jia types of all proteins, driver proteins, and virus interacting proteins in the VIN (HIN in parenthesis) 

 All Proteins Driver Proteins IAV Interacting Proteins 
Critical 512 (525) 512 (525) 0 (24) 
Intermittent 3,342 (3,318) 1,951 (1,938) 411 (387) 
Redundant 2,438 (2,438) 0 (0)  341 (341) 

 
Again, a randomized protein set was created to test if IAV may be selectively interacting with 

host proteins based on their controllability. 10,000 random sets of 752 proteins (the number of 

IAV interacting proteins) were sampled from the host proteins of the VIN. Their Jia type 

distributions were plotted against the percent classification of IAV interacting proteins, driver 
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proteins, and all proteins in the VIN (Fig. 3d-f). As with the Liu classification, the random sets 

closely resemble all proteins of the network (one-sided p-values of 0.48, 0.50, and 0.49 for 

indispensable, dispensable, and redundant, respectively). While there are no redundant driver 

proteins by definition, driver proteins are more likely to be intermittent proteins than critical 

proteins (Fig. 3d-e), showing more than 75% of all driver proteins are missing from at least one 

possible MIS. This means the majority of possible driver proteins are able to be controlled by a 

neighboring protein in at least one MIS. IAV interacting proteins tend to be redundant compared 

to the number of all proteins that are redundant (Fig. 3f). This suggests that viruses prefer to 

interact with proteins that are part of existing control structures, receiving input from 

neighboring proteins.  

 
Figure 5: a) Degree and b) betweenness of proteins that change Liu and Jia classification between the HIN and VIN.While 
proteins identified in the Liu controllability analysis do not show significant deviation in degree or betweenness, proteins 
identified in the Jia controllability analysis show a shift in both measures after the addition of viral interactions.  

Overall, Jia calculations identify a set of proteins for consideration that act differently within the 

VIN. This is demonstrated through a comparison of degree and betweenness for the identified 

driver proteins that are shifting controllability classification in the HIN and VIN (Fig. 5). 

Proteins identified in the Liu analysis show little deviation in both degree (Fig. 5a) and 

betweenness (Fig. 5b) measures between the HIN and VIN. In contrast, proteins identified in the 
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Jia analysis show much larger deviations in degree (Fig. 5a) and betweenness (Fig. 5b) with all 

proteins having a betweenness of 0 in the HIN (Table 4). This means that the identified proteins 

were not responsible for information flow until the addition of IAV interactions.  

Table 4: Identities of proteins that shift Jia classification between the HIN and VIN. All identified proteins are directly 
interacting with viral proteins. Degree and betweenness of the proteins of the VIN is provided (with the values from the HIN in 
parenthesis). 

Entrez 
ID Gene Name Shortest Distance 

to IAV Protein Degree Betweenness 

56655 DNA Polymerase Epsilon 4, Accessory 
Subunit (POLE4) 1 2 (1) 1 (0) 

30846 EH Domain Containing 2 (EHD2) 1 3 (1) 1 (0) 
1969 EPH Receptor A2 (EPHA2) 1 14 (13) 93 (0) 
2665 GDP Dissociation Inhibitor 2 (GDI2) 1 3 (1) 2 (0) 

51552 RAB14, Member RAS Oncogene Family 
(RAB14) 1 2 (1) 1 (0) 

2091 Fibrillarin (FBL) 1 9 (4) 19 (0) 

10949 Heterogeneous Nuclear Ribonucleoprotein 
A0 (HNRNPA0) 1 9 (2) 5 (0) 

3032 

Hydroxyacyl-Coa Dehydrogenase/3-
Ketoacyl-Coa Thiolase/Enoyl-Coa 

Hydratase (Trifunctional Protein), Beta 
Subunit (HADHB) 

1 9 (5) 26 (0) 

3419 Isocitrate Dehydrogenase 3 (NAD(+)) Alpha 
(IDH3A) 1 3 (1) 2 (0) 

4191 Malate Dehydrogenase 2 (MDH2) 1 3(1) 1 (0) 

64949 Mitochondrial Ribosomal Protein S26 
(MRPS26) 1 2 (1) 0 (0) 

9180 Oncostatin M Receptor (OSMR) 1 6 (5) 18 (0) 
5052 Peroxiredoxin 1 (PRDX1) 1 11 (4) 44 (0) 
5213 Phosphofructokinase, Muscle (PFKM) 1 6 (5) 17 (0) 

