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Abstract

Spatio-temporal sequences of neuronal activity are observed in many brain regions in a variety

of tasks and are thought to form the basis of any meaningful behavior. Mechanisms by

which a neuronal network can generate spatio-temporal activity sequences have remained

obscure. Existing models are biologically untenable because they require manual embedding of

a feedforward network within a random network or supervised learning to train the connectivity

of a network to generate sequences. Here, we propose a biologically plausible, generative rule

to create spatio-temporal activity sequences in a network model of spiking neurons with

distance dependent connectivity. We show that the emergence of spatio-temporal activity

sequences requires: (1) individual neurons preferentially project a small fraction of their axons

in a specific direction, and (2) the preferential projection direction of neighboring neurons is

similar. Thus, an anisotropic but correlated connectivity of neuron groups suffices to generate

spatio-temporal activity sequences in an otherwise random neuronal network model.

Introduction1

Ordered sequences of actions are the key to any meaningful behavior. This implies that the2

task-related neuronal spiking activity in the responsible areas of the brain must also be ordered3

in temporal activity sequences (Hebb 1949). Indeed, temporal activity sequences have been4

recorded from different brain regions in various tasks (Hahnloser et al. 2002; Ikegaya et al.5
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2004; Luczak et al. 2007; Jin et al. 2009; Pastalkova et al. 2008; Harvey et al. 2012; Modi6

et al. 2014; Bakhurin et al. 2017) (see review by (Bhalla 2017)). Depending on the arousal7

state of the animal and on the behavioral task, the time scales of the activity sequence may8

range from few milliseconds to few seconds. The necessity and the ubiquity of the sequential9

activity patterns in the brain raises the question: what is the origin of such activity sequences10

in locally random, sparsely connected networks of noisy neurons?11

At the simplest, activity sequences of neurons may be attributed to their external inputs.12

When neurons are tuned to specific properties of an external input, a sequential change in13

the input can lead to an activity sequence, e.g. temporally ordered firing of place cells in the14

hippocampus (Dragoi and Tonegawa 2011). However, activity sequences have been observed15

in several tasks, not involving any specific external stimuli, e.g. in decision making (Jin et al.16

2009; Harvey et al. 2012), in learning (Modi et al. 2014), in memory recall (Pastalkova et al.17

2008), and in generating bird songs (Hahnloser et al. 2002). These experiments suggest that18

neuronal networks in the brain are able to generate neuronal activity sequences using some19

intrinsic mechanisms.20

Several computational network models have been proposed to explain the emergence of spon-21

taneous or cue-evoked activity sequences. A feedforward network model (Kumar et al. 2010)22

is the simplest model that can generate activity sequences, either spontaneously or in response23

to a short input pulse (Abeles 1991; Diesmann et al. 1999; Kumar et al. 2008). However, given24

the random and recurrent connectivity in the brain, this architecture is biologically untenable.25

Recurrent network models with an asymmetric spatial connectivity can exhibit traveling waves26

(Rinzel et al. 1998; Hutt and Atay 2005; Roxin et al. 2005), which can be considered as a27

temporal activity sequence. However, in this dynamical regime a network can generate only a28

single activity sequence, propagating always in the same direction. Recurrent networks tuned29

to exhibit attractor dynamics (Rabinovich et al. 2006) can generate more diverse temporal30

activity sequences in response to an external input which steers the spiking activity from one31

attractor state to another (Zhang 2009). Alternatively, an adaptation in neuronal spiking ac-32

tivity or an activity-dependent short-term-depression of synapses could also be used to create33

a mechanism to generate activity sequences (Murray and Escola 2017). While such mecha-34

nisms provide a natural way to produce both fast and slow sequences, it does not allow for35

controlling the spatial direction of the activity sequence in a reliable manner. It was shown to36

2

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/428649doi: bioRxiv preprint 

https://doi.org/10.1101/428649
http://creativecommons.org/licenses/by-nc/4.0/


Spreizer et al. From space to time

be possible to wire the connectivity among neurons representing different attractor states in37

a way that attractor states switched from one to another in a sequential manner (Murray and38

Escola 2017). However, it remains unclear how a connectivity necessary for such switching can39

be achieved. Beyond these networks exhibiting attractor dynamics, more generic echo-state-40

networks have been trained using a supervised learning algorithm to generate an arbitrary41

temporal sequence of neuronal activity (Rajan et al. 2016). Thus, at present computational42

models to generate neuronal activity sequences had to make biologically implausible assump-43

tions as they either required a prewired network connectivity (feedforward network or wiring44

among different attractor states) or relied on supervised learning (echo-state networks).45

Here, we describe a novel mechanism allowing the generation of diverse activity sequences in a46

recurrent network model without any specific external inputs, any pre-wired networks nor any47

supervised learning. Specifically, we studied the emergence of activity sequences in a neuronal48

network with a spatial connectivity profile. We show that when the extent of the spatial49

connectivity is asymmetric and varying across neurons, spatio-temporal patterns of spiking50

activity emerge. We identified two conditions that ensured the emergence of spatio-temporal51

activity sequences (STAS) in such networks of spiking neurons: (1) individual neurons project52

a small fraction (approximately 2-5%) of their axons in a preferred direction (φ) and (2) φs for53

neighboring neurons were similar, whereas φ for neurons further apart were unrelated. These54

conditions did not depend on the exact composition of neurons in the network model. Both55

purely inhibitory network models and network models composed of excitatory and inhibitory56

neurons exhibited STAS, provided the above two conditions were met.57

Results58

Can a locally connected random network (LCRN) with excitatory and inhibitory (or only59

inhibitory) spiking neurons generate STAS in a biologically plausible manner and without60

embedding feedforward subnetworks (Kumar et al. 2008) or learning such connectivity using61

a supervised learning algorithm (Rajan et al. 2016)? It is well known that LCRNs can exhibit62

stable hexagonal patterns of activity bumps (Roxin et al. 2005; Hutt 2008; Spreizer et al.63

2017). We hypothesize that such stable spatial activity patterns can be transformed into64

STAS if the activity bumps could be destabilized. To this end, we investigated the effect of65

3

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/428649doi: bioRxiv preprint 

https://doi.org/10.1101/428649
http://creativecommons.org/licenses/by-nc/4.0/


Spreizer et al. From space to time

introducing inhomogeneities in the spatial connectivity between neurons on the stability of66

the activity bumps.67

Spatial distribution of inhomogeneities in neuronal connectivity68

We considered an LCRN in which neurons projected a fraction of their axons preferentially69

in a particular direction (φ; Figure 1a and Supplementary Figure S2). φ was chosen from a70

uniform distribution and assigned to each neuron according to four different configurations71

(Figure 1b). Random configuration: φ was randomly and independently assigned to each72

neuron. Perlin configuration: φ was assigned to neurons using a gradient noise algorithm73

such that neighboring neurons had similar values of φ. Homogeneous configuration: the same74

φ was assigned to all neurons. Finally, as a control, we also considered the case in which all75

neurons projected in all directions with equal probability (Symmetric configuration).76

First, we focused on LCRNs with only inhibitory neurons (I-networks). In these I-networks,77

we used a connectivity profile which varied non-monotonically with distance, according to78

a Gamma distribution (Figure 1a:center; see Methods (Spreizer et al. 2017)). After wiring79

the networks according to each of the four configurations described above, we measured the80

effective φ from the spatial distribution of the post-synaptic targets of each neuron. Results are81

shown in Figs. 2a1-a5. For the random and Perlin configurations, the angle φ measured from82

the location of the post-synaptic neurons was uniformly distributed, as was initially specified.83

