What is the impact of gender of new-born, antenatal care and postnatal care on breastfeeding practices in Ethiopia? A systematic review and meta-analysis

Tesfa Dejenie Habtewold^{1*}, Nigussie Tadesse Sharew², Sisay Mulugeta Alemu³

¹Department of Epidemiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands.

²Department of Nursing, College of Medicine and Health Science, Debre Berhan University, Debre Berhan, Ethiopia.

³Mental Health and Psychosocial Support Program, International Medical Corps, Dolo Ado, Ethiopia

* = Corresponding author Tesfa Dejenie Habtewold

Email: tesfadej2003@gmail.com

Abstract

Objective: The aim of this systematic review and meta-analysis was to investigate the association of gender of new-born, antenatal care (ANC) and postnatal care (PNC) with TIBF and EBF.

Design: Systematic review and meta-analysis

Methods: PubMed, EMBASE, CINAHL, WHO Global Health Library, Web of Science and SCOPUS databases systematically searched for all available literature, complemented by manual searches. Newcastle-Ottawa Scale (NOS) was used for quality check; Egger's regression test for publication bias at p-value threshold ≤ 0.01 ; and Cochran's Q X^2 test and I^2 statistics for heterogeneity. A meta-analysis using a weighted inverse variance random-effects model was performed.

Results: Of 523 articles retrieved, 16 studies on TIBF and 23 on EBF fulfilled the eligibility criteria. Antenatal care (Odds ratio (OR) = 1.61, 95% CI 1.01 - 2.57) was significantly associated with TIBF but not gender of new-born (OR = 1.03, 95% CI 0.84 - 1.26). In addition, antenatal (OR = 2.25, 95% CI 1.63 - 3.10) and postnatal care (OR = 1.86, 95% CI 1.41 - 2.47) significantly associated with exclusive breastfeeding (EBF) but not gender of new-born (OR = 1.08, 95% CI 0.86 - 1.36).

Conclusions: Optimal care during pregnancy and after birth is important to ensure adequate breastfeeding. In addition, there was no difference in breastfeeding between male and female new-born. This meta-analysis study provided evidence on breastfeeding practice and its associated factors in an Ethiopian context, which can be useful for cross-country and cross-cultural comparison and for breastfeeding improvement initiative in Ethiopia.

Protocol registration and publication: <u>CRD42017056768</u> and <u>10.1136/BMJOPEN-2017-</u>017437

Strengths and limitations of this study

- This systematic review and meta-analysis was conducted based on the registered and published protocol, and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for literature reviews.
- Since it is the first study of its kind in Ethiopia, the information could be helpful for future researchers and public health practitioners.
- Almost all included studies were observational which may hinder causality inference.
- Based on the conventional methods of heterogeneity test, a few analyses suffer from high between-study variation.

Introduction

World Health Organization (WHO) and United Nations Children's Fund (UNICEF) recommends timely initiation of breastfeeding (TIBF) (i.e. initiating breastfeeding within one hour of birth) and exclusive breastfeeding (EBF) (i.e. feeding only human milk during the first six months).
TIBF and EBF are simple and cost-effective interventions beneficial for maintaining maternal and new-born health.
Breastfeeding provides optimal nutrition for the new-born, increase cognitive development, reduce morbidity and mortality, and preventing new-born and maternal long-term chronic diseases; for example, TIBF prevents 22 % of neonatal deaths. On the other hand, inappropriate breastfeeding practice causes more than two-thirds of under-five child mortality, of which 41% of these deaths occur in Sub-Saharan Africa.
Breastfeeding practice causes

The prevalence of TIBF in developing countries ranges from 10% in Lebanon to 77% in Jordan whereas EBF ranges from 23.70% in Central Africa to 56.57% in Southern Africa.^{5,6}

Based on our previous meta-analysis, the prevalence of TIBF and EBF in Ethiopia is 66.5% and 60.1% respectively.⁷ So far, globally, only 22 nations have achieved WHO goal of 70% in TIBF and 23 countries have achieved at least 60% in EBF.²

WHO and UNICEF have been working in developing countries for the actualization of optimal breastfeeding. However, it is challenging and attributed to several factors including inadequate antenatal and post-natal care service as well as gender of new-born. ^{8,9} Even though several studies have been conducted on breastfeeding advantages, less attention has been given to associated factors and breastfeeding coverage continued to be sub-optimal. In Ethiopia, one meta-analysis assessed the association between place of residence and delivery and TIBF. ¹⁰ In our previous meta-analysis, we investigated the association between maternal employment, lactation counseling, model of delivery, place of delivery, maternal age, new-born age and

discarding colostrum and, TIBF and EBF.⁷ We also investigated whether TIBF associated with EBF.⁷ In this systematic review and meta-analysis, we aimed to investigate whether TIBF and EBF associated with gender of new-born, antenatal and postnatal care in Ethiopia. We hypothesized at least one ANC or PNC visit significantly increases the odds of TIBF and EBF. Additionally, mothers with male new-born have higher odds of TIBF and EBF compared to mothers of female new-born.

