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Study Highlights: 

 

What is known: 

• The composition of the intestinal microbiota of pediatric Crohn’s disease patients is 

altered, and has low diversity 

• Antibiotics disturb the intestinal microbiota in an individualized fashion that may help 

explain different clinical responses 

• The combination of metronidazole and azithromycin (MET+AZ) is more effective than 

metronidazole alone (MET) for inducing disease remission in some CD patients 

 

What is new: 

• MET and MET+AZ cause distinct changes in the gut microbiota of pediatric CD patients 

• Each regimen induces a specific remission-associated microbiota community 

configuration 

• Disease remission after either antibiotic regimen is characterized by a higher abundance 

of Lactobacillus 
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Abstract (226 words; max permitted = 250) 

 

Objectives: The beneficial effects of antibiotics depend in part on the gut microbiota but are 

inadequately understood. We investigated the impact of metronidazole (MET) and 

metronidazole plus azithromycin (MET+AZ) on the microbiota in pediatric CD, and the use of 

microbiota features as classifiers or predictors of disease remission.  

 

Methods: 16S rRNA-based microbiota profiling was performed on stool samples from a 

multinational, randomized, controlled, longitudinal, 12-week trial of MET vs. MET+AZ in children 

with mild to moderate CD. Profiles were analyzed together with disease activity, and then used 

to construct Random Forest classification models to classify remission or predict treatment 

response.  

 

Results: Both MET and MET+AZ significantly decreased diversity of the microbiota and caused 

large treatment-specific shifts in microbiota structure at week 4. Disease remission was 

associated with a treatment-specific microbiota configuration. Random Forest models 

constructed from microbiota profiles pre- and during antibiotic treatment with metronidazole 

accurately classified disease remission in this treatment group (AUC of 0.879, 95% CI 0.683, 

0.9877; sensitivity 0.7778; specificity 1.000, P < 0.001). A Random Forest model trained on pre-

antibiotic microbiota profiles predicted disease remission at week 4 with modest accuracy (AUC 

of 0.8, P = 0.24 ). 

 

Conclusions: MET and MET+AZ antibiotic regimens lead to distinct gut microbiota structures at 

remission. It may be possible to classify and predict remission based in part on microbiota 

profiles, but larger cohorts will be needed to realize this goal.  
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INTRODUCTION  

The global incidence of Crohn’s disease (CD) has steadily risen over the past few 

decades, especially among pediatric patients (1). Large efforts are being made to identifying 

novel non-invasive biomarkers not only to monitor disease severity but also to predict 

therapeutic response in CD patients (2,3). 

 

Genome-wide association studies have identified a variety of risk loci within genes 

important for the maintenance of homeostasis with our commensal gut microbiota (4). In this 

regard, several studies in pediatric CD patients have described a state of microbiome 

‘dysbiosis’, with varying claims about disease-promoting or -ameliorating bacterial taxa (5-7) 

and about differences in bacterial diversity (8). Previous work showed that the magnitude of 

antibiotic effects on the microbiota differs among individuals, and that some taxa show 

interindividual variation in the response to a single antibiotic treatment (9). Similarly, several 

trials in adult CD found, in general, a benefit of antibiotic treatment, but with very heterogeneous 

results for the use of metronidazole, quinolones, and rifaximin (10).  

 

The goal of this study was to evaluate the impact of metronidazole (MET) and the 

combination of metronidazole and azithromycin (MET+AZ) on the intestinal microbiota of 

pediatric CD patients. We show that both antibiotic regimens led to a decrease in gut microbiota 

diversity, but also exerted a treatment-specific impact on the microbiota. Of note, we show that 

these two antibiotic regimens produced distinct alterations in microbiota structure associated 

with disease remission. We used machine-learning techniques to identify microbiota 

composition-based signatures associated with antibiotic treatment that might enable monitoring 

of disease and guide clinical decision making.  