For the homogeneous configuration all neurons had identical φ assigned, but the measured84

φ values for individual neurons were slightly different from the assigned value, due to the85

finite numbers of connections per neuron. For the whole network, φ was normally distributed86

around the assigned value, with a very small variance. In the symmetric configuration φ for87

the network was uniformly distributed and was different for each neuron, due to the random88

nature of the connectivity and the finite numbers of connections per neuron.89

The in-degree distribution was similar across all four configurations (Figs. 2b1-b5). However,90

in the Perlin configuration, as a consequence of the spatial distribution of φ, neurons with high91

and low in-degree distribution were spatially clustered. Thus, the network models were highly92

similar across all four configurations at the level of neuron properties and their connectivities93

(same in-degree distribution and fixed out-degree for all neurons).94
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Schematics of the asymmetric networks

Figure 1: Schematics of the asymmetric network models (a:left) Neurons were arranged on
a regular 2-D grid, folded to form a torus. The colored circles indicate the symmetric (blue) and
asymmetric (green) spatial connectivity schemes. The pre-synaptic neuron is marked by the orange
dot. (a:center) Locations of post-synaptic neurons chosen according to the symmetric (green) or
asymmetric (blue) connectivity. In this case the distance-dependent connectivity profile varied non-
monotonically, according to a Γ distribution. This connectivity profile was used for purely inhibitory
network models. (a:right) Same as in the center panel, but here the distance-dependent connectivity
profile varied monotonically, according to a Gaussian distribution. This connectivity profile was used
in the present study for network models with both excitatory and inhibitory neurons. (b) Schematic
of spatial distribution of connection asymmetries. Each arrow shows the direction in which the
neuron makes preferentially most connections (φ). Here we show examples for random, Perlin and
homogeneous configurations.

Spatial inhomogeneities lead to the emergence of activity sequences95

The differences among the four connectivity configurations became evident as we inspected96

the corresponding network activity dynamics, obtained by activating each neuron in the net-97

work with an independent Gaussian white noise (see Methods). In an LCRN with Perlin98

configuration, time-resolved snapshots of the activity showed transient co-activation of neigh-99

boring neurons, referred to as spatial activity bumps (Supplementary Figure S3). Importantly,100

the spatial bumps were not fixed at a given location, instead as one spatial bump faded,101

another, similar bump appeared in its immediate vicinity, and so on, thereby creating STAS.102

Because we did not implement short-term synaptic depression or spike frequency adaptation,103

the silencing of a spatial bump was a consequence of the network’s dynamical activity state104
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Measurements of the spiking activity in I networks

Figure 2: Network structure and spiking activity in I-networks. (a) Spatial distribution of
connection asymmetries. The square represents the 2-D space of the network. The four panels (a1-
a4) show the four different configurations of asymmetric connectivity: symmetric, random, Perlin
and homogeneous. The panel a5 shows the distribution of φ, measured for each neuron from the
locations of its post-synaptic neurons. (b) Spatial distribution of in-degrees of individual neurons
in the four configurations (b1-b4). The in-degree distribution was similar for all four configurations
(b5). Note that in the Perlin configuration, neurons with high and low in-degree were spatially
clustered (b3). (c) Spatial distribution of average firing rates of individual neurons in the four
network configurations (c1-c4). (c5)The distribution of firing rate of all the neurons. (d1-d4)
Spatially distributed direction of neuronal activity flow in the four configurations. (d5) Distribution
of the direction of neuronal activity flow independent of space. In symmetric, random and Perlin
configurations, activity could move in all possible directions (blue, orange, green), whereas in the
homogeneous configuration, activity flowed in a single direction (red). Note that in symmetric and
random configurations, despite the presence of all possible directions of projection, the network
activity remained locked at certain specific locations (d1,d2), unlike in the Perlin configuration, in
which a clear and spatially diverse flow of activity emerged (d3).

and of the spatial φ-distribution. Time-averaged firing rates (estimated at over 10 sec) showed105

that neurons participating in the activity sequences were arranged in stripe like patterns in106

the network space (Figure 2c), along which the activity sequences flowed.107

We used the DBSCAN algorithm (see Methods) to track spatial bumps of spiking activity108

over time to identify the activity sequences (Figure 3a). In the random configuration for109

instance we found approximately 23 spatial activity bumps within a time window of 1000 ms110

(Supplementary Figure S3). The identified activity sequences followed specific paths in the111
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network, visible as stripes in the spatial distribution of average firing rates of individual neurons.112

Each sequence moved in its own direction, the collection of them forming a uniform distribution113

of activity sequence movement directions (Figure 2d5).114

In the homogeneous configuration, an extreme case of the connectivity asymmetry, the network115

activity exhibited multiple moving bumps. Neurons participating in moving activity bumps116

were arranged in a periodic pattern (Figure 2c4) and the activity sequences flowed along117

the associated stripes (Figure 2d4). Such patterns of average activity closely resemble with118

the ’static’ patterns observed in bio-chemical systems (Koch and Meinhardt 1994). Unlike119

in the Perlin configuration, in the homogeneous configuration all spatial bumps moved in120

the same direction (Figure 2d5, red trace). Because knowing the movement direction of121

a single activity sequence was sufficient for knowing the movement directions of all other122

sequences, the homogeneous configuration effectively exhibited only a single spatio-temporal123

activity sequence. This type of activity pattern was similar to the traveling waves observed in124

neural field models with asymmetric connectivity (Roxin et al. 2005; Hutt 2008).125

When φ was distributed randomly (random configuration) or when neurons made connections126

without any directional bias (symmetric configuration), we did not observe any STAS. In127

both configurations, the network activity was confined to specific neurons, while others were128

inhibited, giving rise to a long-tailed distribution of average firing rates (Figure 2c5). In both129

symmetric and random configurations, active neurons were organized in a near hexagonal130

pattern of spatial activity bumps (Figure 2c1,c2). Such an activity pattern is a consequence131

of the non-monotonic shape of the effective connectivity (Spreizer et al. 2017). In the random132

configuration, the spatial organization of the activity bumps was a bit more noisy than in133

the symmetric configuration. In both configurations, the spatial bumps jittered randomly134

around a fixed location, resulting in a uniform distribution of bump movement directions135

(Figure 2d1,d2,d5). Thus, both random and symmetric configurations result in similar types136

of network activity states.137

Similar to the I-network models, an LCRN with both excitatory and inhibitory neurons (EI-138

networks) also exhibited STAS when excitatory neurons made connections to excitatory neu-139

rons preferentially in one direction and φ-values were distributed according to the Perlin140

configuration (Figure 3d). In both EI- and I-network models, the activity sequence could be141

extracted from only a few neurons chosen from a small neighborhood (Figure 3b,e) or ran-142