Methods

Protocol registration and publication

The study protocol was registered with the University of York Centre for Reviews and

Dissemination International prospective register of systematic reviews (PROSPERO)

(CRD42017056768) and published.¹¹

Search strategy and databases

PubMed, EMBASE, Cumulative Index to Nursing and Allied Health Literature (CINAHL),

WHO Global Health Library, Web of Science and SCOPUS electronic databases were explored

to extract all available literature. Population Exposure Controls and Outcome (PECO) searching

guide and searching syntax was developed in consultation with a medical information specialist.

The search strategy is described in Supplementary file 1; searches began 01 August 2017, and

the last search was 29 January 2018. Cross-references of identified articles and gray literature

were also hand searched.

PECO guide

Population: All mothers with new-born up to 23 months of age.

Exposure: Gender of the new-born, antenatal and postnatal care.

Controls: Female new-born and those without antenatal and postnatal care.

Outcome: Timely initiation and EBF practice.

Inclusion and exclusion criteria

Studies were included if they met the following criteria: (1) observational studies including

cross-sectional, case-control, cohort studies reported the variables of interest; (2) conducted in

Ethiopia; (3) published in English language; and (4) published between 2000 and 2017. Studies

6

were excluded on any one of the following conditions: (1) study population with HIV/AIDS,

preterm new-born and new-born in intensive care unit (ICU); (2) publishing language other than English; (3) no full text; and (4) qualitative studies, book chapters, symposium/conference proceedings, essays, commentaries, editorials and case reports.

Selection and quality assessment

Initially, all identified articles were exported to Refwork citation manager and duplicate studies were canceled. Next, a pair of reviewers identified articles by analyzing the abstract and title for relevance and its compliance with the proposed review topic. Agreement between the two reviewers, as measured by Cohen's Kappa, 12 was 0.76. After removing irrelevant studies, full texts were systematically reviewed for further eligibility analysis. Newcastle-Ottawa Scale (NOS) was used to examine the quality of studies and for potential risk of bias. 13 In line with the WHO standard definition, outcome measurements were TIBF (the percentage of new-born who breastfeed within the first hour of birth) and EBF (the percentage of infants who exclusively breastfed up to 6 months since birth). Finally, Joanna Briggs Institute (JBI) tool 14 was used to extract the following data: study area (region and place), method (design), population, number of mothers (calculated sample size and participated in the actual study). Geographic regions were categorized based on the current Federal Democratic Republic of Ethiopia administrative structure. 15 Disagreement between reviewers was solved through discussion and consensus.

Statistical analysis

A meta-analysis using a weighted inverse variance random-effects model was performed to obtain pooled odds ratio (OR). Publication bias was assessed by visual inspection of a funnel plot and Egger's regression test for funnel plot asymmetry using standard error as a predictor in mixed-effects meta-regression model at p-value threshold ≤ 0.01 . Duval and Tweedie trim-and-fill method was used if we found asymmetric funnel which indicates publication bias.

Heterogeneity was assessed by Cochran's Q X^2 test (p-value ≤ 0.05) and I^2 statistics; ¹⁸ for this

meta-analysis, we used a reference value of $I^2 > 80\%$. The data were analyzed using "metafor"

packages in R software version 3.2.1 for Windows.

Data synthesis and reporting

We analyzed the data in two groups of outcome measurements: TIBF and EBF. Results for each

variable were shown using forest plots. Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) guidelines for literature reviews was strictly followed. 19

Minor post hoc protocol changes

Before analysis was done, we made the following changes to our methods from the published

protocol. We added the Joanna Briggs Institute (JBI) tool¹⁴ to extract the data. In addition, we

used Duval and Tweedie trim-and-fill method to manage publication bias.

Patient and public involvement

The research question and outcome measures were developed by the authors (TD and NT) in

consultation with public health professionals. Given this is a systematic review and meta-

analysis based secondary data, patients/study participants were not directly involved in the

design and analysis of this study. The results of this study will be disseminated to patients/study

participants through health education on factors affecting breastfeeding and disseminating the

8

key findings in local language.

Results

Search results

In total, we obtained 523 articles from PubMed (n = 169), EMBASE (n = 24), Web of Science (n = 200), SCOPUS (n = 85) and, CINHAL and WHO Global Health Library (n = 5). Forty-eight additional articles were found through a manual search. After removing duplicates and screening of titles and articles, 81 studies were selected for full-text review. Forty-two articles were excluded due to several reasons: 19 studies on complementary feeding, 3 studies on pre-lacteal feeding, 3 studies on malnutrition, 16 studies with different variables of interest and one project review report. As a result, 39 articles (i.e. 16 studies on TIBF and 23 on EBF) fulfilled the inclusion criteria and used in the meta-analyses. The PRISMA flow diagram of literature screening and selection process is shown in figure 1. One study could report the association of outcome measures with more than one factor.

