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Abbreviations: CD: Crohn’s disease, CH25H: cholesterol 25-hydroxylase, COL: collagen, 29 

COPD: chronic obstructive pulmonary disease DSS: dextran sodium sulfate, ECM: 30 

extracellular matrix, GAPDH: glyceraldehyde 3-phosphate dehydrogenase, HC: 31 

hydroxycholesterol, HYP: hydroxyproline, IBD: Inflammatory bowel disease, IL: interleukin, 32 

LPS: lipopolysaccharide, MMP: matrix metalloproteinase, SMA: smooth muscle actin, TGF: 33 

transforming growth factor, TIMP: tissue inhibitor of metalloproteinases, TLR: toll like 34 

receptor, UC: ulcerative colitis, WT: wildtype  35 
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Abstract  36 

Intestinal fibrosis and stenosis are common complications of Crohn’s disease (CD), frequently 37 

requiring surgery. Anti-inflammatory strategies can only partially prevent fibrosis; hence, 38 

anti-fibrotic therapies remain an unmet clinical need. Oxysterols are oxidized cholesterol 39 

derivatives, with important roles in various biological processes. The enzyme cholesterol 25-40 

hydroxylase (CH25H) converts cholesterol to 25-hydroxycholesterol (25-HC), which 41 

modulates immune responses and oxidative stress. In human intestinal samples from CD 42 

patients we found a strong correlation of CH25H mRNA expression with the expression of 43 

fibrosis markers. We demonstrate reduced intestinal fibrosis in mice deficient for the CH25H 44 

enzyme using the sodium dextran sulfate (DSS)-induced chronic colitis model. Additionally, 45 

using a heterotopic transplantation model of intestinal fibrosis, we demonstrate reduced 46 

collagen deposition and lower concentrations of hydroxyproline in CH25H knockouts. In the 47 

heterotopic transplant model, CH25H was expressed in fibroblasts. Taken together, our 48 

findings indicate an involvement of oxysterol synthesis in the pathogenesis of intestinal 49 

fibrosis. 50 

 51 
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Introduction  55 

Crohn’s disease (CD) is a major form of inflammatory bowel disease (IBD), characterized by 56 

chronic discontinuous inflammatory lesions. Inflammation in CD is typically transmural and 57 

can affect the whole gastrointestinal tract with a preference for the small intestine. Common 58 

complications in CD patients include perforations of the gut wall (fistulae and abscesses) as 59 

well as intestinal fibrosis and strictures with narrowing of the intestinal lumen. More than 60 

60% of CD patients have to undergo surgery within 20 years following the initial diagnosis[1] 61 

and recurrent disease requires more surgical procedures in at least 50% of the patients after 62 

the first operation[2, 3]. The second major form of IBD, ulcerative colitis (UC), characterized 63 

by continuous inflammatory lesions of the colon, has once been considered a non-fibrotic 64 

disease, but recent evidence indicates some degree of submucosal fibrosis in up to 100% of 65 

UC colectomy specimens[4, 5] and the degree of fibrosis seems to be proportional to the 66 

degree of chronic but not active inflammation[6]. 67 

Currently, no drugs have been approved for treatment or prevention of intestinal fibrosis[7, 8]. 68 

Anti-inflammatory medications including anti-tumour necrosis factor (TNF) antibodies or 69 

immunosuppressants, are only partially effective in preventing fibrosis[9] and new preventive 70 

and therapeutic strategies are therefore urgently needed.  71 

On a molecular level, fibrosis is characterized by excessive accumulation of extracellular 72 

matrix (ECM) components including collagen and laminin, replacing the original tissue and 73 

leading to stiffening and loss of normal function[10, 11]. Transforming growth factor-β 74 

(TGF)-β is a key driver of fibrosis, promoting differentiation of fibroblasts to myofibroblast, 75 

indicated by expression of α-smooth muscle actin (SMA)[12, 13]. Myofibroblasts are the 76 

main effector cells for fibrosis and mainly responsible for ECM deposition[14-16]. On the 77 

other hand, myofibroblasts also synthesize matrix metalloproteinases (MMPs) as ECM 78 

degrading enzymes and their inhibitors (tissue inhibitor of MMPs, TIMP). Myofibroblasts can 79 
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derive from the local fibroblast pool; however, epithelial, endothelial, hematopoietic cells, or 80 

pericytes can also differentiate into myofibroblasts[16]. Nevertheless, the chain of events 81 

leading to intestinal fibrosis is insufficiently understood. 82 

Studying the pathophysiology of intestinal fibrosis has been limited by the lack of a bona fide 83 

animal model. Chronic dextran sodium sulfate (DSS) colitis is frequently used as a fibrosis 84 

model [17, 18], even though key aspects of CD associated intestinal fibrosis, such as 85 

occlusion of the intestinal lumen are not observed in this model. Recently, we established and 86 

characterized a murine heterotopic transplant model, where small intestinal sections are 87 

transplanted into the neck fold of recipient mice[19, 20]. In the transplanted sections, the 88 

lumen progressively occludes, accompanied by expression of TGF-β and α-SMA, as well as 89 

collagen deposition in the extracellular matrix. In this model, we previously demonstrated that 90 

pirfenidone, an anti-inflammatory and anti-fibrotic drug approved for the treatment of 91 

idiopathic pulmonary fibrosis, was able to reduce fibrosis[20].   92 

Oxysterols are increasingly recognized as immune-modulatory molecules. 25-93 

hydroxycholesterol (25-HC) is part of the rapid innate immune response and an efficient 94 

defence molecule. 25-HC can induce macrophage activation[21-23], T cell 95 

differentiation[24], production of IL-8[25-27] as well as IL-6[23] and was shown to have 96 

strong antiviral activity against many enveloped viruses[28-30]. Furthermore, Dang and 97 

colleagues recently demonstrated a critical role of 25-HC in inhibiting activation of the DNA 98 

sensor protein AIM2, preventing spurious AIM2 inflammasome activation[31]. Cholesterol 99 