 

METHODS  
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Study Design 

Seventy-four CD patients (age 5–18 years) were enrolled at 11 pediatric gastroenterology 

clinical sites in an investigator-blinded randomized controlled trial comparing the efficacy of 

MET+AZ versus MET therapy for the treatment of children with mild to moderate active CD (10 

< Pediatric Crohn's Disease Activity Index (PCDAI) ≤ 40) (National Institutes of Health 

NCT01596894). A complete description of the study design, laboratory and analysis methods, 

and primary outcomes was published previously (11). The treatment protocol was adapted from 

a report by Levine and Turner (12). Patients were enrolled in one of the two treatment arms with 

1:1 randomization, although 11 subjects with lack of response to MET therapy received open-

label azithromycin between weeks 4 and 8. These MET/MET+AZ subjects were treated as a 

separate group for analyses involving time points after week 4. Furthermore, 4 patients in the 

MET group, 5 patients in the MET+AZ group and 1 patient in the MET/MET+AZ group received 

steroids or biologics after week 4 at their physician’s direction due to inadequate response. Both 

MET and MET+AZ groups discontinued antibiotics after week 8, while the MET/MET+AZ group 

maintained their regimen to complete a total of 8 weeks. Disease activity was determined at 

weeks 0, 4, 8 and 12 using the PCDAI, when stool samples were collected for microbiota 

analysis. Clinical remission was defined as PCDAI < 10. All patients provided written informed 

consent, or assent when required, prior to participation. The study was conducted according to 

the principles of the Declaration of Helsinki. 

 

Microbiota Analysis 

Stool samples were collected and frozen on site at -20°C and then shipped to a central 

laboratory and stored at -80°C until further processing. DNA was extracted from ~200 mg stool 

using the QIAGEN DNeasy PowerSoil HTP 96 Kit (Cat #12955-4) following the manufacturer’s 

instructions, including a 2 x 10 minute bead-beating step using the Retsch 96 Well Plate Shaker 

at speed 20. The V4 region of the 16S rRNA gene was amplified using forward primer 515F (5′-

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/412890doi: bioRxiv preprint 

https://doi.org/10.1101/412890


 8

GTGCCAGCAGCCGCGGTAA-3′) with an error-correcting barcode and 806R (5′-

GGACTACCAGGGTATCTAAT-3′) (13). PCR products were then purified, pooled in equimolar 

concentrations, and sequenced on three 2 x 300 Illumina MiSeq paired-end runs using reagent 

kit v3. 

 

Raw reads were demultiplexed using the QIIME command 

split_libraries_fastq.py (QIIME version 1.9.1) and then quality trimmed using the 

DADA2 pipeline (dada2 version 1.1.1) in R (R version 3.2.4) (14). Briefly, forward reads were 

truncated to 220 bp, and reverse reads to 150 bp, and quality filtered with settings maxN=0, 

maxEE=2, truncQ=2. Following quality trimming, amplicon sequence variants (ASVs) were 

inferred using the DADA2 pipeline. Taxonomy was assigned to each ASV using the RDP 

classifier and the SILVA 16S rRNA database (SILVA nr version 132), and a phylogenetic tree 

was built from the ASVs using the phangorn R package (phangorn version 2.4.0). The ASV 

table, patient sample data, taxonomy assignments, phylogenetic tree, and ASV sequences were 

then bundled into a single phyloseq data object for further plotting and statistical analysis 

(phyloseq version 1.24.2) (15).  

 

Faith's Phylogenetic Diversity was calculated using the R package picante (picante 

version 1.7), and distance calculations and ordination plots were built using the phyloseq 

package. Hierarchical clustering of ASVs was performed using the hclust function in the 

stats R package (stats version 3.5.1). Differential abundance tests were carried out using 

the DESeq2 R package (DESeq2 version 1.20.0).  