7

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/428649doi: bioRxiv preprint 

https://doi.org/10.1101/428649
http://creativecommons.org/licenses/by-nc/4.0/


Spreizer et al. From space to time

domly from the whole network (Figure 3c,f). When the spiking activity was sampled from143

the entire network and neurons were ordered according to their peak firing rates (as is often144

done with experimental data (Harvey et al. 2012; Bakhurin et al. 2017)), the velocity of the145

activity sequence appeared to be quite constant (see Figure 3c,f). Experimental data suggest146

that the velocity of temporal sequences can vary over time (Bakhurin et al. 2017). In our147

network model, we also found that when about 250 active neurons were sampled randomly148

from a small network neighborhood, the velocity of the activity sequences varied as a function149

of time (Figure 3b). However, this varying velocity could be an artefact of the finite size150

effect and of the non-uniform sampling of the sequences (see Figure 3b,c). In general, the151

activity sequences in EI-networks model were faster than those in I-networks, because the152

activity sequences in EI-networks relied on recurrent excitation, whereas in I-networks they153

relied on the lack of the recurrent inhibition (in our I-networks neuronal connectivity varied154

non-monotonically with distance, according to a Gamma distribution, therefore there was a155

small connection probability among neighboring neurons).156

Conditions for the emergence of spatio-temporal activity sequences157

These results suggested that the emergence of STAS in LCRNs required two conditions to be158

met: (1) each neuron projects a fraction of its axons preferentially in a specific direction (φ)159

and (2) neighboring neurons preferentially project in similar directions. These two conditions160

imply a spatially correlated anisotropy in the projection patterns of neurons in the network. In-161

deed, upon systematic variation of a wide range of input parameters and excitation-inhibition162

balance, we found that, as long as these two conditions were met, irrespective of the compo-163

sition of neurons in the LCRN, STAS invariably emerged (Supplementary Figure S4).164

Co-existence of activity sequences and network oscillations165

The rasters of spiking activity in both I-networks and EI-networks indicated the presence of slow166

oscillations in Perlin (Figure 3) and homogeneous (not shown) configurations. Therefore, we167

measured the spectrum of the summed network activity. The network activity was obtained168

by different procedures: by summing the activity of all neurons (Figure 4, blue trace), by169

summing the activity of the neurons from a 10 × 10 region in the network (Figure 4, green170

trace), and by summing the activity of 100 randomly chosen neurons from the entire network171
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Sequential activity of the Perlin networks

Figure 3: Spatio-temporal sequences of neuronal activity in networks with Perlin configura-
tion. (a) Raster plot of spiking activity in an I-network model as a function of time. Each color
indicates a cluster of spiking activity in space and time, identified using DBSCAN (see Methods).
Note that spikes that were not assigned to any cluster are not shown. (b) Activity of approx. 250
neurons confined in a 20×20 region. (c) Activity of approx. 250 neurons randomly selected from the
entire network. (b, c) Selected neurons are sorted according to the time of peaked spike counts. (d,
e, f) Same as in panels (a, b, c), respectively, but here for an EI-network model. Note the shorter
time axes in panels (d, e, f), compared to panels (a, b, c), indicating that sequence movement in
EI-networks was clearly faster than in I-networks.

(Figure 4, orange trace). For both I-networks (Figure 4) and EI-networks (Supp Figure S5),172

neuronal population activity in all four configurations exhibited clear oscillations in the gamma173

frequency band (30-60 Hz). These oscillations were a global property of the network, as partial174

sampling of the neurons showed only weak signs of oscillatory activity. (Figure 4, orange and175

green traces). Moreover, in homogeneous and Perlin configurations, signs of low-frequency176

oscillations at around 4-6 Hz were observable. These were presumably a consequence of177

the periodic boundary conditions, i.e. the period of slow oscillations was determined by the178

sequence propagation velocity (see below) and the spatial network scale. These results suggest179

that both STAS and global oscillations can co-exist in the same network model, however, one180

did not automatically imply the other.181
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Figure 4: Power spectra of network activity in different spatial inhomogeneity configurations
in I-networks. Power spectra of summed spiking activities (bin width = 4ms), with different traces
referring to the source of the data: the z-score of the spiking activity of the entire network population
(blue trace), of 100 randomly selected neurons from the entire network (orange trace), and of the
neurons located in a 10×10 region in the network (green trace). Different traces referred to the
scope of data: the z-score of the spike activity of the whole population of neurons (blue trace), of
100 randomly picked neurons (orange trace) and of the neurons located in a 10×10 region in the
network (green traces). The spectral power in all network models peaked at approx. 60 Hz (gamma-
band oscillations). Additionally, in network models with homogeneous and Perlin configurations, an
additional, weak low-frequency peak, at around 4-6 Hz, appeared.

Asymmetry in connectivity determines the velocity of spatiotemporal sequences182

Next we investigated how the amount of shift in the connectivity affects the STAS. To this183

end we shifted the connectivity extent by 1 and 2 grid points. When there was no shift184

in the connectivity, network did not exhibit any sequential activity and the activity bumps185

jittered around a fixed value with a small velocity (Figure 5a,b blue). However, shifting the186

connectivity by 1 grid point was sufficient to induce sequential activity in both homogeneous187

and Perlin configurations. The velocity of STAS was higher in homogeneous configuration than188

in Perlin configuration (Figure 5a,b orange). When we increased the shift in connectivity by 2189

grid points, the mean and the variance of velocity increased in both Perlin and homogeneous190

configurations (Figure 5a,b green). These results suggest that the degree of asymmetry in191

the connectivity controls the velocity of STAS.192

Effect of spatial correlation in connection asymmetry on spatio-temporal activity193

sequences194

Next, we determined how the spatial correlations in φ affect the number and velocity of STAS.195

To this end we systematically varied the spatial scale of the Perlin noise (see Methods). This196

enabled us to systematically go from a random configuration to a homogeneous configuration197
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Figure 5: Velocity of neuronal activity sequences. Distribution of the velocity of neuronal activity
sequences in I-networks with homogeneous (a) and Perlin (b) configurations. The velocity of the
activity sequences increased with the increase in connectivity asymmetry. Note that the velocity
of activity bump movements in networks with symmetric connections (blue traces) were identical
in networks with homogeneous and Perlin configurations. However, for any non-zero degree of
asymmetry (orange and green traces) the velocity of activity bump movements was higher in networks
with the homogeneous configuration.

(Figure 6a top). To count the number of STAS we rendered the activity in a 3-dimensional198

space (two space dimensions and one time dimensions) and used DBSCAN algorithm to199

calculate clusters (which are the STAS) in this 3-D space. We found that the number of200

STAS and their velocity decreased monotonically as we reduced Perlin scale (Figure 6b,c).201

This decrease in number and velocity of STAS occurred because reduction in the Perlin scale202

reduced the number of neighboring neurons with similar φ. This, in turn, reduced the velocity203

of the STAS (Figure 6b), because the input in the direction specified by φ decreased and the204

postsynaptic neurons had to integrate over a longer time to elicit response spikes. Moreover,205

because of fewer inputs in the direction φ many putative sequences showed weak spiking206

activity which could not be classified as a distinct spatio-temporal sequence. Furthermore,207

reduction in Perlin scale also increased the variance of movement directions (Figure 6c). These208

results show, first, that even a small scale spatial correlation in φ suffices to induce STAS209

but, second, if the spatial correlation scale is too small, such sequences may not move quickly210

enough to be noticed as sequences. For functionally relevant STAS, the spatial correlation in211

φ should be about 20 which is about 1/6th of the network size.212

11

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/428649doi: bioRxiv preprint 

https://doi.org/10.1101/428649
http://creativecommons.org/licenses/by-nc/4.0/


Spreizer et al. From space to time

10 1
Perlin scale

20

40

60

Nu
m

be
r o

f s
eq

ue
nc

esb

0 50 100
Velocity [grid points / sec]

0.0

0.1

Pr
ob

ab
ilit

y
c 0

/2 /2

Direction changing

d Perlin scale

33
20
10
5
2
1

a
Homogeneous Perlin

33
Perlin

20
Perlin

10
Perlin

5
Perlin

2
Random

1

Figure 6: Effect of spatial scale of correlations in φ on the emergence and velocity of STAS
in I-networks. (a) The top row shows the spatial distribution of φ for different scales of Perlin
noise. The Perlin scales decreased from left to right as reflected in the size of single color blobs.
The Perlin scale is indicated in terms of grid points in the network. The bottom row shows the
spatial distribution of average firing rates in each of the seven configurations. (b) The number of
STAS observed in 1 sec. for different Perlin scales. The box plot shows that statistics of STAS
estimated over 90 epoch of 1 sec. each. Different colors indicate the scale of the corresponding
Perlin noise. (c) The distribution of the velocity of STAS. Different colors indicate the scale of the
corresponding Perlin noise. (d) The distribution of STAS directions in polar plots. In a homogeneous
configuration, most sequences moved in a single direction (blue curve). As the Perlin scale decreased,
the distribution of movement direction became more widely distributed, indicating an increase in the
number of sequences that moved in different directions.