Study characteristics

As presented in table 1, 16 studies reported the association of TIBF and gender of new-born and ANC in 25,323 mothers. Among these studies, 12 of them were conducted in Amhara (n=4), Oromia (n=4) and Southern Nations, Nationalities and Peoples' (SNNP) (n=4) region. Regarding residence status of women, 7 studies were conducted in both urban and rural whereas 6 studies in urban dwellers.

Tables 1: Characteristics of included studies on TIBF

Author/publication	Study area	Study	Study population	Sample size/	Factors	TIBF (outcome)			
year		design		Participated		Within 1 hour	After 1 hour	Total	
	ewborn versus								
Regassa, 2014 ²⁰	SNNPR,	Cross-	with infants aged	1100/ 1094	Male	488	107	595	
	Sidama zone	sectional	between 0 and 6		Femal	389	110	499	
		study	months old		Total	877	217	1094	
Alemayehu et.al.	Tigray,	cross	mothers who had	418/418	Male	75	141	216	
2014 ²¹	Axum town	sectional	children aged 6-12		Femal	99	103	202	
		study	months		Total	174	244	418	
Berhe et.al. 2013 ²²	Tigray,	Cross-	mothers of children	361/361	Male	166	42	208	
	Mekelle	sectional	aged 0 to 24 months		Femal	112	37	149	
	town	study			Total	278	79	357	
Beyene et.al.	SNNPR,	Cross-	mothers of children	634/634	Male	262	51	313	
2017 ²³	Dale	sectional	under 24 months		Femal	255	50	305	
	Woreda	study			Total	517	101	618	
Lakew et.al. 2015 ²⁴	National	Cross-	mothers who had	11,654/11,553	Male	3124	2860	5984	
		sectional	children less than 5		Femal	3057	2511	5568	
		study (EDHS based)	years		Total	6181	5371	11552	
Liben et.al. 2016 ²⁵	Afar, Dubti	Cross-	Mothers of infants	346/333	Male	81	122	203	
	town	sectional	aged less than 6		Femal	70	130	200	
	study months	months		Total	151	252	403		
Setegn et.al. 2011 ²⁶	Oromia,	romia, cross mothers with children	mothers with children	668/608	Male	164	152	316	
J	Goba district	sectional	(< 12 months		Femal	150	133	283	
		study			Total	314	285	599	
Wolde et.al. 2014 ²⁷	Oromia,	Cross-	mothers who had	182/174	Male	70	10	80	
	Nekemte	sectional	child less than 24		Femal	84	10	94	
	town	study	month		Total	154	20	174	
Woldemichael et.al.	Oromia,	Cross-	mothers who have	386/373	Male	153	60	213	
2016 ²⁸	Tiyo	sectional	children Less Than		Femal	98	62	160	
	Woreda	study	One Year Age		Total	251	122	373	
	Amhara,	Cross-	mothers having	548/548	ANC	400	00	F70	
Gultie et.al 2016 ²⁹	Debre	sectional	mothers having children	346/346	ANC	482	88	570	
	Berhan town	study	aged less than 23		No ANC	16	15	31	
			months old		Total	498	103	601	
Tamiru et.al 2012 ³⁰	Oromia,	Cross-	Mothers of index	384/ 382	ANC	115	69	184	
	Jimma Arjo	sectional	children aged		No ANC	120	71	191	
	Woreda	study	0 to 6 months		Total	235	140	375	
Tamiru et.al 2015 ³¹	SNNPR,	cross-	mothers of infants	384/384	ANC	179	140	319	
	Arba Minch	sectional	aged two years and		No ANC	40	24	64	
	Zuria Woreda	study	younger		Total	219	164	383	
Berhe et.al 2013 ²²	Tigray,	Cross-	mothers of children	361/361	ANC	263	66	329	

	Mekelle	sectional	aged 0 to 24 months		No ANC	15	13	28
	town	study			Total	278	79	357
Adugna et.al 2014 ³²	SNNPR,	cross-	Women who had	384/383	ANC	179	140	319
_	Arba Minch	sectional	children under two		No ANC	40	24	64
	Zuria study years	years		Total	219	164	383	
Beyene et.al 2017 ²³	SNNPR,	Cross-	mothers of children	634/634	ANC	206	58	264
	Dale	sectional	under 24 months		No ANC	311	43	354
	Woreda	study			Total	517	101	618
Derso et.al 2017 ³³	Amhara,	Cross-	mothers with children	6,761/6,761	ANC	2135	2220	4355
	Dabat	sectional	under five years of age		No ANC	670	1364	2034
	district study (EDHS based)			Total	2805	3584	6389	
Liben et.al 2016 ²⁵	et.al 2016 ²⁵ Afar, Dubti Cross- Mothers of infants	Mothers of infants	346/333	ANC	110	196	306	
	town	sectional	U		No ANC	41	56	97
		study	months		Total	151	252	403
Seid et.al 2013 ³⁴	Amhara,	Cross-	Mothers who	819/819	ANC	680	94	774
	Bahir Dar	sectional	Delivered in the last		No ANC	29	12	41
	city	study	12 months		Total	709	106	815
Setegn et.al 2011 ²⁶	Oromia,	cross	mothers with children	668/608	ANC	270	238	508
	Goba district	sectional	(< 12 months		No ANC	37	19	56
		study			Total	307	257	564
Tewabe 2016 ³⁵	Amhara,	cross-	mothers with infant	423/405	ANC	282	41	323
	Motta town	sectional	less than six month old		No ANC	37	45	82
		study			Total	319	86	405
Woldemichael et.al	Oromia,	Cross-	mothers who have	386/373	ANC	194	41	235
2016 ²⁸	Tiyo	sectional	children Less Than		No ANC	57	81	138
	Woreda	eda study One Year Age			Total	251	122	373