25-hydroxylase (CH25H) is the key enzyme mediating hydroxylation of cholesterol to 25-100 

HC[32]. 25-HC is rapidly produced in vivo upon immune stimulation by toll like receptor 101 

(TLR) agonists including lipopolysaccharide (LPS) and poly(I:C)[28, 30, 33, 34]. 25-HC 102 

production was shown to be increased in the airways of patients with chronic obstructive 103 

pulmonary disease (COPD) and correlated with the degree of neutrophilic infiltration[35]. 25-104 
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HC can be further hydroxylated to di-hydroxy cholesterols (e.g. 7α, 25-HC) which have been 105 

shown to act as chemoattractants for cells of the adaptive and innate immune system[36, 37].  106 

Recently, CH25H expression was shown to be upregulated in primary lung fibroblasts in 107 

response to activated eosinophils, suggesting CH25H activation in chronic lung diseases 108 

including COPD[38]. Pro-fibrotic effects of the CH25H product 25-HC have been 109 

demonstrated in vitro: In a tissue culture model using human fetal lung fibroblasts (HLF), 25-110 

HC induced nuclear factor-κB (NF-κB) activation with subsequent release of TGF-β, leading 111 

to myofibroblast formation, MMP-2 and 9 release, SMA expression and collagen 112 

production[39]. However, the role of 25-HC in intestinal inflammation and fibrosis has not 113 

been addressed. In this study, we aimed to investigate the role of the enzyme CH25H in the 114 

development of intestinal fibrosis.  115 

  116 
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Results 117 

CH25H mRNA expression is a marker of fibrosis in intestinal samples of CD patients  118 

To test for a role of the oxysterol synthesiting enzyme CH25H in CD associated fibrosis, 119 

CH25H mRNA expression was measured in human intestinal surgical samples. We 120 

investigated terminal ileum samples from CD patients undergoing ileocecal resection due to 121 

stenosis. Samples macroscopically affected by fibrosis were compared to the proximal ileal 122 

resection margin which showed no macroscopic signs of fibrosis or inflammation. Healthy 123 

tissue from cancer-free resection margins of colon adenocarcinoma patients undergoing right-124 

sided hemicolectomy was used as additional control (Table 1). Representative Sirius red 125 

staining pictures illustrate increased collagen deposition in fibrotic areas of CD patients 126 

(Figure 1A). We observed a gradual increase of CH25H mRNA expression from control 127 

tissue to non-fibrotic CD tissue and to fibrotic areas from the same patients (p<0.05, Figure 128 

1B). Thereby, mRNA levels of CH25H strongly correlated with the expression levels of 129 

fibrosis markers including COL-1 and -3, SMA and TGF-β (Figure 1C-F), confirming the 130 

association of CH25H expression with intestinal fibrosis in the human intestine. 131 

Reduced intestinal fibrosis in mice with deficient 25-hydroxycholesterol synthesis  132 

To further investigate the role of CH25H in intestinal fibrosis, we investigated whether 133 

absence of CH25H would reduce fibrosis in dextran sodium sulfate (DSS)-induced chronic 134 

colitis, a well-established model of intestinal inflammation, typically associated with high 135 

levels of intestinal fibrosis [17, 18]. For this aim, we induced chronic colon inflammation and 136 

fibrosis in WT and Ch25h-/- littermate mice with four cycles of 7 days 2.5% DSS in drinking 137 

water followed by a 10-day recovery period with normal drinking water. Collagen deposition 138 

was determined by Sirius red staining and analysis under transmission light microscopy 139 

(Figure 2A). The collagen layer was significantly thinner in Ch25h-/- mice compared to WT 140 
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littermate controls (Figure 2B, water animals: WT: 8.5 µm ± 2.1, Ch25h-/-: 8.7 µm ± 0.8 n.s., 141 

DSS animals: WT: 22.4 µm ± 7.2, Ch25h-/-: 11.7 µm ± 2.6, p= 0.008). Reduced collagen 142 

deposition in Ch25h knockout mice was confirmed by automated quantification of the 143 

collagen layer area (Figure 2C). Additionally, mRNA expression levels for fibrosis markers 144 

such as Tgf-β, collagen type 3 (Col-3) and Timp-1 were significantly lower in the colon of 145 

Ch25h-/- animals and a clear trend for lower mRNA expression of collagen type 1 (Col-1) and 146 

lysyl oxidase homolog 2 (Loxl-2) in CH25H-deficient mice was found (Figure 2D-H). 147 

Expression levels of Ch25h were increased in DSS treated animals compared to water 148 

controls (Figure 2I).  149 

Of note, thinner collagen layer and lower expression levels of fibrosis markers (Tgf-β, Col-3 150 

and Timp-1) upon Ch25h knockout were not due to reduced inflammation: when colon 151 

inflammation was analysed in H/E stained colon sections, the histology score quantifying the 152 

inflammatory infiltrate and the epithelial damage, was even higher in Ch25h-/- mice compared 153 

to WT littermates (Figure 3A). Further, macroscopic aspects of intestinal inflammation such 154 

as the murine endoscopic index of colitis severity (MEICS) and spleen weight did not differ 155 

between both genotypes (Figure 3B). In summary, in chronic DSS colitis, intestinal collagen 156 

deposition was reduced in the absence of CH25H, independent from effects of CH25H 157 

knockout on intestinal inflammation. 158 

Reduced intestinal fibrosis in the absence of CH25H in a heterotopic transplant model of 159 

intestinal fibrosis  160 

To confirm a role of CH25H in intestinal fibrosis in an inflammation-independent model, we 161 

employed a recently developed heterotopic transplant model of intestinal fibrosis[19, 20]. 162 