Why does spatially correlated connection asymmetry give rise to spatio-temporal213

activity sequences?214

To get more insights into the mechanisms underlying the emergence of the STAS in Perlin and215

homogeneous networks we estimated the eigenvalue spectrum of the network’s connectivity216

matrix. For an Erdós-Renyi type random network, eigenvalues of the connectivity matrix are217

distributed in a circle (Rajan and Abbott 2006). In an inhibition dominated network, extra218

inhibition introduces very large negative eigenvalues that contribute to the stability of the219

network activity dynamics (Pernice et al. 2011). Here, we found that for an LCRN without220

any directional connectivity (symmetric configuration), most of the eigenvalues were confined221
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within a circle, but the local nature of the connectivity introduced several eigenvalues outside222

the circle, with large real parts and small imaginary parts. As we introduced the spatial223

asymmetry into the connectivity, the imaginary component of large eigenvalues (those outside224

the circle) increased (Figure 7a). The emergence of large complex eigenvalues outside the225

main circle is indicative of meta-stable dynamics (Rajan and Abbott 2006). Moreover, the226

number of large eigenvalues outside the main lobe (circle in this case) of the eigenvalue227

spectrum is equal to the number of ’communities’ of neurons in a network (Zhang et al.228

2014). This suggests that in both Perlin and homogeneous configurations correlations in the229

spatial distribution of φs created many communities (neuronal assemblies), the dynamics of230

which are meta-stable.231

Given the large size of our network models, it is computationally highly demanding to test this232

hypothesis by measuring all eigenvalues of an LCRN, identifying and counting the neuronal233

assemblies and determining the effective feedforward networks associated with their STAS.234

To simplify the problem, we estimated the probability of finding such a feedforward network235

pFF in our I- and EI-network models. To this end, we used an iterative procedure to find236

feedforward networks in our network models, the details of which are described in the Methods237

section. Briefly, we started with a set of 64 neurons (Fi) located in a small, 8 × 8 region in238

the network. Then we identified a set of all post-synaptic neurons (Pi) receiving input from239

any of the neurons in the first set Fi. From the set Pi we selected the 64 neurons (Fi+1) that240

were most frequently connected to the neurons in the input Fi (see Methods for details). We241

repeated this procedure 50 times, starting at 100 randomly selected different locations of the242

initial 8 × 8 regions (see Methods, Figure 7b,c). Thus, we identified feedforward networks243

with excitatory connections from Fn to Fn+1 in EI-networks and feedforward networks with244

inhibitory connections from Fn to Fn+1 in I-networks.245

In the homogeneous configuration we always found a feedforward path capable to creating a246

STAS (Effective length > 16; see Methods and Figure 7c-d). Indeed, in the homogeneous247

configuration, the probability to find a feedforward path: pFF was 1.0 (for both EI- and248

I-networks). Moreover, these feedforward paths were very long (Figure 7b, red dots and249

crosses). In the Perlin configuration, there were fewer (pFF ≈ 0.8 EI-networks; pFF ≈ 0.66250

I-networks) and shorter (Figure 7b, green dots and crosses) feedforward paths, but they pointed251

in different directions (Figure 7b-d). By contrast, in both symmetric and random configura-252
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tions, no feedforward pathways were observed (pFF = 0 for both EI- and I-networks). In253

these latter two configurations, neurons participating in F1 to F50 were confined to a small254

space (indicated by the overlap of the color blobs in Figure 7c,d). Ultimately, it was the255

existence (or non-existence) of these feedforward pathways that determined the properties of256

the STAS in the four different configurations.257

In EI-networks, within the feedforward path excitatory neurons from Fn projected to excitatory258

neurons within Fn+1 with a higher probability than outside Fn+1, thereby creating a path of259

high excitation between adjacent groups. When an external input was strong enough STAS260

was observed along such paths of high excitation. By contrast, in I-networks within the261

feedforward path, inhibitory neurons from Fn projected to inhibitory neurons within Fn+1 with262

a higher probability than outside Fn+1, thereby, creating a path of high inhibition from F1 to263

F50. Because the out-degree of neurons was fixed, the concentration of inhibitory connections264

within the path from F1 to F50 created a region of low recurrent inhibition in the vicinity of265

the path, along which inhibitory STAS emerged. Thus, the abundance of feedforward paths266

in networks with Perlin and homogeneous configurations provided a structural substrate for267

the emergence of the rich repertoire of STAS.268

Feedforward networks are simple but powerful computing devices (Abeles 1991; Kumar et al.269

2010). Moreover, such feedforward networks are also thought to be the structural substrates270

of the phase sequences that Hebb proposed to ’neuralize this behavior’ (Hebb 1949). There-271

fore, there is a general interest in understanding how feedforward networks may emerge in272

an otherwise randomly connected networks. To this end, a number of computational studies273

have investigated whether Hebbian synaptic plasticity can generate such feedforward networks.274

These attempts are usually successful in creating feedforward networks in small random re-275

current network (Masuda and Kori 2007; Clopath et al. 2010; Liu and Buonomano 2009;276

Fiete et al. 2010) but do not scale up for large recurrent networks (Kunkel et al. 2011). Our277

observations of feedforward networks in an LCRN with Perlin configuration provides a much278

simpler generative mechanism that can create feedforward networks in large random neuronal279

networks without considering any synaptic plasticity.280

14

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/428649doi: bioRxiv preprint 

https://doi.org/10.1101/428649
http://creativecommons.org/licenses/by-nc/4.0/


Spreizer et al. From space to time

Figure 7: Spatial clustering of φ results in feedforward pathways in otherwise locally con-
nected random networks. (a) The eigenvalue spectrum of the connectivity matrix of 1000 in-
hibitory neurons randomly taken from symmetric (blue dots), random (orange dots), Perlin (green
dots) and homogeneous (red dots) I-networks. (b) Number of unique target neurons participating in
a feedforward path (y-axis) as a function of the effective length of the feedforward path (Euclidean
distance between the centroids of F1 and F50 (see Methods). Feedforward path in I-network (dots),
feedforward path in EI-network (crosses). The four colors indicate the network configurations. Note
that distinctly more unique neurons with longer path length of the sequential activity movement
were observed in Perlin and homogeneous configurations. (c) Effective feedforward pathways in an
I-network model with the four configuration (see Methods). Feedforward paths starting from four
different locations are shown. The starting neuron set F1 is shown in yellow, the final set F50 is
shown in orange. Effective feedforward pathways were visible as trails changing color from yellow to
orange. The starting neuron set F1 consisted of 64 neurons located in 8× 8 region of the network.
(d) Same as in c, but for an EI-network model with nine different starting set locations