 

Random Forest Modeling 

Machine learning analyses were performed using the caret and randomForest R packages 

(caret version 6.0.80, randomForest version 4.6.14). Prior to model building, the ASV 
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abundance was transformed using a variance stabilizing transformation to normalize for 

sequencing depth in the DESeq2 R package, as well as centered to reduce the influence of 

inter-individual variation. Models were constructed on microbiota data  from either weeks 4 and 

8 (Model 1), or weeks 0, 4 and 8 (Model 2) from subjects in the MET group, with the outcome 

variable being disease state (i.e., remission or non-remission) at the time of sample collection. 

Each model was trained on samples from a random subset of 70% of subjects, with 1000 trees 

and leave-one-out cross-validation. To assess their accuracy, models were used to predict 

remission or non-remission on samples from the remaining 30% of subjects. Both sets of 

classification results were then evaluated by calculating their area under the curve (AUC), as 

derived from a receiver operating characteristic (ROC) curve analysis using the R package 

ROCR (ROCR version 1.0.7). Each model also calculated importance scores for ASVs based on 

the increase in prediction error when the ASV in question was left out of the training set via 

random permutation. 

 

A Random Forest model was constructed on all pre-antibiotic (week 0) microbiota data, 

as well as on clinical data, including sex, age, disease duration, tissue involvement (Paris 

classification), baseline immunomodulators, baseline CRP and PCDAI to predict disease state 

(remission or non-remission) at week 4 in both treatment groups combined. In order to increase 

the number of shared features found across samples and decrease the noise among closely-

related bacterial taxa, ASVs were agglomerated based on their cophenetic distance in the 

phylogenetic tree at the h = 0.3 level. These numbered ASV clusters were also labeled by the 

number of ASVs in the cluster, as well as the genus that was assigned to the majority of the 

ASVs within the cluster. If >50% of the ASVs within a cluster were not assigned to a single 

genus, the same majority rule was used iteratively at higher taxonomic levels. Models were 

constructed and tested as described above. Abundance was normalized using variance 

stabilizing transformation (vst). 
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Amplicon sequencing data are available at SRA (project ID pending). A detailed 

description of this analysis, along with all analysis code and raw data used to go from 

sequences to final figures, is available at the Stanford Digital Repository (purl.stanford.edu/XXX) 

and as Supplementary Material. 

 

RESULTS 

Clinical Outcomes 

A total of 67 subjects from 9 sites provided stool samples for microbiome analysis and are 

included in the present study (Table 1). Of this group, 36 children were randomly assigned to 

receive MET, and 31 received MET+AZ (Fig. 1a). Fig. 1b shows the temporal dynamics of each 

patient’s PCDAI at the time of stool sample collection (Fig. 1b). By week 4, 42% (15/36) of MET 

subjects and 65% (20/31) of MET+AZ subjects had achieved remission (Fig. 1b). Between 

weeks 4 and 8, 11 of the MET subjects failing remission had azithromycin added to their 

treatment regimen (MET/MET+AZ). At week 8,  60% (15/25) patients in the remaining MET 

group, 65% (20/31) in the MET+AZ group, and 45% (5/11) in the new MET/MET+AZ group had 

achieved remission. Of note, 4 patients in the MET group and 5 patients in the MET+AZ group 

who did not respond to antibiotic treatment by week 4 received open-label steroids or biologics. 

Therefore, not all improvement in disease in these patients could necessarily be attributed to the 

antibiotic regimen alone. At week 12, 72% (18/25) of the remaining MET group were in 

remission, while 71% (22/31) of the MET+AZ and 100% (11/11) of the MET/MET+AZ group 

were in remission, respectively.  

 

Microbiota Response to Single and Combination Antibiotic Therapies 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/412890doi: bioRxiv preprint 

https://doi.org/10.1101/412890


 11

Antibiotics can strongly perturb the distal gut microbiota in an individual-specific manner (16); 

individualized responses might explain some of the observed heterogeneity in disease 

progression and dynamics.  