Sections of small intestine from either CH25H knockout (Ch25h-/-) mice or their wildtype 163 

littermate controls (WT), were transplanted subcutaneously into the neck of recipient mice of 164 

the same genotype[19, 20]. Non-transplanted small bowel sections from Ch25h-/- mice and 165 
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WT littermates were used as controls (day 0). Seven days after surgery, the intestinal grafts 166 

were collected for analysis (day 7) and collagen deposition was determined by Sirius red 167 

staining under transmission light microscopy. At baseline (day 0), cross sections of WT and 168 

Ch25h-/- were histologically indistinguishable with intact epithelial crypts and a thin collagen 169 

layer. 7 days post-transplantation, destruction of intestinal epithelial layer, occlusion of the 170 

intestinal lumen and a significantly thicker collagen layer was observed[19, 20] (Figure 4A).  171 

The development of intestinal fibrosis was significantly reduced in mice deficient for CH25H 172 

indicated by a significantly thinner collagen layer compared to WT littermate controls (Figure 173 

4A, B; day 0: WT: 8.5 µm ± 0.7, Ch25h-/-: 8.3 µm ± 1.5 n.s., day 7: WT 15.0 µm ± 3.1, 174 

Ch25h-/-: 12.1 µm ± 2.3, p= 0.01). A thinner collagen deposition in Ch25h knockout mice was 175 

confirmed by polarized light microscopy with automated image analysis and quantification of 176 

the collagen layer area (Figure 4C, D). Furthermore, concentration of the collagen metabolite 177 

hydroxyproline was significantly lower in Ch25h knockout intestinal transplants compared to 178 

WT littermate controls (Figure 4E).  179 

Ch25h mRNA expression was significantly increased in fibrotic small bowel resections 7 180 

days after transplantation compared to freshly isolated intestine (Figure 5A). Similarly, 181 

fibrosis markers including Col-1 and Col-3, Timp-1 and Loxl-2 were induced 7 days after 182 

transplantation compared to day 0 (Figure 5B-D). Ch25h-/- animals displayed a non-183 

significant trend for reduced expression of fibrosis markers compared to WT controls at day 7 184 

(Figure 5B-D). TGF-β protein levels were decreased in Ch25h knockout as compared to WT 185 

mice, in line with reduced stimulation of profibrotic pathways upon CH25H deficiency 186 

(Figure 5E-F). Thus, in agreement with the DSS-induced chronic colitis model, our 187 

heterotopic transplant model confirms reduced intestinal fibrosis in the absence of CH25H. 188 
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Recruitment of immune cells into fibrotic small intestine in wildtype and Ch25h-/- 189 

animals 190 

To address changes in immune cells infiltrating the intestinal grafts, lamina propria 191 

mononuclear cells were isolated from the grafts 7 days after surgery and an explorative mass 192 

cytometry (Cytometry by Time of Flight, CyTOF) analysis with a broad marker panel (Table 193 

2) was performed. Cells were automatically clustered based on similarity of surface marker 194 

expression. The immune cell infiltrate was dominated by neutrophils, with a lower fraction of 195 

T cells, dendritic cells, monocytes and NK cells (Figure 6A, B). No significant differences 196 

between WT and Ch25h-/- animals were detected for the investigated immune cell populations 197 

(Figure 6C). Additionally, histological analysis of IL-17 revealed no differences in IL-17 198 

expression between WT and Ch25h-/- grafts (Supplementary Figure 1). 199 

To determine the location of Ch25h mRNA expression in the small intestine, RNA in situ 200 

hybridization using fixed-frozen sections of intestinal grafts and freshly isolated intestines 201 

was performed. Ch25h mRNA expression was detected in freshly isolated intestines from WT 202 

mice and the graft at 7 days after transplantation (Figure 7A, B, Supplementary Figure 2). The 203 

Ch25h signal appears to be cytoplasmic with the formation of small clusters. Ch25h 204 

expression was observed in fibroblasts demarcating the necrotic former mucosa layer, but 205 

remains of epithelial crypts were not found in the demarcation zone. The Ch25h-expresing, 206 

spindle shaped fibroblasts are arranged in a band-like fascicle with large ovoid nuclei 207 

exhibiting a thinly dispersed chromatin structure and a delicate nuclear membrane without the 208 

indentations typically found in the nuclei of histiocytes (Figure 7B, arrows). In contrast, 209 

Ch25h is not expressed in the inflammatory infiltrate, which mainly consists of neutrophils 210 

showing characteristic segmented nuclei (Figure 7B, double arrows). No Ch25h expressing 211 

lymphocytes were found.  212 
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25-HC does not induce myofibroblast differentiation in vitro 213 

To address direct effects of the CH25H product 25-HC on fibroblasts, we performed cell 214 

culture experiments using primary murine intestinal fibroblasts using a protocol similar to a 215 

previous study in a human lung fetal fibroblast cell line (HFL-1) [39]. Addition of TGF-β 216 

resulted in increased α-SMA protein expression in intestinal fibroblasts. In contrast, exposure 217 

to 25-HC did not affect α-SMA expression at physiological 25-HC concentrations of 0.001-218 

0.1 µM (Figure 7C). Similarly, addition of 25-HC to 3T3 cells did not cause a significant 219 

increase of α-SMA expression at concentrations of 0.001-0.1 µM (Figure 7C).  220 
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Discussion 221 