EDHS= Ethiopian Demographic Health Survey

Twenty-three studies reported the association of EBF with gender of new-born, ANC and PNC in 17,170 mothers. Of these studies, 10 were conducted in Amhara and 7 in SNNP region. Based on residence status of women, 9 studies were conducted in urban, 8 in urban and rural, and 6 in rural dwellers. Even though almost all studies were cross-sectional, 5 studies have used a nationally representative data of Ethiopian Demographic Health Survey (EDHS) [19-23]. Detailed study characteristics have shown in Table 2.

Tables 2: Characteristics of included studies on EBF

Author/publication	Study	Study	Study population	Sample size/Participated	Factors	EBF (outcome)			
year	area	design	design			Yes	No	Total	
A. Gender of n	_ ewborn versu	s EBF							
Asemahagn 2016 ³⁶	Amhara,	Cross-	Women having	346/332	Male	95	38	133	
· ·	Azezo	sectional	children aged		Femal	167	32	199	
	district	study	from 0–6 months		Total	262	70	332	
Setegn et.al. 2012 ³⁷	Oromia,	Cross-	Mothers-infant	668/608	Male	107	43	150	
C	Bale Zone,	sectional	pairs		Femal	92	37	129	
	Goba district	study			Total	199	80	279	
Sonko et.al. 2015 ³⁸	SNNPR,	Cross-	Mothers	422/420	Male	145	60	205	
	Halaba	sectional	With children less		Femal	151	64	215	
	special woreda	study	than six months of age		Total	296	124	420	
Regassa 2014 ²⁰	SNNPR,	Cross-	with infants aged	1100/ 1094	Male	109	19	128	
5	Sidama	sectional	between 0 and 6		Femal	89	17	106	
	zone	study	months old		Total	198	36	234	
Alemayehu et.al.	Tigray,	cross	mothers who had	418/418	Male	97	119	216	
2014 ²¹	Axum	sectional	children aged 6-12	-12	Femal	77	128	205	
	town	study	months		Total	174	247	421	
Biks et.al. 2015 ³⁹	Amhara,	Nested case-	All pregnant	1,769/1,769	Male	271	619	890	
DIKS Ct.ui. 2013	Dabat	control study	women in the		Femal	727	1148	1875	
	district	(EDHS based)	second/third trimester		Total	998	1767	2765	
Arage et.al. 2016 ⁴⁰	Amhara,	Cross-	Mothers of Infants	470/453	Male	119	40	159	
	Debre	sectional	Less Than Six		Femal	227	67	294	
	Tabor Town	study	Months of Age		Total	346	107	453	
Adugna et.al. 2017 ⁴¹	SNNPR,	Cross-	Mothers with	541/529	Male	169	88	257	
11448114 001411 2017	Hawassa	sectional	infants aged 0-6		Femal	153	119	272	
	city	study	months		Total	322	207	529	
Egata et.al. 2013 ⁴²	Oromia,	Cross-	Mothers of	881/860	Male	323	124	447	
Eguta ct.ai. 2013	Kersa	sectional	children under-		Femal	294	119	413	
	district	study (DHS based)	two years of age		Total	617	243	860	
Teka et al. 2015 ⁴³	Tigray,	Cross-	Mothers having	541/530	Male	158	60	218	
2014 01 41. 2010	Enderta	sectional	children aged less		Femal	214	98	312	
	Woreda	study	than 24 months		Total	372	158	530	
Sefene et al. 2013 ⁴⁴	Amhara,	Cross-	Mothers who had	170/159	Male	36	47	83	
5010110 ot all 2013	Bahir Dar	sectional	a child age less		Femal	42	34	76	
	city	study	than 6 months		Total	78	81	159	
B. Antenatal ca	are versus FR	F	I	1		, , ,	01	10)	
Asemahagn 2016 ³⁶	Amhara,	Cross-	Women having	346/332	ANC	243	57	300	
Asomanagn 2010	Azezo	sectional	children aged		No ANC	19	13	32	
	district	study	from 0–6 months		Total	262	70	332	
Gultie et.al 2016 ²⁹	Amhara,	Cross-	mothers having	548/548	ANC	263	253	516	
Outlie et.at 2010	Debre	sectional	children	2 10/2 10	No ANC	10	21	31	
	Berhan	study	aged less than 23		Total	273	274	547	
	town		months old		1 Otal	213	2/4	J+1	

