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Tumor tissue consists of various cell types, and the study of such complexity using transcriptomic data has 
been mathematically formulated as a linear equation: X��� � S��� · P��� � E , where X is the observed 
expression profiles of M genes and N tissue samples with K cell types, S and P are the gene signature and 
proportion matrices of the K cell types, including immune/stromal (I/S) cells, and E stands for error. Existing 
methods such as CIBERSORT, TIMER and EPIC [1-3] assume a constant signature matrix S, which are 
obtained from independent expression data sets with pure I/S cell, and the prediction of P is accomplished 
through regression methods. However, these supervised methods allow for minimum dynamics of S, and thus 
result in biased estimations of P, due to ignorance of the following two facts: (1) the gene expression of I/S 
cells in cancer microenvironment can be largely varied from what is obtained from the training data, and (2) the 
intrinsic batch effect between different studies cause the application of signature matrix from training data on a 
new dataset to be inappropriate, even with quantile normalization as in CIBERSORT [1]. In fact, recent studies 
revealed that these regression-based methods can only achieve very limited R� on TCGA and other cancer 
data sets [1, 3, 4]. In light of this, we develop a new deconvolution approach, where we allow for a high level of 
dynamics in signature matrix S, except for retaining its structural composition learnt from large amount of 
training data sets as well as the tissue expression data itself. The unbiasedly estimating proportion of I/S cells 
could then be reliably correlated with features derived from imaging, genomic and clinical data of these 
patients.  

 

Key challenges for an unbiased deconvolution approach include: (i) detecting the I/S cell types and their true 
marker genes specific to the current cancer tissue micro-environment, (ii) eliminating variations of gene 
expression caused by different experimental platforms and batches, and (iii) dealing with the prevalent co-
infiltrated I/S cells [5]. Among these challenges, (i) and (ii) require the signature matrix S to be highly dynamic 
to the current cancer microenvironment, as well as experimental setting variations; and (iii) complicates the 
problem as co-infiltration of I/S cells lead to high correlation among their proportion, which will jeopardize the 
uniqueness of the solution S and P, and the uniqueness of the solution could not be guaranteed unless cell 
type uniquely expressed genes exist among these co-infiltrating I/S cells [6]. 
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A 

new computational method to unbiasedly predict I/S cells in cancer transcriptomics data. We develop a semi-
supervised deconvolution method to handle the three challenges, with the following four steps: (1) Construct 
an ordering matrix to represent cell type specific gene expressions. We have collected large amount of gene 
expression data for fibroblast, adipocytes, endothelial, neuron, B cell, CD4+ T cell, CD8+ T cell, natural killer 
cell, dendritic cell, monocytes, macrophages, and neutrophils, all measured by Affymetrix U133 plus 2.0 array, 
totaling 387, 26, 606, 243, 404, 443, 130, 141, 410, 477, 277, 257 samples, respectively. We utilized COMBAT 
[7] to remove the batch effect across datasets. Using these as training data, we constructed an ordering matrix 
by comparing a gene expression’s expression among different cell type. The ordering matrix 	��� is takes 
value in the set 
1,2,3, … , � � 1�, 	�,
 � � if the expression level of gene � in cell type � is significantly lower than 
� � 1 cell types and higher than the other � � �  cell types, and 	�,� � 0 if �  is not overly expressed in cell type � 
(Figure XA). (2) Predict cell type uniquely expressed genes in a cancer transcriptomic dataset via identification 
of rank-1 submatrices. If gene � is uniquely expressed in cell type �, its gene expression can be expressed as 
X�,· � S�,� · P�,· � �, where ��,� is the unit expression of � in �, and ��,· is the relative proportion of cell type � 
across all the N samples. This shows that genes uniquely expressed by a cell type forms a (matrix) rank-1 
submatrix spanned by the vector of relative proportion of the cell type. To find such rank-1 submatrices in the 
whole matrix, we particularly realize that the level of co-expressions among a certain cell type’s uniquely 
expressed genes are generally higher than their co-expression correlations with other genes, thus, we turn to 
find those strong co-expression modules using our in-house non-parametric network analysis method MRHCA 
[8, 9], wherein the rank of the module could be determined by Bi-Cross Validation (BCV) rank test [10](Figure 
XB). Expression of the genes coming from cancer cells will be eliminated by projecting X���  to the 
complementary space of the row space spanned by the cancer genes’ modules, under which the rank structure 
of the I/S gene expressions will not change. Further, cell type of each identified rank-1 module will be 
annotated by the labeling matrix. (3) Infer the number of cell types and their expressed genes via a graph 
partition method. Genes in rank-1 modules identified in (2) can be either genes uniquely expressed in one cell 
type or genes with similar expression patterns in multiple cell types. To determine the number of cell types, we 
sequentially examine the combinations of 2, 3, and 4 rank-1 modules and re-calculate the rank of the newly 
combined modules. The searched modules will be linked to each other if the rank of their merged expression 
matrix is smaller than the number of unconnected parts among them. Such a process will link the rank-1 
modules of genes expressed in multiple cell types with the modules of uniquely expressed genes of the cell 
types and eliminate the redundant rank of such modules. Then the total number of cell types covered by the 