 

We observed a profound shift in gut microbiota diversity and structure following antibiotic 

administration in most subjects. In the MET and MET+AZ treatment groups, alpha diversity 

decreased significantly (Wilcoxon test, P ≤ 0.01) (Fig. 2a). Diversity remained low in both groups 

at week 8, and rebounded towards its pre-antibiotic level by week 12, after discontinuation of 

antibiotics. Yet, only the MET group achieved a diversity level that was comparable to its 

baseline state (MET week 0 vs. 12, Wilcoxon test, P = 0.16), while the MET+AZ group’s mean 

diversity remained significantly lower (MET+AZ week 0 vs. 12, Wilcoxon test, P ≤ 0.01).  

 

Subjects in the MET group who were subsequently given AZ (MET/MET+AZ) after week 

4, experienced a non-significant decrease in mean diversity at week 4 (week 0 vs week 4, 

Wilcoxon test, P = 0.07), consistent with this sub-group’s initial unresponsiveness to MET. 

However, after the addition of azithromycin at week 8, mean diversity decreased significantly 

(week 4 vs 8, Wilcoxon test, P ≤ 0.05), and became comparable to the level of the MET+AZ 

group at week 4 (Wilcoxon test, P = 0.2). Diversity remained low at week 12 in the 

MET/MET+AZ group, possibly because many subjects were still completing their 8-week 

combination antibiotic course at that time. 

 

Next, we examined the magnitude of the change in microbiota structure in response to 

antibiotics by calculating the median difference in unweighted UniFrac distance between 

samples from the same patient. While we found no significant difference in mean unweighted 

UniFrac distance between weeks 0 and 4 across treatment groups, the MET/MET+AZ group 
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showed a significantly larger shift in community structure than the MET group between weeks 4 

and 8, possibly reflecting the addition of azithromycin (Fig. 2b). 

 

We then assessed the contribution of current antibiotic use, treatment group, and 

remission status to variation in the data using principal coordinates analysis (PCoA) based on 

unweighted Unifrac distances (17). The use of antibiotics at the time of sample collection was a 

significant source of variation (Fig. 2c) (PERMANOVA with 1000 permutations, P < 0.001), as 

was specific treatment (Fig. 2d) (PERMANOVA, P < 0.001) and remission status 

(PERMANOVA, P < 0.01) (Fig. 2e). 

 

In order to identify groups of bacterial taxa with distinct responses to the different 

antibiotic regimens, we performed differential abundance testing between samples from weeks 

0 and 4. ASVs with significant changes in abundance are summarized in a heat map, showing 

their relative abundance in each treatment group across all time points (Fig. 3). The top three 

clusters of the heatmap show ASVs that increased in abundance during the period of treatment 

and then decreased after antibiotics were withdrawn. While ASVs 7 and 61 (both Enterococcus) 

increased in abundance in both treatment groups, ASV 29 (Streptococcus) and ASV 27 

(Klebsiella) increased in the MET group only. This can be explained by the known sensitivity of 

streptococci and Klebsiella to azithromycin and insensitivity to metronidazole (18). 

 

ASVs 18 and 2 (both Bifidobacterium) and ASV 4 (Escherichia-Shigella) increased in 

abundance in the MET group, but decreased in the MET+AZ group. The bottom three clusters 

of the heatmap include ASVs that decreased in abundance during single and/or combination 

antibiotic treatment and recovered at least partially after cessation of antibiotic administration 

(Fig. 3). ASVs 10 (Bacteroides vulgatus), 114 (Lachnospiraceae), 119 (Lachnoclostridium), 130 

(Alistipes), 3 (Faecalibacterium prausnitzii), 34 (Blautia faecis), 46 (Alistipes putredinis), 55 
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(Bacteroides caccae), 57 (Bacteroides), 64 (Terrisporobacter), 65 (Coprococcus), 74 

(Veillonella) and 97 (Dorea formicigenerans) significantly decreased in abundance in the MET 

treatment group, while ASVs 103 (Morganella morganii), 165 (Parabacteroides distasonis), 17 

(Haemophilus), 22 (Bacteroides), 25 (Faecalibacterium), 268 (Sutterella), 35 

(Erysipelatoclostridium ramosum), 38 (Bacteroides uniformis), 50 (Lachnospiraceae) and 86 

(Ruminococcaceae) decreased significantly in the MET+AZ group.  