26227 Phosphoglycerate Dehydrogenase (PHGDH) 1 4 (2) 9 (0) 
5817 Poliovirus Receptor (PVR) 1 7 (6) 42 (0) 
5686 Proteasome Subunit Alpha 5 (PSMA5) 1 6 (5) 11 (0) 
5464 Pyrophosphatase (Inorganic) 1 (PPA1) 1 6 (5) 5 (0) 

113174 Serum Amyloid A Like 1 (SAAL1) 1 2 (1) 1 (0) 

6745 Signal Sequence Receptor Subunit 1 (SSR1) 1 4 (2) 12 (0) 

7037 Transferrin Receptor (TFRC) 1 11 (8) 164 (0) 
8834 Transmembrane Protein 11 (TMEM11) 1 4 (3) 20 (0) 

30000 Transportin 2 (TNPO2) 1 2 (1) 1 (0) 
7407 Valyl-Trna Synthetase (VARS) 1 3 (1) 0 (0) 
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Validation of controllability significant host factors 

All proteins were checked against 6 siRNA screens for host factors involved in influenza 

replication (Brass et al (Brass et al., 2009), Hao et al (Hao et al., 2008), Karlas et al (Karlas et 

al., 2010), König et al (König et al., 2010), Shapira et al (Shapira et al., 2009), and Watanabe et 

al (Watanabe et al., 2014)), grouped by both Liu and Jia controllability classifications. Less than 

5% of all classifications of both types are validated by any of the 6 screens (Fig. 6), suggesting 

that no controllability classification is more enriched for host factors than others. This is likely 

due to the low agreement observed across siRNA studies (Hao et al., 2013). However, the driver 

proteins that change Liu and Jia classification have higher hit rates in siRNA screens, with 1 of 

11 changing MIS proteins (9% validation) and 2 of 24 Jia-identified proteins (8% validation), 

though neither are significant results (Fisher p-values of 1 and 0.5696, respectively). However, 

HNRNPA0 is triple validated, which is highly unlikely (the odds of detecting the same protein 

from the proteome twice, 1:20,000)  (Bushman et al., 2009; Hao et al., 2013).  

 
Figure 6: Percent of each a) Liu protein type and b) Jia protein type confirmed in 6 siRNA screens (Brass, Karlas, Shapira, Hao, 
Konig, Watanabe). None of the 6 possible classifications are more than 5% validated in the screenings, suggesting that 
experimental findings do not favor certain protein controllability types.  
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An analysis of both protein sets of interest was performed using Ingenuity Pathway Analysis 

(IPA) (Krämer et al., 2013). The network created for the 11 changing MIS proteins identified 

cellular compromise, cell death, and cell cycle functions. The network created for the 24 Jia-

identified proteins identified protein synthesis functions, all centered around NF-kB. The Jia 

network notably recognizes six proteins (EPHA2, FBL, PFKM, PSMA5, SSR1, and TFRC) for 

their involvement in the infection of cells (p-value: 9.58x10-4). Four proteins (CELF1, 

HNRNPA0, SF384, and SRPK2) were identified for their involvement in mRNA processing (p-

value: 3.33x10-6) in both networks.  

Lastly, Interferome (Samarajiwa et al., 2008) was used to determine if the 11 changing MIS 

proteins and 24 Jia-identified proteins are interferon regulated genes (IRGs). When treated with 

interferon, all 11 changing MIS proteins and 12 of 24 Jia-identified proteins exhibit a 2-fold 

change in expression in at least one experimental dataset. In particular, HNRNPA0 is 

significantly down regulated in 13 separate studies. 

DISCUSSION 

In total, this study has completed a two-part network controllability analysis on both a host 

protein-protein interaction network (HIN) and an integrated influenza virus-host protein-protein 

interaction network (VIN) to enhance the prediction of antiviral drug targets for influenza A 

virus. The unique construction of the VIN includes experimentally-derived virus-host interaction 

data (Watanabe et al., 2014) which represents opportunities for the virus to manipulate host 

intracellular machinery using protein-protein interactions.  While Liu controllability methods 

have been previously applied to PPI networks (Liu et al., 2011; A. Vinayagam et al., 2016), a Jia 

controllability analysis has never been applied to PPI networks to our knowledge. Our workflow 

observes both the effect of structural changes to the network in the case of potential protein 
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knock outs, as well as each protein’s role in all MISs, representing all possible ways of 

controlling the system. In combination, the results of these methods provide deeper 

understanding of how changes to cell behavior at the onset of infection are able to occur through 

the work of a small set of viral proteins. This offers new possibilities to “outsmart” viral attack 

by dismantling the control structure which allows the viral infection to take hold.  