In this study, we demonstrate a role of the oxysterol synthesizing enzyme CH25H in the 222 

pathogenesis of intestinal fibrosis. mRNA expression of CH25H was upregulated in human 223 

intestinal fibrotic tissue of CD patients compared to healthy controls and we found a positive 224 

correlation between expression of various fibrosis mediators and CH25H expression. Further, 225 

we demonstrate a contribution of CH25H to the development of intestinal fibrosis in two 226 

murine fibrosis models: in the DSS-induced colitis model, which is commonly used as a 227 

model of chronic intestinal inflammation and fibrosis[17, 18], mice lacking the CH25H 228 

enzyme showed less collagen deposition and lower mRNA levels of fibrosis mediators. In the 229 

recently developed heterotopic transplantation model, lack of CH25H also reduced intestinal 230 

collagen deposition as well as levels of the collagen metabolite HYP and the crucial pro-231 

fibrotic factor TGF-β[40, 41]. 232 

In several aspects, the newly developed heterotopic transplantation model complements the 233 

established DSS-induced chronic model. In the DSS-induced model, fibrosis is induced by 234 

repeated disruption of the integrity of the mucosal barrier, resulting in bacterial translocation 235 

and lymphocyte infiltration, which promotes chronic colon inflammation. In contrast, in the 236 

heterotopic transplantation model, fibrosis is associated with ischemia and hypoxia, 237 

independent from inflammatory processes. Here, fibrosis is reliably induced within 7 days 238 

after transplantation. This new model reflects important aspects of the human disease such as 239 

occlusion of the lumen, expression of TGF-β and α-SMA, as well as collagen deposition in 240 

the extracellular matrix[20]. Bacterial translocation and the pathogen associated molecular 241 

pattern (PAMP)-associated signalling is not a prerequisite of fibrosis in this model as collagen 242 

deposition is also increased following transplantation of small bowel from germfree mice and 243 

MyD88 deficient mice (M. Hausmann unpublished observations). In the heterotopic 244 

transplant model, fibrosis is also observed in the absence of B and T cells in RAG2 deficient 245 
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mice (M. Hausmann, unpublished observations). Robust reduction of fibrosis upon CH25H 246 

knockout in two independent fibrosis models clearly strengthens the validity of our findings. 247 

Our data demonstrate Ch25h expression in local fibroblasts in intestinal grafts, which 248 

potentially leads to local 25-HC production by fibroblasts. However, it remains unclear, 249 

which cell(s) respond to 25-HC during fibrosis induction. In a previous in vitro study, 25-HC 250 

induced nuclear factor-κB (NF-κB) activation, subsequent release of TGF-β in human fetal 251 

lung fibroblasts, ultimately leading to α-SMA expression and myofibroblast 252 

differentiation[39]. In support of this finding, activation of NF-κB by 25-HC was also 253 

demonstrated in primary rat hepatocytes and in a human monocytic cell line[42, 43]. 254 

However, in our study, addition of 25-HC to 3T3 fibroblasts or primary murine intestinal 255 

fibroblasts failed to induce α-SMA expression. Therefore, in the intestine, cells different from 256 

fibroblasts might be responsible for TGF-β production upon 25-HC exposure.  257 

Previous reports demonstrated that 25-HC inhibits Th17 cell differentiation[24, 44], and 258 

Ch25h knockout mice have higher numbers of Th17 cells in peripheral lymph nodes and the 259 

spleen[45]. Th17 derived IL-17 is a key driver of fibrosis in different organs, including the 260 

gut[46-48]. However, histological analysis and quantification of IL-17 revealed no differences 261 

between WT and Ch25h-/- intestinal grafts. In line with these results, the number of CD4 262 

positive cells in grafts from WT and Ch25h knockout animals was similar. Overall, the 263 

inflammatory infiltrate in intestinal grafts could not be distinguished between mice of both 264 

genotypes, which is well in line with involvement of CH25H in profibrotic pathways 265 

independent from intestinal inflammation. Our analysis revealed no decrease in intestinal 266 

inflammation between wildtype and Ch25h-/- littermate controls in chronic DSS colitis (Figure 267 

3) and acute DSS colitis (unpublished observations), which further supports that CH25H 268 

affects fibrosis in an inflammation-independent manner.  269 
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The CH25H product 25-HC has been shown to modulate several immune responses[21, 23, 270 

25, 28, 29, 33]. 25-HC acts as an acute defence molecule and a master regulator of 271 

inflammation by increasing antiviral responses[28-30, 49] and decreasing antibacterial 272 

defence mechanisms[33, 44]. Our study suggests an additional role of the oxysterol 25-HC as 273 

a mediator of intestinal fibrosis. The induction of wound healing, which potentially leads to 274 

fibrosis, might thus start very early in the inflammatory cascade by the acute immune-275 

modulatory activity of 25-HC, which is rapidly induced after an inflammatory stimulus[50].  276 

Despite advances in the treatment of CD associated inflammation, a specific intestinal anti-277 

fibrotic therapy remains an unmet clinical need [7, 8]. Our findings clearly indicate that the 278 

hydroxylase CH25H is involved in intestinal fibrosis, making CH25H a potential promising 279 

novel therapeutic target to prevent intestinal fibrosis, but additional studies are required to 280 

elucidate the exact mechanism how CH25H promotes fibrosis. 281 

  282 
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Materials and Methods 283 

Human tissue from patients with CD and controls 284 

Intestinal tissue was obtained from patients with CD undergoing ileocecal resection due to 285 

stenosis in the terminal ileum. Non-fibrotic samples originate from the margin of the 286 

resections and fibrotic samples from the thickened fibrosis-affected region. Healthy control 287 

samples were obtained from patients undergoing right-sided hemicolectomy due to 288 

adenocarcinoma (non-cancer affected ileal resection margin). Immediately after resection, 289 

samples were fixed in Tissue-Tek® (O.C.T. Compound, Sakura® Finetek), frozen in 290 

isopentane on dry ice and stored at -80°C for RNA extraction.  291 

Animals 292 

CH25H-deficient mice (Ch25h-/-) in a C57BL/6 background were kindly provided by Novartis 293 