Hunegnaw et.al.	Amhara,	Cross-	Mothers who had	506/478	ANC	341	109	450
2017^{45}	Gozamin	sectional	Infants aged		No ANC	17	11	28
	district	study	between 6 and 12 months		Total	358	120	478
Lenja et.al. 2016 ⁴⁶	SNNPR,	Cross-	Mothers of infants	403/396	ANC	233	43	276
J	Offa	sectional	younger than 6		No ANC	44	88	132
	district	study	months		Total	277	131	408
Seid et.al 2013 ³⁴	Amhara,	Cross-	Mothers who	819/819	ANC	405	372	777
	Bahir Dar	sectional	Delivered in the		No ANC	7	35	42
	city	study	last 12 months		Total	412	407	819
Setegn et.al 2011 ²⁶	Oromia,	cross	mothers with	668/608	ANC	166	65	231
	Goba	sectional	children (< 12		No ANC	27	10	37
	district	study	months		Total	193	75	268
Sonko et.al. 2015 ³⁸	SNNPR,	Cross-	Mothers	422/420	ANC	258	88	346
	Halaba	sectional	With children less		No ANC	38	36	74
	special woreda	study	than six months of age		Total	296	124	420
Tadesse et.al.	SNNPR,	Cross-	Mothers With	602/579	ANC	211	121	332
2016 ⁴⁷	Sorro	sectional	infants aged of 0–		No ANC	59	123	182
	District	Study	5 months		Total	270	244	514
Tariku et.al. 2017 ⁴⁸	Amhara,	Cross-	Mothers with	5,227/ 5,227	ANC	1979	1353	3332
	Dabat	sectional	children aged less		No ANC	713	876	1589
	District study (EDHS based) than 59 months		than 59 months		Total	2692	2229	4921
Tewabe et.al. 2017 ³⁵	Amhara,	Cross-	Mothers with	423/405	ANC	185	164	349
	Motta	sectional	infant less than six		No ANC	18	38	56
	town, East Gojjam zone	Study	Months old		Total	203	202	405
Tamiru et.al 2012 ³⁰	Oromia,	Cross-	Mothers of index	384/ 382	ANC	87	103	190
1 anni a ct. ai 2012	Jimma	sectional	children aged		No ANC	96	96	192
	Arjo Woreda	study	0 to 6 months		Total	183	199	382
Tamiru et.al 2015 ³¹	SNNPR,	cross-	Mothers of infants	384/384	ANC	228	92	320
	Arba	sectional	aged two years		No ANC	27	37	64
	Minch Zuria Woreda	study	and younger		Total	255	129	384
Biks et.al. 2015 ³⁹	Amhara,	Nested case-	All pregnant	1,769/1,769	ANC	180	277	457
	Dabat	control study	women in the		No ANC	363	949	1312
	district	(EDHS based)	second/third trimester		Total	543	1226	1769
Abera 2012 ⁴⁹	Harari,	Cross-	Mothers of	604/583	ANC	194	163	357
	Harar twon	sectional	children aged less		No ANC	13	29	42
		study	than two years		Total	207	192	399
Arage et.al. 2016 ⁴⁰	Amhara,	Cross-	Mothers of Infants	470/453	ANC	384	39	423
-	Debre	sectional	Less Than Six		No ANC	18	12	30
	Tabor study Months of Age Town	Months of Age		Total	402	51	453	
Adugna et.al. 2017 ⁴¹	SNNPR,	Cross-	Mothers with	541/529	ANC	221	111	332
-	Hawassa	assa sectional infants a		its aged 0-6		101	96	197
	city	study	months		Total	322	207	529