Network representations of the cellular environment demonstrate that the effects of infection 

(represented by the addition of virus-host interactions) cascade through the system, altering basic 

topology measures. The betweenness shift between the two networks, particularly in IAV 

interacting proteins, supplies evidence that the topological effect of viral infection is wide 

reaching (Tables 1 and 4). Further, a comparison of the betweenness of driver proteins that are 

and are not also IAV interacting proteins shows a significant difference. By definition, driver 

proteins that are IAV interacting are not receiving control influence from viral proteins and 

require additional external influence to achieve network control. However, the increased 

betweenness of proteins that are both driver and IAV interacting proteins suggests that this group 

is still of great importance to information flow through the network. This is one example where 

differences in network topology measures can emphasize the importance of select proteins that 

are overlooked by controllability principles.  

Controllability analysis shows that IAV interacting proteins are in positions of significance for 

both types of classification. The increased population of indispensable IAV interacting proteins 

(Liu controllability: 𝑁6′ > 𝑁6, Fig. 3a) compared to what would be expected by random chance 

suggests that it would be more difficult for an outside influence (such as viral infection) to 

control the network in the absence of IAV interacting proteins opposed to a randomly selected 

protein. This is logical as IAV interacting proteins act as the connection between viral proteins 
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and the host network where control is initiated. The increased population of redundant IAV 

interacting proteins (Jia controllability: never a driver protein, Fig. 3f) when compared to the 

random expectation indicates that more IAV interacting proteins are always being manipulated 

internally than would be expected by chance. This means that they are fully incorporated into the 

control structure of the VIN.  From these two results, one can conclude that IAV interacting 

proteins contribute to both the “gate” (the ease of entering the system) and the “heart” (the 

proteins responsible for propagating control through the system) of the network control structure 

during infection. These findings support the idea that viruses are likely to interact with proteins 

which offer an advantage to total network control.  

Similarly, both sets of controllability results demonstrate that driver proteins play interesting 

roles in the network control structure. The large population of dispensable driver proteins (Liu 

controllability:	𝑁6′ < 𝑁6, Table 2) signifies that the majority of driver proteins are making it 

more difficult to control the network by requiring more external inputs to control system 

behavior. In their absence, the number of driver proteins would decrease and it would 

theoretically be easier for a viral attack to compromise the network control structure. As such, 

one possible strategy for drug development is to protect these proteins from drastic changes to 

abundance. Over 75% of driver proteins are classified as intermittent (Jia controllability: 

sometimes a driver protein, Table 3), meaning there is at least one MIS where these driver 

proteins are not drivers, and receive control influence through internal propagation. This lends 

itself to the idea of viral escape routes: under pressure, virus proteins could utilize alternative 

pathways to maintain system control and reach the goal of hijacking cellular function.  

The two network controllability methods identify protein sets of interest through changes to 

classification in both controllability types between the HIN and VIN. Unfortunately, the results 
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of Liu classification do not detect a change between the two networks in this study. As it is a 

measure of the robustness of the network to structural changes in the absence of each protein, 

this suggests that the HIN upholds its typical control structure during IAV infection. This could 

be a consequence of the interaction data being used being or it may be that the strategy applied 

here cannot distinguish between the behavior of healthy and diseased states. Knowing the extent 

of changes to cell behavior such as immune response (Koyama et al., 2008; Thompson et al., 

2011; Iwasaki and immunology, 2004), apoptosis signaling (death and differentiation, 2001; 

journal of experimental pathology, 2001), and transcriptional processes (Gale et al., 2000; 

Sonenberg and Cell, 2009; Walsh et al., 2013) during infection, the IAV infected cell can be 

interpreted as a different system. The failure to see this distinction may be a short coming of the 

Liu controllability calculation, especially knowing that the 11 changing MIS proteins are not 

unique due to the method’s use of a single MIS. Overall, the Liu analysis should be applied to 

additional virus-host networks to further evaluate the method.  

The 24 proteins identified by the Jia controllability analysis show promise as indicators of 

regulatory roles specific to the infected state, particularly PRMT5 whose betweenness is 250 

times its HIN value after the addition of viral interactions to the network (Table 4). It is also 

noteworthy that PRDX1 has been implicated in respiratory syncytial virus (RSV) (Pavia, 2011), a 

lower respiratory tract infection that is often associated with influenza virus (Jamaluddin et al., 

2010). Though a higher percentage of the proteins identified as changing MIS proteins and in the 

Jia controllability analysis are validated by existing siRNA screening data than any of the groups 

of 6 possible controllability classifications, this validation is still not statistically significant. 