Figure 1. ICTD Analysis Pipeline 
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modules is determined by the sum of the rank of each disconnected subgraph in the linking graph (Figure XC). 
I/S cell types correspond to each disconnected subgraph will be annotated by the labeling matrix. (4) Predict 
cell type proportions using constrained NMF. We recently developed an algorithm to identify cell type unique 
modules in each disconnected subgraph, by which a constraint matrix C��� can be constructed for the NMF 
problem: X��� � S��� · P��� � E  [11]. Specifically, for the � th disconnected subgraph with M�  genes and 
rank=  K� , we first identify the top K�  cell type unique modules in the subgraph, and construct C�����

 by 
C�����

 �, �! � 1/0, if gene � is in or not in �th module. Then the NMF of X����
� S�����

· P���� will be solve by 

min�,�&'X����
�S�����

· P����'
�

�

� ( · tr&S�����
� · C�����

++. 

The advantages of this deconvolution method includes: (1) cell types and their uniquely expressed genes, 
instead of pre-defined, are specifically identified to the cancer microenvironment hidden in the dataset; (2) I/S 
proportions could be estimated free of batch effect by a NMF approach; (3) I/S co-infiltrations could be properly 
handled by the existence of cell type uniquely expressed genes that place the co-infiltrated cell types in 
disconnected subgraphs; and (4) commonly expressed genes in multiple cell types could be properly 
incorporated in a constrained NMF without harming the uniqueness of the solution. It is noteworthy the cell 
types are defined here as a combination of certain rank-1 markers, which may correspond to more than one 
commonly defined cell types by hematopoiesis lineage, namely, general T cell, total T and B cell, MHC class II 
antigen presenting cells, etc. This novel definition is entirely data-driven, without compromising the capacity of 
performing correlation analysis with features derived from genomics and imaging data, and most importantly, 

novel I/S sub cell types specific to a cancer micro-environment could be conveniently identified.  

We have validated the method on six scRNA-seq simulated bulk tumor data sets of melanoma (MLN), head 
and neck cancer (HNC), colorectal cancer (CRC), breast cancer (BRC), glioma (ODG) and IDH-mutant 
astrocytoma (ATC) [12-14]. On average, our method achieves 0.92 correlation between the predicted and true 
cell proportions, and 0.958 R� in fitting the I/S uniquely expressed genes. Overall, ICTD outperformed the 
prediction by EPIC, TIMER and CIBEROSRT. Specifically, EPIC achieved a good performance in prediction of 
macrophage and fibroblast cells, but the predicted B cell and T cell proportion has only a ~0.85 correlation with 
the true proportion, especially in the colorectal and breast cancer set. Timer has a good performance in 
prediction of T cell proportional but have a relative less prediction accuracy for B and Macrophage cells. 
Meanwhile, CIBERSORT has achieved less than 0.6 correlation between the predicted and true cell 
proportions, and only 0.45 R� in the fitting of marker genes (Figure 2). In addition, the method can effectively 
identify novel sub cell types within the pre-identified cell classes, such as sub fibroblast and myeloid cell types, 
as well as the cell types not covered by the training data, namely Mast and Myocyte cell in the HNC, Schwann 
cells in the ODG and Microglial cells in the ATC and ODG data.  