 

Microbiota and Crohn’s Disease remission 

To better understand how antibiotics might influence microbiota structure and remission, 

we calculated pairwise Bray-Curtis dissimilarity scores for remission samples and compared 

those to the pair-wise scores for non-remission samples in each treatment group. Week 4 and 8 

samples from patients in the MET group who were in remission at that time were significantly 

more similar to each other than they were to week 4 and 8 samples from patients who were not 

in remission at the time (Wilcoxon text, P ≤ 0.001) (Fig. 4a). We observed no significant 

differences for samples from the MET+AZ group. Furthermore, we found that remission samples 

from weeks 4 and 8 formed distinct clusters reflecting treatment group (PERMANOVA, P ≤ 

0.001), a pattern that was not observed for non-remission samples (Fig. 4b).   

 

Based on these observations, we sought to identify treatment-specific microbial 

indicators of CD remission. We used Random Forest modeling to predict whether a patient was 

in remission based on their microbiota structure at that time. First, we constructed a model 

based on the abundances of ASVs found in remission and non-remission samples collected 

during antibiotic treatment (Model 1, weeks 4 and 8). Because the numbers of remission and 

non-remission samples in the MET+AZ group were too uneven to be able to construct a useful 

model, we focused on the MET group only. This model classified remission in the MET patients 

with an AUC of 0.777 (95% CI, 0.3229, 0.8366; sensitivity, 0.8750; specificity, 0.2857; P 
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=0.4006 ), and classified remission in the MET+AZ group with an AUC of 0.68 (95% CI, 0.4066, 

0.6764; sensitivity, 0.3846; specificity, 0.8889; P = 0.9909) (Fig. 5a), but did not achieve 

statistical significance in either case. In order to test an alternative model that incorporated a 

greater number of non-remission samples, we constructed Model 2 with samples from week 0 

as well; these samples represent an alternative non-remission state prior to antibiotic 

administration, but at the same time, these samples introduce antibiotic treatment as a 

confounding factor (Model 2, weeks 0, 4 and 8). Model 2 classified remission in MET patients 

with improved accuracy and an AUC of 0.879 (95% CI: 0.683, 0.9877; sensitivity: 0.7778; 

specificity: 1.000; P < 0.001) and remission in the MET+AZ group with a lower AUC of 0.695 

(95% CI: 0.5038, 0.7156; sensitivity: 0.20513; specificity: 0.93878; P = 0.1672) (Fig. 5a).  

 

Models 1 and 2 each assigned importance scores to each ASV based on the increase in 

model prediction error when that feature was randomly permuted while all others were left 

unchanged. The 10 most important ASVs in each model are displayed in Fig. 5b. The most 

important ASV for both models was ASV 291 (Lactobacillus) (Fig 5b). The ASVs with high 

importance scores had different abundances in pre-antibiotics, remission, and non-remission 

samples. Compared to their relative abundances in pre-antibiotic samples, we observed a large 

increase in ASV 291 (Lactobacillus), ASV 60 (Klebsiella) and ASVs 2 and 154 (both 

Bifidobacterium), specifically in remission samples (Fig. 5c). In agreement with the results 

shown in Fig. 3. we observed an increase in abundance of ASVs 7 and 61 (both Enterococcus) 

from the pre-antibiotic state, but no discrepancy between remission and no-remission samples. 

ASVs that decreased in remission samples, but not in non-remission samples, included ASV 16 

(Fusicatenibacter saccharivorans) and ASV 24 (Dorea longicatena). 