Remarkably, one protein (HNRNPA0) is validated in 3 studies: a rare occurrence. The IPA 

analysis reveals that some of the identified proteins hold roles in mRNA processing, an integral 
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part of the influenza virus’ ability to spread through processing its own RNA using host 

machinery (Dubois et al., 2014). The Jia-identified network is centered around NF-kB, which is 

implicated in host immunity with evidence that the virus directly inhibits NF-kB activity (Kumar 

et al., 2008; Ludwig and Planz, 2008). The interferon regulating roles of proteins in a high 

number of both identified sets (100% and 50% of changing MIS and Jia-identified proteins, 

respectively) speak to their responsibility in controlling infection. Again, HNRNPA0 appears as 

downregulated in 13 studies when treated with interferon compared to a control. In total, this 

evidence suggests that controllability analyses hold power as predictors for important host 

factors in influenza infection and, therefore, hold power for drug target prediction.  

Existing influenza virus studies using PPI networks require additional data such as differentially 

expressed gene information (Shoemaker and Fukuyama, 2012) or protein context (Schaefer et 

al., 2013) to construct host response networks. Alternative methods such as DeltaNet (Noh and 

Bioinformatics, 2016; Noh et al., 2016) and ProTINA (Noh et al., 2018) utilize gene 

transcription profiles to infer protein drug targets, but rely on the accurate deduction of gene 

regulatory networks. More recent PPI studies have used network growing functions such as 

GeneMANIA, STRING, and IPA (Taye et al., 2017) to predict IAV host factors and studied 

infected cell systems through the integration of screening data with network methods (Tripathi et 

al., 2015; Heaton et al., 2016). Approaches incorporating time course data into network analysis 

have also been explored (Jain et al., 2016). While these methods (which include basic network 

metrics such as degree and betweenness of PPI networks) have been successful at identifying 

disease host factors and in drug target development in the existing body of work, this dual 

controllability study offers a novel, in-depth analysis of the role of individual proteins in the 

context of total system function and how possible changes to the system can be interpreted.  
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Lastly, though this study has used experimental data from Influenza A studies, this analysis can 

be used to improve the prediction of drug targets for any pathogen-host interaction given the 

availability protein interaction data because of the generality of the method. The limits of the 

work lie in limited availability of large-scale, dependable databases of protein-protein 

interactions. Additionally, foundational maximum matching algorithms for the calculation of 

driver proteins must be performed with directed networks. Therefore, the future of this field 

depends on continued establishment of large, confident, directed PPI networks.    

METHODS   

Protein-protein interaction network  

The host protein-protein interaction network used was downloaded from Vinayagam et al 

(Vinayagam et al., 2011). A confidence level cutoff of 0.7 was used. Influenza A virus-host 

interactions from Watanabe et al (Watanabe et al., 2014) were narrowed to interactions which 

contained host proteins already found in host network interactions to avoid skewing degree and 

betweenness network metrics. These interactions were directly integrated into the host network. 

All analysis was completed in R 3.4.3 using the igraph package.  

Liu classification  

Calculations for Liu classification were adopted from Liu et al (Liu et al., 2011). For a network 

of n nodes, a set of driver nodes for the bipartite representation of the network, 𝑁6, is found 

using a maximum matching algorithm such as Hopcroft-Karp (Hopcroft and Karp, 1973). Each 

node of the network is iteratively removed (𝑁8 = 𝑁 − 1) and maximum matching, ND’, is 

reevaluated. Nodes are classified as indispensable (𝑁6′ > 𝑁6), neutral (𝑁6′ = 𝑁6), or dispensable 

(𝑁6′ < 𝑁6).  

Jia classification 
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Calculations for Jia classification were adopted from Jia et al (Jia et al., 2013). For a network of 

n nodes, a set of driver nodes for the bipartite representation of the network, 𝑁6, is found using a 

maximum matching algorithm such as Hopcroft-Karp (Hopcroft and Karp, 1973). For all 𝑁6, 

control adjacent nodes were identified iteratively and an input graph was created as dictated in 

Zhang et al (Zhang et al., 2016). The input graph was used to classify nodes as critical (in all 

minimum input sets), neutral (in some minimum input sets), or redundant (in no minimum input 

sets).  
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