Discussion281

Here we have shown that spatial inhomogeneities in network connectivity can lead to the282

emergence of STAS in the network. Unlike existing models of sequence generation, which283

require either manual wiring of neurons or supervised learning, we provide a simple generative284

rule that renders an LCRN with the ability to generate STAS. We showed that when (1)285

individual neurons project a small fraction (approximate 2-5%) of their axons in a preferred286

direction, φ (i.e. the connectivity is asymmetric), and (2) φs of neighboring neurons are287
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similar, whereas φ of neurons further apart were unrelated (i.e. the network is anisotropic),288

the network will generate STAS. That is, asymmetric but spatially correlated connectivity289

of neurons translates into sequential spiking activity. Note that, the spatial asymmetry of290

neuronal connectivity can also be achieved when a neuron makes stronger instead of more291

synapses in the preferred direction (φ). Under this mechanism, the number of STAS and292

their propagation velocity are determined by the extent of the connectivity asymmetry and293

the spatial scale of the φ-correlations (Figure 6).294

a b cStationary state: 

homogeneous pattern

Transient state:

neuromodulator pattern I

Transient state:

neuromodulator pattern II

H
ig

h
Lo

w

Figure 8: Dynamic reorganization of activity sequences in a recurrent network. (a) Schematic
of a network in which neurons connect in all direction equally. The blue background shows the base-
line level of a certain neuromodulator substance. Two pairs of neurons (blue and red triangles) are
shown, the axons of which project in all directions uniformly. This is equivalent to the symmetric
configuration and, hence, no sequential activity will emerge. (b) Non-uniform distribution of con-
centration of the neuromodulator in different parts of the network, as indicated by the colormap.
The colored lines indicate the enhanced synaptic strength in specific directions. Asymmetric connec-
tivity of neighboring neurons caused by such non-uniform neuromodulator concentration distribution
may result in activity sequence in some regions of the network (e.g. neurons marked in blue). The
short arrows mark the potential flow of a neuronal activity sequence along the spatial gradient of
the neuromodulator concentration. (c) Same as in b for a different pattern of neuromodulator
concentration which may lead to a different flow of neuronal activity, resulting in the appearance of
activity sequences in a new set of neurons (e.g. those marked in red) and a change in direction of
the sequence in others (e.g. those marked in blue).

Our proposed sequence generation mechanism demands another mechanism which enables a295

group of neurons to make more or stronger synapses in a common direction φ in the first296

place. Axonal and dendritic arbors of neurons are almost never symmetric in space (Mohan297

et al. 2015) and dendritic arbors of some prominent neuron types are highly similar. However,298

it is not possible to infer from the available data whether neighboring neurons have similar299

orientation of axons. Experimental data suggest that neurons born together tend to share300

their inputs (Li et al. 2012). In addition, activity dependent plasticity may also lead to the301

formation of a few stronger synapses, possibly (but not necessarily) associated with a preferred302
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projection direction. However, such mechanisms, even if viable, will only hardwire one specific303

set of STAS. In the following, we propose a more general and, more importantly, dynamic304

mechanism that may lead to asymmetric and spatially correlated connectivity of neurons that305

not only generates STAS, but may rapidly switch from one set of sequences to another.306

Consider a network in which neurons have symmetric dendritic and axonal arbors (Figure 8a).307

Such a network would not support activity sequences (Figure 2) and stimulus evoked activity308

will be confined to the stimulated region of the network. In this network, the release of a309

neuromodulator (e.g. dopamine or acetylcholine) will create a phasic increase in the neu-310

romodulator levels in small patches (Figure 8b, yellow blobs). Such patches naturally arise311

because of the non-uniform distribution of axons releasing the neuromodulator and the diffu-312

sion in the neural tissue which presents an inhomogeneous medium. A similar patchy spatial313

profile of dopamine has been recently observed experimentally in vivo (Patriarchi et al. 2018).314

Most synapses within the regions of high neuromodulator concentration will be potentiated315

(schematically shown in Figure 8b, blue neurons) and, hence, create an asymmetric, spatially316

correlated connectivity for as long as the neuromodulator concentration remains high. That is,317

along the spatial gradient of the neuromodulator concentration (Figure 8b, arrows), effective318

connectivity may be modified to generate STAS.319

This neuromodulator based mechanism to generate spatially correlated asymmetric, anisotropic320

connectivity automatically provides a mechanism to rapidly switch between sequences. A321

change in the spatial profile of the neuromodulator concentration will potentiate another322

set of synapses, possibly leading to the recruitment of new neurons in the activity sequence323

(Figure 8b,c red neurons), or to the assignment of neurons to a different sequence (Figure324

8b,c, blue neurons). In the discussion above, we assumed that the neuromodulator enhances325

synaptic strengths, but the same argument holds also when the neuromodulator suppresses326

synaptic strengths. Thus, neuromodulators may play a crucial role, not only in the formation327

of STAS, but also in rapidly switching between different sets of sequences. Moreover, by328

their spatial concentration distribution, neuromodulators can also control the speed of the329

activity sequence. This idea is consistent with experimental observations, e.g. the finding330

that acetylcholine is important for retinal waves (Ackman et al. 2012).331

The key prediction of our network model is that in brain regions generating STAS, neurons332

should have asymmetric but spatially correlated network connectivity. Such correlated asym-333
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metry can be observed in at least two different forms: (1) asymmetric but similar axonal or334

dendritic arbors of neighboring neurons, and (2) neighboring neurons receiving strong synapses335

from common sources and sending out strong synapses to common targets. Secondly, we pre-336

dict that neuromodulators play a crucial role in the generation and control of STAS in an337

otherwise isotropic networks. This can be tested by experimentally controlling the spatial338

profile of the corresponding neuromodulator release pattern by optogenetic stimulation of its339

source neurons.340

In summary, we propose a simple generative rule that enables neuronal networks to generate341

STAS. How these spontaneously generated sequences interact with stimuli and how we can342

create stimulus - sequence associations is an interesting and involved question that will be343

addressed in future work. Similarly, more work is needed to determine the role of neuronal and344

synaptic weight heterogeneities in shaping spontaneous and stimulus-evoked neuronal activity345

sequences, either with or without changes in neuromodulator concentration distributions.346

Methods347

Neuron model348

Neurons in the recurrent networks were modelled as ‘leaky-integrate-and-fire’ (LIF) neurons.349

The sub-threshold membrane potential (v) dynamics of LIF neurons are given by:350

Cm
dvi
dt

= −gL(vi(t)− EL) + Ii(t) + µGWNi
+ σGWNi

(1)

where τm = Cm

gL
denotes the membrane time constant, Cm the membrane capacitance, gL the351

leak conductance, EL the leak reversal potential, and I(t) the total synaptic current. The352

neuron parameters are listed in Table 1, top.353

Synapses in the network were modeled as current transients. The temporal profile of the354

current transient in response to a single pre-synaptic spike was modeled as an α function. We355

adjusted the synaptic currents to obtain weak synapses such that both a unitary inhibitory356

post-synaptic potential (IPSP) and a unitary excitatory postsynaptic potential (EPSP) had an357

amplitude of 0.22 mV. The synapse parameters (synaptic strength, time constant and delay)358

were fixed throughout the simulations and are listed in Table 1, bottom.359
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Network architecture360

We studied two types of recurrent network models in which the connection probability between361

any two neurons depended on the physical distance between them. Neurons in both network362

models were placed on a regular square grid. To avoid boundary effect, the grid was folded to363

form a torus (Kumar et al. 2008). In both network types, multiple connections were permitted364

(Supplementary Figure S1), but self-connections were excluded.365

Networks with only inhibitory neurons: The first type network model (I-network) was com-366

posed of only inhibitory neurons. These neurons were arranged on a 100×100 grid (npop =367