Institutes for BioMedical Research[33] and bred in our animal facility with C57BL/6 mice to 294 

generate Ch25h+/- mice. Ch25h+/- were then crossed to obtain Ch25h-/- and Ch25h+/+ 295 

(wildtype) littermates. The animals received standard laboratory mouse food and water ad 296 

libitum. They were housed under specific pathogen-free (SPF) conditions in individually 297 

ventilated cages. 7- to 10-week old female littermates were used for all studies.  298 

DSS-induced chronic colitis  299 

DSS-induced chronic colitis was induced by administration of 4 cycles of treatment with DSS 300 

(MP Biomedicals). Every cycle consisted of 7 days of 2.5% DSS followed by 10 days of 301 

normal drinking water. Mice were killed 4 weeks after the last DSS cycle. Colonoscopy was 302 

scored using the murine endoscopic index of colitis severity (MEICS) scoring system [51]. 303 

Histological scoring was performed on H&E-stained distal colon sections as described 304 

previously [51, 52].  305 
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Heterotopic intestinal transplant model  306 

The heterotopic mouse intestinal transplant model is an adaptation of the transplantation 307 

model of intestinal fibrosis in rats, which have both been described in detail previsously[19, 308 

20]. Briefly, donor small bowel was resected and transplanted subcutaneously into the neck of 309 

a recipient animal of the same gender and genotype. A single dose of Cefazolin (Kefzol, 1g 310 

diluted in 2.5 ml aqua dest.) was applied i.p. as infection prophylaxis. The time interval 311 

between graft resection and subsequent implantation was less than 15 minutes. No anesthesia-312 

related recipient death, post-transplantation recipient death or evidence of infection was 313 

observed in any of the animals. Intestinal grafts were removed seven days after 314 

transplantation. At explantation, each graft was divided into three equal segments. One 315 

segment was fixed in 4% formalin and prepared for histopathological assessment. The 316 

remaining segments were snap frozen in liquid nitrogen and stored at -80°C for RNA 317 

extraction and hydroxyproline (HYP) assay, respectively.  318 

For each sample, 10 mg of snap frozen tissue was homogenized with 100 µl of ultrapure 319 

water in M tubes (Miltenyi Biotec) using a gentleMACS tissue homogenizer (Miltenyi 320 

Biotec). Graft collagen content was evaluated using the HYP Assay Kit (Sigma-Aldrich) 321 

according to the manufacturer’s instructions. HYP concentration is determined by the reaction 322 

of 4-(Dimethylamino)benzaldehyde (DMAB) with oxidized HYP, resulting in a colorimetric 323 

product (560 nm), proportional to the presence of HYP. All samples and standards were run in 324 

duplicate and absorbance at 560 nm was detected on a SpectraMax M2 fluorescence 325 

microplate reader using SoftMax Pro version 5 Software (Molecular Devices). 326 

RNA isolation, cDNA synthesis and real-time-PCR 327 

Total RNA was isolated using the RNeasy Plus Mini Kit (QIAGEN). For mouse samples, 328 

lysis buffer from the kit was added to snap frozen resections, and samples were shredded in M 329 
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tubes (Miltenyi Biotec) in a gentleMACS tissue homogenizer (Miltenyi Biotec). For human 330 

samples 10 µm thick tissue tek sections, containing the full thickness of the intestinal wall 331 

(confirmed by H/E staining), were cut using a cryostat. Sections were dissolved in TRIzol 332 

(Invitrogen, Life Technologies). Total RNA was prepared according to the manufacturer’s 333 

instructions. On-column DNase digestion with RDD buffer (QIAGEN) was performed for 15 334 

min at room temperature. RNA concentration was determined by absorbance at 260 and 280 335 

nm. Complementary DNA (cDNA) synthesis was performed using a High-Capacity cDNA 336 

Reverse Transcription Kit (Applied Biosystems) following the manufacturer’s instructions. 337 

Real-time PCR was performed using the TaqMan Fast Universal Master Mix (Applied 338 

Biosystems) on a Fast 7900HT Real-Time PCR System and results analysed with the SDS 339 

software (Applied Biosystems). The real-time PCR started with an initial enzyme activation 340 

step (5 minutes, 95°C), followed by 45 cycles consisting of a denaturing (95°C, 15 seconds) 341 

and an annealing/extending (60°C, 1min) step. For each sample triplicates were measured and 342 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as endogenous control. 343 

Results were analysed by the ∆∆CT method. All gene expression assays were obtained from 344 

Life Technologies. 345 

Analysis of microscopy images 346 

Sections were examined using an AxioCam HRc (Zeiss) on a Zeiss Axio Imager.Z2 347 

microscope with AxioVision release 4.8.2 software. Collagen layer thickness was measured 348 

on Sirius-red stained slides in at least eight fields in representative areas at 100-fold 349 

magnification by an investigator blinded to the experiment. For the automated microscopy 350 

analysis Sirius Red-stained slides were analysed by bright-field microscopy with an additional 351 

polarizing filter. Under polarized light Sirius Red-stained collagen assumes a palette of 352 

colours ranging from green to red based on the fibrotic maturation process. The polarized 353 

light images were analysed using MATLAB software, version 8.6 R2015b (MathWorks). 354 
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Customized scripts identified the collagen layer of each image by clustering pixels of similar 355 

colours in two clusters using the k-means clustering algorithm. 356 

Western blot 357 

Tissue was lysed in M-PER cell lysis buffer (Thermo Fisher Scientific). Protein levels were 358 

determined by bicinchoninic acid (BCA) assay according to the manufacturer’s instructions 359 

and equal amounts of protein were loaded onto SDS/PAGE gels. Western blots were 360 

performed using monoclonal rabbit anti-mouse TGF-β antibodies (3711S, Bioconcept, 361 