Egata et.al. 2013 ⁴²	Oromia,	Cross-	Mothers of	881/860	ANC	233	135	368
	Kersa	sectional	children under-		No ANC	384	108	492
	district	study	two years of age		Total	617	243	860
		(EDHS						
Taddele et.al. 2014 ⁵⁰	Amhara,	based) Comparative	Employed and	524/473	ANC	90	98	188
raddele et.al. 2014	Injibara	cross-	unemployed	324/473	No ANC			
	Town	sectional	mothers of			6	23	29
	Town	study	children age ≤ 1		Total	96	121	217
			year					
Echamo. 2012 ⁵¹	SNNPR,	Cross-	Mothers of infants	768/768	ANC	332	360	692
	Arbaminch	sectional	within the age of		No ANC	25	51	76
	town	study	six to twelve		Total	357	411	768
			months					
T-1	Tigray,	Cross-	Mothers having	541/530	ANC	325	134	459
Teka et al. 2015 ⁴³	Enderta	sectional	children aged less	341/330	No ANC	47	24	71
	Woreda	study	than 24 months		Total	372	158	530
C. Postnatal ca			than 21 months		Total	312	130	330
Asemahagn 2016 ³⁶	Amhara,	Cross-	Women having	346/332	PNC	137	25	162
7 isemanagn 2010	Azezo	sectional	children aged		No PNC	125	45	170
	district	district study from 0–6 months	from 0-6 months		Total	262	70	332
Lenja et.al. 2016 ⁴⁶	SNNPR,	Cross-	Mothers of infants	403/396	PNC	188	33	221
Lenja et.ai. 2010	Offa	sectional	younger than 6		No PNC	121	54	175
	district	study	months		Total	309	87	396
Sonko et.al. 2015 ³⁸	SNNPR,	Cross-	Mothers with	422/420	PNC	98	25	123
Sonko et.ui. 2013	Halaba	sectional	children less than		No PNC	197	99	296
	special	study	six months of age		Total	295	124	419
	woreda							
Tadesse et.al.	SNNPR,	Cross-	Mothers With	602/ 579	PNC	204	127	331
2016 ⁴⁷	Sorro	sectional	infants aged of 0–		No PNC	66	117	183
	District	Study	5 months		Total	270	244	514
Tewabe et.al. 2017 ⁵²	Amhara,	Cross-	Mothers with	423/405	PNC	116	81	197
	Motta	sectional	infant less than six		No PNC	87	121	208
	town, East	Study	Months old		Total	203	202	405
	Gojjam zone							
Abera 2012 ⁴⁹	Harari,	Cross-	Mothers of	604/583	PNC	29	31	60
AUCIA ZUIZ	Harar twon	sectional	children aged less	33.7232	No PNC	178	161	339
		study	than two years		Total	207	192	399
Teka et al. 2015 ⁴³	Tigray,	Cross-	Mothers having	541/530	PNC	167	86	253
тека егат. 2015	Enderta	sectional	children aged less	5 11/550	No PNC	205	72	277
	woreda	study	than 24 months		Total	372	158	530
EDIIG E		maanankia II		 	- 0 1111		120	

EDHS= Ethiopian Demographic Health Survey

Timely initiation of breastfeeding (TIBF)

Among the 17 selected studies, 9 studies^{20–28} reported the association between TIBF and gender of new-born in 15,588 mothers (Table 1A). The pooled odds ratio (OR) of gender of new-born

was 1.03 (95% CI 0.84 - 1.26) (figure 2). Mothers with male new-born had 3% higher chance of initiating breastfeeding within one hour of birth compared to female new-born although not statistically significant. Egger's regression test for funnel plot asymmetry was not significant (z = 0.28, p = 0.78).

Likewise, 12 studies $^{22,23,25,26,28-33,35,53}$ reported the association between TIBF and ANC in 11,712 mothers (Table 1B). The pooled OR of ANC was 1.61 (95% CI 1.01 - 2.57) (figure 3). Mothers who had at least one ANC visit had 61% significantly higher chance of initiating breastfeeding within one hour of birth compared to mothers who had no ANC visit. Egger's regression test for funnel plot asymmetry was not significant (z = 1.07, p = 0.28).

Exclusive breastfeeding

Out of the 23 studies included, $11 \text{ studies}^{20,21,36-44}$ reported the association between EBF and gender of new-born in 6,527 mothers (Table 2A). The pooled OR of new-born gender was 1.08 (95% CI 0.86 1.36) (figure 4). Mothers with male new-born had 8% higher chance of exclusively breastfeeding during the first six months compared to mothers with female new-born although not statistically significant. Egger's regression test for funnel plot asymmetry was significant (z = -3.64, p < 0.001).

Twenty studies $^{29-31,34,36-43,45-52}$ reported the association between EBF and ANC in 15,403 mothers (Table 2B). The pooled OR of ANC was 2.25 (95% CI 1.63 3.10) (figure 5). Mothers who had at least one ANC visit had 2.25 times significantly higher chance of exclusively breastfeed compared to mothers who had no ANC visit. Egger's regression test for funnel plot asymmetry was not significant (z = 1.64, p = 0.10).

Furthermore, 7 studies^{36,38,43,46,47,49,52} reported the association between EBF and PNC in 2,995 mothers (Table 2C). The pooled OR of PNC was 1.86 (95% CI 1.41 2.47) (figure 6).

Mothers who had PNC follow-up had 86% significantly higher chance of exclusively breastfeed during the first six months compared to mothers who had no PNC follow-up. Egger's regression test for funnel plot asymmetry was not significant (z = -0.91, p = 0.36).

Discussion

This meta-analysis assessed the association of timely initiation of breastfeeding (TIBF) and exclusive breastfeeding (EBF) with gender of new-born, antenatal and postnatal care. To address these factors, this is the first study of its kind in Ethiopia. Antenatal care (ANC) was significantly

associated with TIBF but not gender of new-born. In addition, both antenatal (ANC) and postnatal care (PNC) were significantly associated with EBF but not gender of new-born.