Figure 2. Comparison of our method with CIBERCORT, TIMER, and EPIC on scRNA-seq simulated bulk cancer data. 
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We applied our deconvolution method to two TNBC RNA-Seq data 
sets, one in TCGA and another in IUSM, and six microarray data 
sets retrieved from public domain, totaling 851 samples. Our 
analysis identified 29, 12, 16, 36, 8, 32, 9, and 12 uniquely 
expressed marker genes corresponding to T-, B-, macrophage, 
neutrophil, dendritic, fibroblast, adipocyte, and endothelial cells 
respectively that are consistent in all data sets (consistent markers 
are shown in Table 1). On average, our method achieves 0.87 

by feeding these consistent markers to our NMF algorithm, 
comparing to 0.32 by CIBERSORT which uses SVM regression 
analysis based on a set of pre-defined genes. In addition, TCGA cohort has morphological data 
lymphocyte infiltration levels for all samples with pathological images, and our predicted T cell infiltratio
has a Spearman correlation of 0.53 with the imaging-derived lymphocyte infiltration level in TNBC data
the correlation is 0.3 for CIBERSORT predicted TILs [15]; We expect the analysis on the large am
TNBC samples will generate robust gene markers and infiltration level of TILs.  

ICTD is also applied to TCGA colorectal and breast cancer to compare with EPIC, TIMER and CIBERSO
real cancer data. Specifically, we developed a goodness of fitting score for each gene by the  of 
negative regression of the gene expression by the predicted cell proportions. The advantage of this s
that the bias of the gene expression signature of different methods are eliminated in the analysis, and
evaluation of the predicted immune cell proportion enables the comparison between our semi-sup
method with the three supervised methods. The goodness of fitting clearly suggested the proportions pr
by ICTD significantly better explains the expression of each gene (with an averaged >0.6) than th
three methods. 

Figure 3. Comparison of the goodness of fitting 

(green), EPIC (blue), TIMER (pink), and CIBERSOR

colors) in the marker genes of B, CD4+T, CD8+ T, M

and Fibroblast markers. 

Quantitative prediction of TIL cytotoxicity and
varied immuno-activities. Our deconvolution 
not only investigates biological I/S cell types, b
cells’ functional activities, such as T cell cytotox
cell exhaustion or production of oxidative str
myeloid derived suppressor cells, these im
functions are highly varied in specific cancer
environments, thus it is not feasible to use c
gene expressions to characterize their activitie
that genes involved in such functions also form

Table 1. Selected cell type uniquely expre

genes in the microenvironment of TNBC 

Figure 4. T cell (upper right) and cytotoxicity (bottom left) 
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low rank submatrix and our recent analysis on TNBC samples indicates that in samples with high
infiltration, the T cell cytotoxicity and infiltration marker genes form two distinct 1-rank modules, w
samples with low T cell infiltration, they only form one 1-rank module (Figure 3). Clearly, varied cytotox
samples with high T cell infiltration is of more interest, hence we propose to identify functional activity le
detecting the 1- or low rank structure in samples with high infiltration levels, i.e. a local low rank structur
Denote  as predicted proportion of cell type k for the n samples and 
as sorted  by increasing order,  as the rank-1 marker genes of cell type k,  and  is a ge
containing marker genes of a varied function of k, then the level of functional activity and its associated 
genes can be identified by the following algorithm using BCV tests. The expected results of this a
include gene markers that form a local low rank structure specifically in the samples with high infiltratio
I/S cell type, which corresponds to a varied immune functional activity, and the activity level can be pr
by the aforementioned NMF approach.  
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