 

Next, we were interested in whether there were microbial signatures present prior to 

antibiotic administration that would predict remission after treatment. Although not statistically 
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significant, pre-antibiotic samples from MET subjects who were in remission at week 4 trended 

towards higher alpha diversity (Supplemental Fig. 1a), a pattern reported in other prediction-

focused studies (27,28). Due to the limited number of pre-antibiotic samples available, we 

combined samples from both treatment groups, and information on each subject’s age, sex, 

disease duration, tissue involvement, and the current disease state. Unfortunately, we still were 

not able to construct a robust model (AUC = 0.8; 95% CI: 0.4099, 0.8666; sensitivity, 0.8; 

specificity, 0.5; P = 0.24) (Supplemental Fig. 1b). Furthermore, we identified ASV clusters with 

higher mean abundance in pre-antibiotic samples of subjects that went on to achieve remission, 

such as Cluster 8 (Peptostreptococcaceae), Cluster 24 (Alistipes), Cluster 23 (Clostridium 

sensu stricto) and Cluster 27 (Parabacteroides) (Supplemental Fig. 1c). In contrast, for 

example, ASV Cluster 61 (Fusobacterium) was more abundant in pre-antibiotic samples of 

subjects who did not subsequently achieve remission, in accordance with other studies (7). 

 

Discussion 

In this study, we determined the effects of MET-only and combination MET+AZ therapy on the 

gut microbiota in pediatric CD patients. We demonstrated a treatment-specific effect of both 

antibiotic regimens on microbiota structure, especially at the time of clinical disease remission. 

We assessed the utility of microbiota signatures for classifying disease remission as well as the 

capacity of baseline (pre-antibiotic) microbiota structure to predict future treatment response. 

 

In comparison to previous work, the strength of our study lies in the use of samples from 

a multinational cohort and from CD patients exclusively. Small cohort size is a common problem 

and has led to co-evaluation of samples from mixed patient populations with CD and ulcerative 

colitis, while recent data highlight the differences between those subtypes of IBD with respect to 

the microbiota (19). Second, many previous studies have characterized the microbiota of 

patients based on one sample and time point (5,7), while the design of this study afforded an 
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opportunity to monitor the microbiota before, during, and after treatment, which we believe is 

critical for identifying microbial signatures related to different clinical outcomes. 

 

It is well established that antibiotic treatment creates an ecosystem-wide disturbance 

and decreases the overall diversity of the gut microbiome (20). To our knowledge few studies 

have examined the effects of single versus combination antibiotics on the gut microbiome (21). 

While we observed a general decrease in diversity in response to antibiotics, our results also 

showed a distinct impact on microbiota structure and a decrease or increase of specific bacterial 

ASVs in each treatment group. This highlights the need to understand better the additive, 

antagonistic, synergistic, and non-linear effects of antibiotic treatments with regards to patient 

outcome. Despite different effects on the gut microbiota, the two treatments produced 

remission-compatible microbiota configurations.  

 

Metronidazole is one of the most prescribed antibiotics in the treatment of pediatric CD, 

but to our knowledge, there has been no in-depth study of the effects of metronidazole 

treatment on the gut microbiota in humans to date. One study in mice, comparing the impact of 

metronidazole versus streptomycin on the microbiota and subsequent C. rodentium-induced 

colitis, observed treatment specific effects, not only on microbiota structure, but on gut mucosal 

immune responses as well (22). In the absence of C. rodentium infection, metronidazole was 

found to decrease goblet cell expression of MUC2, thereby leading to a thinning of the inner 

mucus layer, which could be detrimental for intestinal homeostasis and promote chronic 

intestinal inflammation. Although this observation has not been confirmed in humans, it has 

important implications for the use of MET in IBD patients.  

 

Recent studies reported superior outcomes for MET plus AZ as compared to MET alone 

(19,20). AZ penetrates multiple intestinal compartments, including the intestinal lumen, biofilms 
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in the mucus layer, as well as macrophages (23,24), which would allow the targeting of various 

pathogens implicated in CD, such as adherent and invasive E. coli (AIEC) strains (25-27). Also, 

genera such as Escherichia and Haemophilus have been associated with CD at disease onset 

in children (13). Our observations of reduced abundances of ASV 4 (Escherichia/Shigella) in the 

MET+AZ group, and increased abundances in the MET group may reflect specific targeting of 

this taxon by azithromycin in our cohort. To be able to assess the presence of AIEC specifically, 

patient biopsies could be used in the future to access the mucosa-adherent or intracellular 

microbial constituents.  