In congruent with the large body of global evidence, ^{54–59} our finding indicated that mothers who had at least one antenatal visit had significantly higher chance of initiating breastfeeding within one hour of birth and exclusively breastfeed for the first six months compared to mothers who had no ANC visit. This is in line with our hypothesis. Previous reports have also noted increasing rate of TIBF and EBF in mothers who have a frequent antenatal visit. ^{54,58,60,61} This significant association may be due to the fact that health professionals provide breastfeeding guidance and counseling during ANC visit. This hypothesis is supported by WHO/UNICEF which emphasizes promoting breastfeeding during pregnancy through Baby-Friendly Hospital Initiative (BFHI) program. Ethiopia has also adopted BFHI as part of national nutrition program and is now actively working to integrate to all public and private health facilities. Moreover, previous studies have shown that health education on breastfeeding during ANC follow-up increased TIBF and EBF practice. ^{62,63}

We also showed that mothers who had PNC follow-up had nearly twice higher chance of exclusively breastfeeding during the first six months compared to mothers who had no PNC follow-up; this result supported our hypothesis. Several studies have reported a significantly increased rate of EBF in mothers who had a postnatal visit at health institution⁵⁹ or postnatal home visit.⁶⁴ The possible justification could be postnatal visit health education may positively influence the belief and decision of the mothers to exclusively breastfeed. Previous studies have also shown postnatal education and counseling are important to increase EBF.⁶⁵ In addition, in our previous meta-analyses, we showed that guidance and counseling during ANC or PNC significantly associated with high rate of TIBF and EBF. Furthermore, it may be explained by

postnatal care ease breastfeeding difficulty, increase maternal confidence and encourage social/family support which may lead the mother to continue EBF for 6 months.

Finally, in agreement with previous studies, ^{56,59} we uncovered gender of new-born was not significantly associated with TIBF and EBF. This is against our hypothesis. In this meta-analysis, we disproved the traditional perception and believe in Ethiopia that male new-born have pre-lacteal feeding to be strong and healthy compared to female new-born; however, further investigation is required. On the other hand, several studies ^{60,61,66} showed that gender of new-born is significantly associated with breastfeeding practice. This discrepancy across studies may be due to the socio-cultural difference.

This systematic review and meta-analysis was conducted based on the registered and published protocol, 11 and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for literature reviews. In addition, publication bias was quantified using Egger's regression statistical test and NOS was used to assess the quality of studies. Since it is the first study of its kind in Ethiopia, the information could be helpful for future researchers and public health practitioners. The inclusion of large sample size and recent studies are further strengths of this study. This study has limitations as well. Almost all included studies were observational which hinder causality inference. Even though we have used broad search strategies, the possibility of missing relevant studies cannot be fully exempted and the finding may not be nationally representative. Based on the conventional methods of heterogeneity test, a few analyses suffer from high between-study variation. The course of heterogeneity was carefully explored and this variation may be due to the difference of study area; therefore, the result should be interpreted with caution. Lastly, a significant publication bias was detected in

studies reported the association between EBF and gender of new-born. In this case, Duval and

Tweedie trim-and-fill method was applied to adjust publication bias.

Conclusions

We found that optimal care during and after pregnancy is important for optimal

breastfeeding practice. Gender of new-born was not significantly associated with TIBF and EBF.

This meta-analysis study provided evidence on breastfeeding practice and its associated factors

in an Ethiopian context, which can be useful for cross-country and cross-cultural comparison and

for breastfeeding improvement initiative in Ethiopia. Most importantly, this study provides an

overview of up-to-date evidence for public nutrition professionals and policymakers. In addition,

the result indicates that increasing the utilization of antenatal and postnatal care have a positive

effect on breastfeeding practices. This signifies stakeholders would provide due emphasis on

ANC and PNC service to achieve WHO breastfeeding goal.

Data Sharing Statement

All data generated or analysed during this study are included in this published article and its

19

supplementary information files.

Competing interests

The authors declare that they have no competing interests.

Funding

Not applicable

Authors Contribution

NT and TD conceived and designed the study. TD developed a syntax for searching databases and analyzed the data. TD and SM wrote and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgment

Our special gratitude forwarded to Sjoukje van der Werf (University of Groningen, the Netherlands) for her support to develop the search strings and Balewgizie Sileshi (University of Groningen, the Netherlands) for his support during title and abstract screening.