1:1000), polyclonal rabbit anti-mouse β-actin antibodies (4970, 13E5, Cell Signaling, 362 

1:2000), polyclonal goat anti-mouse α-SMA antibodies (PA5-18292, Thermo Fisher 363 

Scientific, undiluted) and the horseradish peroxidase-conjugated secondary goat anti-rabbit 364 

antibody (sc-2004, Santa Cruz, 1:2000). Luminescence of Western blots was quantified 365 

densitometrically with ImageJ software. 366 

Mass cytometry analysis 367 

Data were acquired on a CyTOF-2.1 mass cytometer (Fluidigm) with an acquisition flow rate 368 

of 0.03 ml/min. The following signal processing settings were used: default thresholding 369 

scheme, lower convolution threshold of 800 intensity units (IU), minimum event duration of 8 370 

pushes, maximum event duration of 100 pushes, noise reduction active. All samples were 371 

spiked with EQ four-element calibration beads during acquisition (Fluidigm; cat. no. 201078) 372 

and resulting FCS (Flow Cytometry Standard) files were normalized with the built-in 373 

normalization algorithm (Helios software version 6.5.358) to account for intra- and 374 

intersample intensity measurement variability. The data were analysed and visualized with 375 

Cytobank software (Cytobank Inc.) and software packages for R programming language 376 

flowCore, flowSOM and ggplot2. 377 
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RNA in situ hybridization (RNAscope) 378 

Ch25h mRNA localization in the murine small intestine was assessed by RNA in situ 379 

hybridization. Fresh small intestine sections and intestine grafts were harvested and incubated 380 

for 24 hours in 4% paraformaldehyde/PBS (PFA/PBS). The PFA/PBS solution was replaced 381 

by 10% sucrose in PBS up to the tissue sink to the bottom of the container. This step was 382 

repeated with 20% and 30% sucrose solutions and the tissue was embedded in Optimal 383 

Cutting Temperature (OCT). Sections (3-4 µm) were prepared on Superfrost microscope 384 

slides (Thermo Fisher Scientific, Braunschweig, Germany). The RNA in situ hybridization 385 

was performed using the RNAscope 2.5 HD assay, Red (Advanced Cell Diagnostics, 386 

Hayward, CA, USA) following the manufacturer’s instructions. In brief, slides were 387 

rehydrated in PBS and were subjected to pre-treatment solutions using the recommended 388 

incubation time and temperature. Next, slides were incubated for 2h with a Ch25h probe 389 

designed and provided by the supplier. The tissue and assay quality were tested with a 390 

positive control probe Peptidyl-prolyl cis-trans isomerase B (Ppib, data not shown) and a 391 

negative control probe for the bacterial gene Dihydrodipicolinate reductase (Dapb). Four 392 

signal amplification steps were carried out at 40°C followed by two additional steps at room 393 

temperature with the appropriate solutions. The fifth amplification step was extended from 30 394 

min to one hour in order to enhance the chromogenic signal. Detection of chromogenic 395 

signals was achieved by using the Fast-Red reagent for 10 min. Slides were counterstained 396 

with hematoxylin I and mounted with VectaMount Mounting Medium HT-5000 (Vector 397 

Laboratories, Burlingame, CA, USA). 398 

In vitro experiments 399 

3T3 cells were maintained in high glucose Dulbecco’s Modified Eagle Medium (DMEM, Life 400 

Technologies) supplemented with 10% fetal calf serum (FCS) and kept at 37°C in a 401 

humidified atmosphere containing 5% CO2. Murine primary fibroblasts were isolated and 402 
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cultured as described previously[53]. The isolated cells were cultured in 25 cm2 culture flasks 403 

(Costar, Bodenheim, Germany) with DMEM containing 10% FCS, penicillin (100 IE/mL), 404 

streptomycin (100 g/mL), ciprofloxacin (8 g/mL), gentamycin (50 g/mL), and amphotericin B 405 

(1 g/mL) at 37°C in a humidified atmosphere containing 10% CO2. Non-adherent cells were 406 

removed. Once fibroblasts reached 90% confluence, FCS free DMEM-medium was added 407 

and they were starved for 24 h prior to compound treatment. Cells were stimulated by 408 

treatment for 72 h with 5 ng/ml TGF-β (130-095-067, Miltenyi Biotec), 0.001-10 µM 25-HC 409 

(H1015, Sigma-Aldrich) or a combination of the two compounds as indicated.  410 

Statistical analysis 411 

Data are presented as mean ±SEM unless otherwise indicated. Significance was assessed 412 

using the Mann-Whitney U test or the unpaired t test with p < 0.05 considered statistically 413 

significant (***p < 0.001, **p < 0.01, *p < 0.05).  414 

Study approval 415 

For patient data, written informed consent was obtained for anonymous use of patient data 416 

and resected parts of human intestine according to the code of conduct for responsible use of 417 

surgical rest material (Research Code University Medical Center Groningen, 418 

http://www.rug.nl/umcg/research/documents/ research-code-info-umcg-nl.pdf, see Code goed 419 

gebruik voor gecodeerd lichaamsmateriaal). Mouse experiments were approved by the local 420 

animal welfare authority (Tierschutzkommision Zürich, Zurich, Switzerland; registration 421 

number ZH183/2014).   422 
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Figures Legend 637 