 

We also observed that some bacterial taxa such as Enterococcus, Streptococcus, 

Klebsiella, Bifidobacterium and Enterobacteriaceae increased in abundance during antibiotic 

treatment. This could be due to creation or expansion of nutritional and/or environmental niches 

during or after general community disturbance, or could indicate intrinsic or acquired antibiotic 

resistance. Our finding of increased abundances of Enterococcus ASVs in both treatment 

groups is concerning, as they possess multiple mechanisms for resisting antibiotics; their 

expansion could predispose patients to invasive infections (28,29).  

 

Another important question is whether the microbiome itself might be used as a 

therapeutic agent for Crohn’s disease, for example by administration of specific beneficial 

microbes as probiotics (30). Our study identified multiple Lactobacillus ASVs that were 

important for the classification of clinical remission and that significantly increased during 

remission). Lactobacillus species are commonly used as probiotics and several in vitro and 

animal studies suggest that they have properties able to reduce inflammation in Crohn’s 

Disease (31,32). In humans, clinical trials with Lactobacillus probiotics in CD patients have so 

far been unsuccessful (33,34), highlighting the need to understand not only the biology of 

Lactobacillus species but microbial community ecology.  
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Two recent studies predicted the success of biologics based on pre-treatment microbiota 

data in adult IBD patients (27,28). We also demonstrated that Random Forest models can be 

useful for microbiota-based classification and prediction. Our efforts in constructing useful 

classifiers for disease remission or prediction of treatment response to antibiotics draws 

attention to the importance and difficulties of obtaining sufficient numbers of samples.   

 

In conclusion, there are several important implications to our findings. Our results 

suggest that there is no single antibiotic induced remission state, but that each regimen may 

impact the microbiome in an antibiotic-specific manner leading to remission. We showed that 

the classification of pediatric CD patients in antibiotic-associated clinical remission based on 

their microbiota structure is possible, although large sample sizes are required for accurate 

model construction. We demonstrated that classification and prediction models based on 

microbiota signatures may be another tool for monitoring disease and treatment response. 

Moreover, they may also support the development and testing of more precise approaches for 

microbiome manipulation and could eventually lead to more effective management of CD and 

other inflammatory bowel disease.  
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FIGURE LEGENDS 

 

Fig. 1. Study design and clinical outcomes. a At week 0, 67 pediatric Crohn’s Disease patients 

were randomly assigned to one of two treatment groups: MET subjects received 20 mg/kg 

metronidazole twice daily (maximum of 1000 mg/day) for 8 weeks, while MET+AZ subjects 

received metronidazole plus 7.5 mg/kg azithromycin (maximum of 500 mg/day) once a day for 5 

consecutive days, followed by a 2-day drug holiday, each week for the first 4 weeks and then 

stepped down to 3 consecutive days of the same dose with a 4-day drug holiday, per week over 

the subsequent 4 weeks. Metronidazole (MET, red, n = 36) or metronidazole and azithromycin 

(MET+AZ, blue, n = 31). Patients not in remission between weeks 4 and 8 could be offered 

open-label azithromycin based on physician assessment (MET/MET+AZ, purple, n = 11), and 

are displayed as a distinct patient cohort from weeks 4 to 12. Stool samples were collected at 

weeks 0, 4, 8, and 12 (vertical gold bars). b Pediatric Crohn’s Disease Activity Index (PCDAI) 

for subjects at weeks 0, 4, 8, and 12. Treatment groups (MET, red; MET+AZ, blue; 

MET/MET+AZ, purple) are in columns, while the rows are groups of subjects that were either in 

remission (top) or not in remission (bottom) at week 4.  