10,000). Each neuron projected to 1,000 other neurons (corresponding to an average connec-368

tion probability in the network of 10%). The distance-dependent connection probability varied369

according to a Γ distribution (Spreizer et al. 2017) with the following parameters: κ = 4 for370

the shape and θ = 3 for the spatial scale. All I-network parameters are summarized in Table371

2.372

Networks with both excitatory and inhibitory neurons: The second type network model (EI-373

network) was composed of both excitatory and inhibitory neurons. Excitatory and inhibitory374

neurons were arranged on a 120×120 (npopE = 14,400) and on a 60×60 grid (npopI =375

3,600), respectively. Each neuron of the excitatory and inhibitory populations projected to 720376

excitatory and 180 inhibitory neurons (average connection probability 5%). The connection377

probability varied with distance between neurons according to a Gaussian distribution (Kumar378

et al. 2008; Schnepel et al. 2015; Spreizer et al. 2017). The space constant (standard deviation379

of the Gaussian distribution) for excitatory targets was σE = 12 and for inhibitory targets σI =380

9. We considered a high probability of connections within a small neighborhood, therefore,381

these networks were referred to as locally connected random networks (LCRN (Mehring et al.382

2003)). All EI-network parameters are summarized in Table 3. Whenever possible, we used383

parameters corresponding to a standard EI-network (Brunel 2000).384

Asymmetry in spatial connections385

Typically, in network models with distance-dependent connectivity, the connection probability386

is considered to be isotropic in all directions. In the network model studied here, however,387

we deviated from this assumption and introduced spatial inhomogeneities in the recurrent388

connections. Specifically, we considered a scenario in which the neuronal connectivity was389
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asymmetric in the sense that each neuron projected a small fraction of its axons in a particular390

direction φ (Figure 1a,b). At the same time we ensured that the out-degree of each neuron391

was the same as in an LCRN with isotropic connectivity. The fraction of extra connections392

in the direction φ depended on the shift in the region of post-synaptic neurons (green circle393

in Figure 1a). To quantify the change in connection probability, we estimated the average394

distance-dependent connectivity in the symmetric configuration (S) and in the homogeneous395

configuration (H). The change in connectivity was then measured as (S −H)/S.396

Shifting the connectivity region of a neuron by one grid location in our network model means397

that the probability of a neuron to make a connection in that direction was increased or de-398

creased by some amount ∆p = 0 − 100%, depending on the distance between the neurons.399

At short distances, the connection probability almost doubled, whereas at distances between400

10-20 grid points, there was only a very small change in the connection probability (Sup-401

plementary Figure S2). At larger distances (> 20 grid points), the connection probability402

changed by a large amount (Supplementary Figure S2). This is because at such distances the403

connectivity is sparse (connection probability < 0.01) and the measure (S −H)/S amplifies404

small changes for small S. Because we maintained the out-degree of the neurons, an increase405

in the connection probability in one direction implied a reduction in connection probability by406

the same amount in the opposite direction.407

Note that an increased connection probability also increased the probability to form multiple408

connections in the close neighborhood of the projecting neuron (Supplementary Figure S1).409

The preferred direction (φ) for each neuron was chosen at random from a set of eight different410

directions, considering that neurons were positioned in a grid pattern. All other synaptic411

parameters, such as the number of total connections, the space constant of the connectivity412

kernel and the synaptic weights were identical for all neurons.413

Spatial distribution of asymmetry in spatial connections414

In a network model with asymmetric recurrent connections it does not suffice to select the415

preferred connectivity direction of target neurons for individual source neurons depending on416

their positions. We also need to define how exactly the ’directions’ (φ) are distributed in417

space. For this, we considered four qualitatively different configurations418

Homogeneous configuration: In this configuration all neurons had the same φ, indicating a419
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single-direction bias of the projections of all neurons (Figure 1c, left).420

Random configuration: In this configuration φ for each neuron was chosen independently at421

random from a uniform distribution (Figure 1c, middle).422

Perlin configuration: In this configuration φ was also chosen from a uniform distribution as in423

the random configuration, but it was assigned to each neuron according to the Perlin noise - a424

class of gradient noise (Perlin 1985). The generation of Perlin noise is described below. This425

spatial distribution of φ ensured that neighboring neurons had similar preferred directions426

(Figure 1c, right). Symmetric configuration: In this configuration all neurons established427

connections in an isotropic manner, without any directional preference.428

Perlin noise429

To generate Perlin noise we first created a p × p grid (Perlin grid) that covered the whole430

network (of size N × N ; N = 100 I-networks and N = 120 for EI-networks). We defined431

p = N
Perlin scale

. For example a Perlin scale = 20 meant that Perlin grid was of size 5 × 5 for432

the I-networks and 6× 6 for the EI-networks. The variable Perlin scale controlled the spatial433

correlations. After defining the Perlin grid, each grid point was assigned a value chosen from434

a uniform distribution U[0, 2π]. Next, we interpolated the Perlin grid to a size of the N ×N435

(same size as the I-network or EI-network). The resulting values were used as the φ of the436

neuron located at that grid point. For more details about generation of Perlin noise please437

see (Perlin 1985).438

Input and network dynamics439

All neurons received independent, homogeneous excitatory inputs from an external drive.440

We selected Gaussian white noise as an adequate input for generating ongoing spiking activity441

dynamics, which could be set to different activity levels by varying the input mean and variance442

independently.443

Identification of spatio-temporally clustered activity444

To identify the STAS we rendered the spiking activity in a three dimensional space spanned445

by two spatial dimensions of the network and one time dimension. Each spike is a point446

and an STAS is a cluster in this 3-D space. We used the density-based spatial clustering447
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algorithm of applications with noise (DBSCAN) (Ester et al. 1996) to determine individual448

clusters of the spiking activity in space and time. The DBSCAN algorithm required two449

parameters for the analysis: the maximum distance between two points in a cluster (eps) and450

the minimum number of points required to form a cluster (minPts). This algorithm needed451

a supervised control and an adequate value for eps, depending on the average spatial and452

-temporal distance (i.e. firing rate) between spikes of the neurons. For instance, when the453

average firing rate of the neurons was too high, then multiple STAS could be coalesced into a454

single STAS. On the other hand, when average firing rate of the neurons were small a single455

STAS could be dissociated into multiple small STAS. To avoid such problems, we reduced456

the temporal scale of spikes by a factor 20 and 3 for I-networks and EI-networks, respectively.457

Note that, this temporal rescaling was not used for the estimation of other properties of the458

network activity dynamics. The eps value was set to 3 and 2 for I-networks and EI-networks,459

respectively. Using the DBSCAN we identified STAS in successive, overlapping time windows460

of duration 1 sec (overlap duration 0.9 sec).461

Spatial arrangement of locally clustered activity462

For each identified cluster we calculated the spatial centroids of activity bumps observed in suc-463

cessive time windows of 1 sec. The vectors composed of these successive centroids described464

the successive spatial coordinates of the bump activity and, hence, reveal the movement of465

the bump activity. Using these vectors we plotted the pathways of the moving activity bumps466

in the networks spatial map.467

Quantification of activity bump movement468

Keeping track of direction changes in bump movement is an adequate measurement for the469

dynamics of sequential and non-sequential activities. In travelling waves, activity bumps470

typically move in a single direction, whereas in spatially fixed patterns, activity bumps alternate471

directions erratically over very short time scales. Between these two extrema, activity bump472

movements changed their direction slowly. The direction changing of bump movement is473

given by:474

dα = αt − αt−1 (2)
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where αt denotes the direction of bump movement observed at time step t, and dα ranges475

from −π (opposite direction) over 0 (no alternation) to π (opposite direction).476