Figure 1: Upregulation of CH25H mRNA expression in human fibrotic tissue of patients 638 

with CD. 639 

(A) Representative images of Sirius-red stained human ileum samples from healthy controls 640 

(left panel) and CD patients in a non-fibrotic (middle panel) and in a fibrotic region (right 641 

panel). Scale bar: 2.5 mm. (B) Samples were analysed for CH25H mRNA expression and 642 

normalized to GAPDH. CH25H mRNA level was correlated with mRNA levels of (C) COL1, 643 

(D) COL3 (E) SMA and (F) TGFB. White: CD fibrotic, (n=6), grey: CD non fibrotic (n=7), 644 

black: healthy control (n=4). Statistical analysis: B: Mann-Whitney U test; * = p < 0.05. CD, 645 

Crohn’s disease. C-E: Correlation analysis: Spearman R (non-parametric correlation). 646 

 647 

Figure 2: Reduced fibrosis in Ch25h-/- mice in chronic DSS colitis. 648 

Ch25h-/- and WT female mice were treated for four cycles with 2.5% DSS or water (controls). 649 

(A) Representative transmission light images of Sirius-red stained intestinal sections of WT 650 

and Ch25h-/- DSS treated mice and water littermate controls. Scale bar: 50 µm. (B) Collagen 651 

layer thickness calculated from ≥8 positions per graft in representative areas of Sirius-red 652 

stained slides with transmission light at 200-fold magnification. (C) Quantification of 653 

collagen layer area in DSS treated animals using customized Matlab scripts. The colon was 654 

analysed for mRNA expression of (D) Tgf-beta, (E) Col3, (F) Col1, (G) Loxl2, (H) Timp1 655 

and (I) Ch25h (normalized to Gapdh). Expression levels are normalized to water-treated 656 

wildtype controls. Statistical analysis: Mann-Whitney U test; * = p<0.05. n = 4-6 per group.  657 

 658 

 659 

 660 
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Figure 3: Reduced levels of intestinal fibrosis in CH25H deficient mice is not due to 661 

reduced inflammation in chronic DSS colitis.  662 

Analysis of colon inflammation in H/E stained colon sections. (A) Score of the inflammatory 663 

infiltrate (left panel), score for epithelial damage (middle panel) and total histology score 664 

(sum of both partial scores, right panel). (B) Murine endoscopic index of colitis severity 665 

(MEICS) score (left panel) and spleen weight (right panel). (C) Representative H/E-stained 666 

sections of the distal colon of water control mice (left panel) and DSS treated mice. DSS, 667 

dextran sodium sulphate; H/E: hematoxylin and eosin. 668 

 669 

Figure 4: Reduced levels of intestinal fibrosis in CH25H deficient mice in the heterotopic 670 

transplantation model. 671 

Wildtype and Ch25h-/- animals were tested in a heterotopic transplantation model for 672 

intestinal fibrosis. (A) Left panels: Overview (low resolution image) of Sirius red-stained 673 

intestinal grafts of WT and Ch25h-/- mice at day 7 after transplantation. Scale bar: 1 mm. 674 

Middle panels: Representative transmission light images demonstrating increased collagen 675 

layer thickness in grafts at day 7 compared to freshly isolated intestines at day 0. Upper 676 

panels: WT littermate controls. Lower panels: Ch25h-/-. Scale bar: 50 µm. Right panels: High 677 

resolution inserts illustrating measurements of collagen layer thickness. (B) Collagen layer 678 

thickness calculated from ≥8 positions per graft in representative areas of Sirius-red stained 679 

slides with transmission light at 200-fold magnification. (C) Image analysis for identification 680 

of collagen layer areas using Matlab custom made scripts. Left panel: Original polarized 200x 681 

light microscopy image. Middle panel: Collagen layer area. Right panel: Remaining non-682 

collagen tissue. Scale bar: 50 µm. (D) Quantification of collagen layer area at day 7 post 683 

transplantation using the same strategy as in (C). (E) Collagen quantification with 684 

hydroxyproline assay. Day 0, freshly isolated intestine. Day 7, intestine 7 days post 685 
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transplantation. nWT day 0 = 3, nKO day 0 = 9, nWT day 7 = 8, nWT day 7 = 11. Statistical 686 

analysis: Mann-Whitney U test; *: p<0.05, **: p<0.01. Bars indicate mean ± SEM. WT, 687 

wildtype. CH25H, cholesterol 25 hydroxylase. HYP, hydroxyproline. 688 

 689 

Figure 5: Expression of intestinal fibrosis markers in wildtype and Ch25h-/- mice. 690 

Wildtype and Ch25h-/- mice were tested in a heterotopic intestinal transplant model. Freshly 691 

isolated intestines (day 0) and grafts 7 days after transplantation were analysed for mRNA 692 

expression of (A) Ch25h, (B) Col1, (C) Mmp9 and (D) Timp1 (normalized to Gapdh). (E, F) 693 

Analysis of protein expression of TGF-β by Western blot. Expression levels are normalized 694 

relative to freshly isolated intestine at day 0 and shown as mean ± SEM. Statistical analysis: 695 

A-D: Mann-Whitney U test; * = p<0.05, ** = p<0.01. nWT day 0 = 3, nKO day 0 = 9, nWT day 696 