 

Fig. 2. Microbiota response to antibiotic therapy. a Alpha diversity measured by Faith’s 

Phylogenetic Diversity, segregated by treatment group (MET, red; MET+AZ, blue; 

MET/MET+AZ, purple) and week. Treatment group colors are darker during antibiotic treatment. 

p-values are displayed for between-treatment comparisons (Wilcoxon Test). b Boxplot of the 

median intra-subject unweighted UniFrac distance between samples collected during 

consecutive time points. c-e Principal coordinates analysis (PCoA) on the unweighted UniFrac 

distance for all samples and all subjects. Samples are colored by c current antibiotic use, 

yes/no; d current antibiotic use and treatment group; or e current disease state, in remission or 

not.  
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Fig. 3. Microbial abundances shift in response to antibiotic exposure. Heat map of microbial 

abundances partitioned by treatment group and week. Amplicon sequence variant (ASV) 

abundances were log10-transformed prior to plotting. The displayed ASVs were present in ≥ 

20% of samples and had statistically significant shifts in abundance between weeks 0 and 4 in 

either the MET or MET+AZ treatment groups, as denoted by the colors on the y-axis.  

 

Fig. 4. Microbiota at time of remission reflects antibiotic exposure. a Beta-diversity measured by 

Bray-Curtis dissimilarity between samples in remission and non-remission among MET and 

MET+AZ subjects during antibiotic treatment (weeks 4 and 8). b PCoA on the Bray-Curtis 

dissimilarity of stool samples collected during antibiotic treatment (weeks 4 and 8). Remission 

samples (PERMANOVA, p = 0.0009), no remission samples (PERMANOVA, p = 0.1848). 

Significance of treatment group clustering was determined by PERMANOVA (adonis) with 

1,000 permutations. 

 

Fig 5. Random Forest models classify disease remission from microbiota profiles. a The ROC 

curves indicate the accuracy of the random forest classification models built using microbiota 

data. Color of lines indicates the dataset on which the model was trained (Model 1, MET weeks 

4 and 8, red; Model 2, MET weeks 0, 4 and 8, blue). Solid lines indicate accuracy of the model 

in classifying remission in patients from the same treatment group (MET), while the dashed lines 

indicate the accuracy of each model for classifying remission in patients from the MET+AZ 

treatment group. AUC Area under the curve. b Variable importance values for the 10 most 

important ASVs used to build each random forest model are plotted against each other. Points 

are labeled by ASV number. Point color indicates the importance score (Model 1 specific, red; 
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Model 2 specific, blue; both models, gray). c Log-transformed abundances of top 20 ASVs that 

were of common importance for both Random Forest models. 

 

Supplemental Figure 1. Pre-treatment microbiota structure predicts treatment outcome. a The 

alpha-diversity of samples collected at baseline (week 0) grouped by their treatment group and 

remission status at week 4 (Wilcoxon Test). b The gray ROC curve indicates the accuracy of 

the random forest classification model built using microbiome data from week 0 as well as 

gender, age, disease duration, Paris classification, pre-antibiotic immunomodulators, PCDAI 

and CRP to predict response to treatment at week 4. AUC Area under the curve. c Abundances 

of ASV clusters that are important for the remission-forecasting random forest models. 

Abundances were transformed using a variance stabilizing transformation (Bioconductor 

package vsn).  
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Table 1. Subject Demographics. 

Treatment 

Group 
# Samples # Subjects Female/Male 

Mean 

Age 

(years) 

± SD 

Mean 

Disease 

Duration 

(years) 

± SD 

Baseline 

PCDAI ±  

SD 

MET 120 36 20/16 13.5 ± 3.1 0.7 ± 1 19.6 ± 8.1 

MET+AZ 112 31 6/25 14.2 ± 3.1 1.1. ± 1.1 22 ± 9 

 

67 pediatric Crohn’s Disease patients were randomly assigned to treatment with either 

metronidazole (MET) or metronidazole plus azithromycin (MET+AZ). Only sex differed 

significantly between the two groups (P < 0.01). PCDAI pediatric Crohn’s Disease activity index. 

SD standard deviation. 
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