Identification of feedforward networks in the LCRN477

To identify a feedforward network FF in the LCRN we started with a set of 64 neurons (Fi),478

located in a 8× 8 region in the network. This choice was motivated by seeing that individual479

spatial clusters of active neurons were of size 8 × 8. We then identified all post-synaptic480

neurons (Pi) connected to any of the neurons in the set Fi. From the set Pi we selected 64481

neurons (Fi+1) that received the most number of connections from the Fi. We repeated this482

procedure 50 times, starting at 100 different, randomly selected locations. Given the delays483

in the network, 50 time steps would imply that a sequence lasted for at least 100 ms. In this484

manner we identified feedforward networks with excitatory (inhibitory) connections from Fn485

to Fn+1 in EI-networks (I-networks).486

To quantify the feedforward path we measured the number of neurons (nFF ) belonging to487

F1 . . . F50 over the trajectory between the centroids of F1 and F50 (Figure 7b,c). Note that488

each neuron was counted only once. The larger nFF , the longer and/or broader is the489

feedforward network.490

In addition, we measured the Effective length as the Euclidean distance between the centroids491

of F1 and F50. Based on visual inspection of the locations of F1 . . . F50, we are implicitly492

assumed that {Fn;n > 2} does not loop back to the same region where F1 is located.493

To call the set of neurons that constitute F1 . . . F50 a feedforward path capable of creating494

STAS, we argued that {Fn;n > 2} must be outside the connection region of the neurons495

in F1. In EI-networks the space constant of excitatory projections of a neurons is σE = 12.496

If we assume that ≈ 70% connections are within one σE (because the shape of connection497

probability function is Gaussian) then, in EI-networks the combined connection region of all498

neurons in F1 has a diameter of 12 + 8 + 12 = 32. Therefore, to be outside the connection499

region of F1, the centroid of F50 should be at least 16 grid points away from the centroid of500

F1 in EI-networks or the Effective length should be greater that 16. Similarly, we estimated501

the Effective length for I-networks as 16.502

Thus, we defined that an effective feedforward pathway capable to creating STAS should have503

an Effective length > 16 (for EI- and I-networks). Finally, we defined pFF as the frequency504
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of finding a feedforward path of Effective length > 16.505

Simulation Tools506

All simulations of the network models were performed using the NEST simulation software507

(http://www.nest-initiative.org) (Peyser et al. 2017). The dynamical equations were inte-508

grated at a fixed temporal resolution of 0.1 ms. Simulation data were analyzed with Python us-509

ing the scientific libraries SciPy (http://www.scipy.org) and NumPy (http://www.numpy.org),510

and visualized using the plotting library Matplotlib (http://matplotlib.org). The code will be511

made available at GitHub.512
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Clopath C, Büsing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of

voltage-based stdp with homeostasis. Nature neuroscience 13:344–352.

Diesmann M, Gewaltig MO, Aertsen A (1999) Stable propogation of synchronous spiking in

cortical neural networks. Nature 402:529–533.

Dragoi G, Tonegawa S (2011) Preplay of future place cell sequences by hippocampal cellular

assemblies. Nature 469:397–401.

Ester M, Kriegel HP, Sander J, Xu X et al. (1996) A density-based algorithm for discovering

clusters in large spatial databases with noise. Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining (KDD-96 96:226–231.

Fiete IR, Senn W, Wang CZ, Hahnloser RH (2010) Spike-time-dependent plasticity and

heterosynaptic competition organize networks to produce long scale-free sequences of

neural activity. Neuron 65:563–576.

Hahnloser RH, Kozhevnikov AA, Fee MS (2002) An ultra-sparse code underlies the generation

of neural sequences in a songbird. Nature 419:65–70.

Harvey CD, Coen P, Tank DW (2012) Choice-specific sequences in parietal cortex during a

virtual-navigation decision task. Nature 484:62–68.

Hebb DO (1949) The organization of behavior: A neuropsychological theory. John Wiley and

Sons.

Hutt A (2008) Local excitation-lateral inhibition interaction yields oscillatory instabilities

in nonlocally interacting systems involving finite propagation delay. Physics Letters

A 372:541–546.

Hutt A, Atay FM (2005) Analysis of nonlocal neural fields for both general and gamma-

distributed connectivities. Physica D: Nonlinear Phenomena 203:30–54.

Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R (2004) Synfire chains

and cortical songs: Temporal modules of cortical activity. Science 304:559–564.

25

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/428649doi: bioRxiv preprint 

https://doi.org/10.1101/428649
http://creativecommons.org/licenses/by-nc/4.0/


Spreizer et al. From space to time

Jin DZ, Fujii N, Graybiel AM (2009) Neural representation of time in cortico-basal ganglia

circuits. Proceedings of the National Academy of Sciences 106:19156–19161.

Koch A, Meinhardt H (1994) Biological pattern formation: from basic mechanisms to complex

structures. Reviews of Modern Physics 66:1481–1507.

Kumar A, Rotter S, Aertsen A (2008) Conditions for propagating synchronous spik-

ing and asynchronous firing rates in a cortical network model. Journal of Neuro-

science 28:5268–5280.

Kumar A, Rotter S, Aertsen A (2010) Spiking activity propagation in neuronal networks: Rec-

onciling different perspectives on neural coding. Nature Reviews Neuroscience 11:615–627.

Kunkel S, Diesmann M, Morrison A (2011) Limits to the development of feed-forward struc-

tures in large recurrent neuronal networks. Frontiers in Computational Neuroscience 4:160.

Li Y, Lu H, Cheng Pl, Ge S, Xu H, Shi SH, Dan Y (2012) Clonally related visual cortical

neurons show similar stimulus feature selectivity. Nature 486:118.

Liu JK, Buonomano DV (2009) Embedding multiple trajectories in simulated recurrent neural

networks in a self-organizing manner. Journal of Neuroscience 29:13172–13181.

Luczak A, Bartho P, Marguet SL, Buzsaki G, Harris KD (2007) Sequential structure of

neocortical spontaneous activity in vivo. Proceedings of the National Academy of Sci-

ences 104:347–352.

Masuda N, Kori H (2007) Formation of feedforward networks and frequency synchrony by

spike-timing-dependent plasticity. Journal of Computational Neuroscience 22:327–345.

Mehring C, Hehl U, Kubo M, Diesmann M, Aertsen A (2003) Activity dynamics and prop-

agation of synchronous spiking in locally connected random networks. Biological Cyber-

netics 88:395–408.

Modi MN, Dhawale AK, Bhalla US (2014) Ca1 cell activity sequences emerge after reorgani-

zation of network correlation structure during associative learning. Elife 3:e01982.

Mohan H, Verhoog MB, Doreswamy KK, Eyal G, Aardse R, Lodder BN, Goriounova NA,

Asamoah B, B. Brakspear AC, Groot C et al. (2015) Dendritic and axonal architec-

26

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/428649doi: bioRxiv preprint 

https://doi.org/10.1101/428649
http://creativecommons.org/licenses/by-nc/4.0/


Spreizer et al. From space to time

ture of individual pyramidal neurons across layers of adult human neocortex. Cerebral

Cortex 25:4839–4853.

Murray JM, Escola G (2017) Learning multiple variable-speed sequences in striatum via

cortical tutoring. eLife 6:1–24.

Pastalkova E, Itskov V, Amarasingham A, Buzsáki G (2008) Internally generated cell assembly

sequences in the rat hippocampus. Science 321:1322–1327.

Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, Xiong WH, Folk RW, Broussard GJ,

Liang R, Jang MJ et al. (2018) Ultrafast neuronal imaging of dopamine dynamics with

designed genetically encoded sensors. Science p. eaat4422.

Perlin K (1985) An image synthesizer. ACM SIGGRAPH Computer Graphics 19:287–296.

Pernice V, Staude B, Cardanobile S, Rotter S (2011) How structure determines correlations

in neuronal networks. PLoS Computational Biology 7:e1002059.

Peyser A, Sinha A, Vennemo SB, Ippen T, Jordan J, Graber S, Morrison A, Trensch G, Fardet

T, Mørk H, Hahne J, Schuecker J, Schmidt M, Kunkel S, Dahmen D, Eppler JM, Diaz

S, Terhorst D, Deepu R, Weidel P, Kitayama I, Mahmoudian S, Kappel D, Schulze M,
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Tables & Figures

Neurons & synapses
Name Value Description

Cm 250.0 pF Membrane capacitance
gL 25.0 nS Membrane capacitance
τm 10.0 ms Membrane time constant
EL - 70.0 mV Leak potential, resting potential
Vth - 55.0 mV Spike threshold
Vreset - 70.0 mV Resting membrane potential
tref 2.0 ms Refractory period

τexc 5.0 ms Time constant of excitatory synapse
τinh 5.0 ms Time constant of inhibitory synapse
Jext 1.0 pA Synaptic weight of the external input
Jx 10.0 pA Base value of the synaptic weight

EPSP 0.22 mV Amplitude of excitatory post synaptic potential
IPSP 0.22 mV Amplitude of inhibitory post synaptic potential
d 1.0 ms Synaptic delay

Table 1: Parameter values for the neurons (top) and for the synapses (bottom) in both network
models.

I network model
Name Value Description

Neuron model Integrate and fire
nrow, ncol 100 number of rows/columns in a network layer
npop ncol × nrow = 10,000 number of neurons

Synapse model α function, current-based model
κ 4 Shape for gamma distribution function
θ 3 Scale for gamma distribution function

pconn 0.1 Average connection probability of target neurons
nconn pconn × npop = 1000 Number of recurrent connections per neuron
Jrec −Jx = -0.22 mV Synaptic weight of recurrent inhibitory connections

µGWN 700.0 pA Mean of external GWN input
σGWN 100.0 pA Standard deviation of external GWN input

Table 2: Parameter values for the networks (top), for the connections (middle) and for an external
input (bottom) in I network model.
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EI network model
Name Value Description

Neuron model Integrate and fire
nrowE , ncolE 120 number of rows/columns in exc. network layer
nrowI , ncolI 60 number of rows/columns in inh. network layer

npopE ncolE × nrowE = 14,400 number of excitatory neurons
npopI ncolI × nrowI = 3,600 number of inhibitory neurons

npopratio npopE : npopI = 4 : 1 Ratio of exc. - inh. neurons

Synapse model α function, current-based model
σE 12 Space constant for excitatory targets
σI 9 Space constant for inhibitory targets
pconn 0.05 Connection probability of target neurons
nconnE pconn × npopE = 720 Connection number of excitatory targets
nconnI pconn × npopI = 180 Connection number of inhibitory targets
g 6 Ratio of recurrent inhibition and excitation
JE Jx = 0.22 mV Synaptic weights of excitatory targets
JI g × JE = -1.32 mV Synaptic weights of inhibitory targets

µGWN 350.0 pA Mean of external GWN input
σGWN 50.0 pA Standard deviation of external GWN input

Table 3: Parameter values for the networks (top), for the connections (middle) and for an external
input (bottom) in EI-network model.
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Supplementary materials
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Figure S1: Multiplicity of connections. Count distribution of multiple connections between any
pair of neurons in an I-network (left) and in an EI-network (right). The multiple connections
were formed primarily because of the connectivity rule (local connectivity). Note that the network
configuration (as indicated by different colors of the curves) had only a minute influence on the
distribution of multiple connections.
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Figure S2: Effect of forcing a neuron to make some connections preferentially in the di-
rection φ. To determine how the connectivity of a neuron changed when we forced it to make
some connections preferentially in the direction φ while keeping its out-degree constant, we defined
δconn = (S −H)/S, where S is the connectivity of a neuron in the symmetric configuration and H
is the connectivity of the same neuron in the homogeneous configuration. That is, δconn gives an
estimate of the change in connectivity of a neuron relative to its connectivity in the homogeneous
configuration. Left Average δconn for I-networks (average over all the neurons in the network). Right
Same as in the left panel, but for EI-networks. Forcing a neuron to make preferentially connections
in the direction φ increased its connectivity in that direction by a factor 1 and, correspondingly, the
connectivity was reduced by the same amount in the opposite direction. This change in the oppo-
site direction is because we achieved asymmetry by shifting the connectivity cloud in the direction
specified by φ (Figure 1). That is, in the immediate vicinity, the connection probability was doubled
in the direction φ. This increase may look very large, but it nevertheless was not large enough to
alter the probability of multiple connections in the network (Fig. S1). In the Figure we also notice a
connectivity increase and corresponding decrease at larger distance as well, but this was not of much
consequence because at such large distances the connection probability was very small to begin with.
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Snapshots of sequential activity in I networks

Figure S3: Snapshots of the spiking activity in I-networks for the four different configurations.
Each row show the temporal evolution of the network activity for a different configuration. Each
panel shows the activity of inhibitory neurons observed over a time window of 100 ms (disjoint
windows), rendered in the two-dimensional network space. Each dot in a panel shows a spike of the
neuron located at that grid point. Neurons are colored to identify individual spatio-temporal activity
sequences (STAS). In each row, spikes rendered in the same color belong to the same STAS. Spikes
that were not part of an STAS are not shown for clarity of presentation.
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Figure S4: Effect of input and excitation-inhibition balance on the emergence of spatio-
temporal sequences in an EI-network. (a) Average firing rate of all excitatory neurons as a
function of the mean (x-axis) and standard deviation of the input noise to the neurons. (b) Same
as in a, but here the average firing rates of only those excitatory neurons that spiked during an
epoch of 2 sec is shown. (c) Fraction of excitatory neurons that spiked during an epoch of 2 sec.
We used this fraction of spiking neuron as a proxy of STAS because, as shown in the main text,
when networks were wired in the Perlin configuration, STASs emerged as soon as neurons crossed
their spiking threshold. The value of EPSP amplitude and ’g’ used for panels a-c are marked by the
red square in panels d-i. (d) Fraction of excitatory neurons that spiked as a function of the EPSP
amplitude (y-axis) and ratio of the amplitudes of IPSP and EPSPs ’g’ (x-axis). Here we operated
in an inhibition dominated regime. (e-i) Same as in panel d, but for different values of the input
mean and standard deviation. The range of input mean and standard deviation used for panels d-i
is marked by the red rectangle in panel a.
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Figure S5: Power spectra of EI-network activity in different spatial inhomogeneity configu-
rations. Power spectra of summed spiking activities of excitatory neurons (binwidth = 4ms), with
different traces referring to the source of the data: the z-score of the spiking activity of the entire
network population (blue trace), of 100 randomly selected neurons from the entire network (orange
trace), and of the neurons located in a 10×10 region in the network (green trace). The spectral
power in all network models peaked at approx. 60 Hz (gamma-band oscillations). Additionally, in
network models with homogeneous and Perlin configurations, an additional, weak low-frequency
peak, at around 4-6 Hz, appeared.
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