7 = 8, nWT day 7 = 11. E-F: n = 4, Unpaired t test. 697 

 698 

Figure 6: Cells infiltrating the graft do not differ between wildtype and CH25H-deficient 699 

mice. 700 

Lamina propria infiltrating cells from grafts of wildtype and Ch25h-/- mice were harvested 7 701 

days after surgery and analysed by CyTOF. (A) Dimensionality-reduced projection of the 702 

entire phenotypical landscape was calculated using the tSNE algorithm with Barnes-Hut 703 

approximation (bhSNE). The color-coding represents staining intensity of the specified 704 

marker. (B) t-SNE maps of each experimental group; 250’000 randomly selected points are 705 

plotted. Overlaid in color are cluster designations computed by the Phenograph clustering 706 

algorithm. The represented clusters were manually constructed by merging the initial cluster 707 

output based on phenotypical similarity until the final number of 11 identifiable clusters was 708 

reached. (C) Bar plot showing the mean cluster frequencies and error bars representing 709 

standard error of the mean (SEM). nWT = 5, nKO = 5 710 
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Figure 7: Expression of Ch25h in fibroblasts in intestinal grafts 711 

(A) Representative images of the in situ hybridization (RNAscope) analysis of wildtype small 712 

intestine. Negative control (a probe for the bacterial gene dihydrodipicolinate reductase, 713 

Dapb, left panel) and Ch25h mRNA (middle panel) are demonstrated with the RNAscope 714 

signal shown in red. Right panel: High resolution of inserts of the RNAscope signal. Scale 715 

bar: 25 µm. (B) Representative images of the Ch25h RNAscope analysis of the intestinal 716 

grafts of WT mice at day 7 after transplantation, demonstrating accumulation of the CH25H 717 

signal in fibroblasts in the former mucosa layer. Scale bar left panel: 20 µm, middle panel: 50 718 

µm. The right panel shows inserts of the middle panel. Fibroblasts are indicated by arrows, 719 

neutrophils by a double arrow. (C) 3T3 cells (left panel) and primary mouse intestinal 720 

fibroblasts (right panel) were treated for 72 h with different concentrations of 25-HC and/or 721 

TGF-β as indicated. Samples were analysed for α-SMA protein levels by Western blot. 722 

Expression levels are normalized relative to the negative control and shown as mean ± SEM. 723 

Statistical analysis: Unpaired t test, the * is relative to the negative control; * = p<0.05, **: 724 

p<0.01, n = 2.  725 

 726 

Supplementary Figure 1: Intestinal grafts from wildtype and CH25H deficient mice do 727 

not differ regarding IL-17 expression. 728 

(A) IL-17 positive areas in intestinal grafts from wildtype and Ch25h-/- animals identified by 729 

automated image analysis using Matlab custom made scripts. The percentage of IL-17 730 

positive staining relative to the graft area is indicated. No significant differences were 731 

detected. nWT = 3, nKO = 2, Unpaired t test. (B) Representative IL-17 stained pictures; left 732 

panel: WT, right panel: Ch25h-/-. Scale bar: 50 µm. 733 

 734 

 735 
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Supplementary Figure 2: Specificity of Ch25h RNAscope staining 736 

 (A) Freshly isolated intestine of a Ch25h-/- mouse, demonstrating absence of Ch25h mRNA 737 

staining.  738 

 739 

  740 
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Table captions 741 

Table 1: Characteristics of patients with CD and controls. NA: Non-applicable 742 
 743 

Table 2: Antibodies used for CyTOF analysis. All antibodies were pre-labelled (Fluidigm). 744 
 745 
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 Crohn’s disease 
(n=8) 

Control 
(n=4) 

General   

Gender, % female 8 (100%) 2 (50%) 

Age at sample, years (mean, min-max) 34.7 (21.0-34.7) 73.1 (69.1-78.2) 

Disease duration, years, (mean, min-max) 8.6 (0.8-35.2) NA 

Montreal age at diagnosis (n (%))   
17-40 years (A2) 8 (100%) NA 

Montreal disease behavior (n (%))   

Stricturing disease (B2) 8 (100%) NA 

Disease location (n (%))   

Terminal ileum (L1) 4 (50%) NA 

Ileocolon (L3) 4 (50%) 

C-reactive protein before operation (n (%))   

C-reactive protein >5mg/L 2 (25%) NA 

C-reactive protein <5mg/L 4 (50%) 

Missing 2 (25%) 

Clinical disease activity before operation (n (%))   

Disease in remission 0 (0%) NA 
Mild disease 1 (12.5%) 

Moderate disease 4 (50%) 

Severe disease 3 (37.5%) 

Medication (n (%))   

Corticosteroids 4 (50%)  

Azathioprine/6-mercaptopurine 3 (37.5%) NA 

Anti-TNFα 1 (12.5%) 

Anti-IL12/23 1 (12.5%) 

 
Table 1: Characteristics of patients with Crohn’s disease and controls. NA: Non-applicable 
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Name Clone Reactivity Tag 

Ly6G 1A8 mouse 141Pr 

CD11c N418 mouse 142Nd 

CD115 AFS98 mouse 144Nd 

CD69 H1.2F3 mouse 145Nd 

CD45 30-F11 mouse 147Sm 

CD11b (MAC1) M1/70 mouse 148Nd 

CD19 6D5 mouse 149Sm 

Ly6C HK1.4 mouse 150Nd 

CD25 3C7 mouse 151Eu 

CD3e 145-2C11 mouse 152Sm 

CD335, NKp46 29A1.4 mouse 153Eu 

CD62L MEL-14 mouse 160Gd 

CCR7 4B12 mouse 163Dy 

CD8a 53-6.7 mouse 168Er 

TCRβ H57-597 mouse 169Tm 

NK1.1 PK136 mouse 170Er 

CD44 IM7 mouse, human 171Yb 

CD4 RM4-5 mouse 172Yb 

I-A/I-E M5/144 mouse 174Yb 

B220 RA3-6B2 mouse 176Yb 

 
Table 2: Antibodies used for CyTOF analysis. All antibodies were pre-labelled (Fluidigm). 
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