- 1. World Health Organization. Infant and young child feeding: a tool for assessing national practices, policies and programmes. 2003; .
- 2. World Health Organization. Babies and mothers worldwide failed by lack of investment in breastfeeding. *Saudi Med J* 2017; **38**(9): 974-5.
- 3. Edmond KM, Zandoh C, Quigley MA, Amenga-Etego S, Owusu-Agyei S, Kirkwood BR. Delayed breastfeeding initiation increases risk of neonatal mortality. *Pediatrics* 2006; **117**(3): e380-6.
- 4. World Health Organization. Infant and young child feeding: model chapter for textbooks for medical students and allied health professionals. *Infant and young child feeding: model chapter for textbooks for medical students and allied health professionals.* 2009; .
- 5. Batal M, Boulghourjian C, Abdallah A, Afifi R. Breast-feeding and feeding practices of infants in a developing country: a national survey in Lebanon. *Public Health Nutr* 2006; **9**(3): 313-9.
- 6. Issaka AI, Agho KE, Renzaho AM. Prevalence of key breastfeeding indicators in 29 sub-Saharan African countries: a meta-analysis of demographic and health surveys (2010–2015). *BMJ open* 2017; **7**(10): e014145.
- 7. Habtewold TD, Mohammed S., Endalamaw A, Akibu M, Sharew NT, Alemu YM, Beyene MG, Sisay TA, Birhanu MM, Islam MA, Tegegne BS. Breast and complementary feeding in Ethiopia: new national evidence from systematic review and meta-analyses of studies in the past 10 years. *Eur J Nutr* Submitted April 2018;
- 8. Boccolini CS, Carvalho MLd, Oliveira, Maria Inês Couto de. Factors associated with exclusive breastfeeding in the first six months of life in Brazil: a systematic review. *Rev Saude Publica* 2015; **49**.
- 9. Sharma IK, Byrne A. Early initiation of breastfeeding: a systematic literature review of factors and barriers in South Asia. *International breastfeeding journal* 2016; **11**(1): 17.
- 10. Alebel A, Dejenu G, Mullu G, Abebe N, Gualu T, Eshetie S. Timely initiation of breastfeeding and its association with birth place in Ethiopia: a systematic review and meta-analysis. *International Breastfeeding Journal* 2017; **12**(1): 44.
- 11. Habtewold TD, Islam MA, Sharew NT, Mohammed SH, Birhanu MM, Tegegne BS. SystEmatic review and meta-aNAlysis of infanT and young child feeding Practices (ENAT-P) in Ethiopia: protocol. *BMJ Open* 2017; **7**(8): e017437,2017-017437.
- 12. Kraemer HC. Kappa coefficient. Wiley StatsRef: Statistics Reference Online 2014; : 1-4.
- 13. Peterson J, Welch V, Losos M, Tugwell P. *The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses* 2011; .

- 14. Munn Z, Tufanaru C, Aromataris E. JBI's systematic reviews: data extraction and synthesis. *Am J Nurs* 2014; **114**(7): 49-54.
- 15. Thomas Brinkhoff. Federal Democratic Republic of Ethiopia. 2015; Available at: http://www.citypopulation.de/Ethiopia.html. Accessed 04/28, 2018.
- 16. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ* 1997; **315**(7109): 629-34.
- 17. Duval S, Tweedie R. Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. *Biometrics* 2000; **56**(2): 455-63.
- 18. Higgins J, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med* 2002; **21**(11): 1539-58.
- 19. Moher D, Liberati A, Tetzlaff J, Altman DG, Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS med* 2009; **6**(7): e1000097.
- 20. Regassa N. Infant and child feeding practices among farming communities in Southern Ethiopia. *Kontakt* 2014; **16**(4): e215-22.
- 21. Alemayehu M, Abreha K, Yebyo H, Zemichael K, Gebremichael H. Factors associated with timely initiation and exclusive breast feeding among mothers of Axum town, Northern Ethiopia. *Sci J Public Health* 2014; **2**(5): 394-401.
- 22. Berhe H, Mekonnen B, Bayray A, Berhe H. Determinants of Breast feeding Practices Among Mothers Attending Public Health Facilities, Mekelle, Northern Ethiopia; A Cross Sectional Study. *International Journal of Pharmaceutical Sciences and Research* 2013; **4**(2): 650.
- 23. Beyene MG, Geda NR, Habtewold TD, Assen ZM. Early initiation of breastfeeding among mothers of children under the age of 24 months in Southern Ethiopia. *Int Breastfeed J* 2017; **12**: 1,016-0096-3. eCollection 2016.
- 24. Lakew Y, Tabar L, Haile D. Socio-medical determinants of timely breastfeeding initiation in Ethiopia: Evidence from the 2011 nation wide Demographic and Health Survey. *Int Breastfeed J* 2015; **10**: 24,015-0050-9. eCollection 2015.
- 25. Liben ML, Yesuf EM. Determinants of early initiation of breastfeeding in Amibara district, Northeastern Ethiopia: a community based cross-sectional study. *Int Breastfeed J* 2016; **11**: 7,016-0067-8. eCollection 2016.
- 26. Setegn T, Gerbaba M, Belachew T. Determinants of timely initiation of breastfeeding among mothers in Goba Woreda, South East Ethiopia: a cross sectional study. *BMC Public Health* 2011; **11**: 217,2458-11-217.

- 27. Wolde T, Birhanu T, Ejeta E. Prevalence and determinants of timely initiation of breastfeeding among lactating mothers of urban dwellers in Western Ethiopia: A community based cross sectional study. *Food Science and Quality Management* 2014; **31**.
- 28. Woldemichael B, Kibie Y. Timely Initiation of Breastfeeding and Its Associated Factors among Mothers in Tiyo Woreda, Arsi Zone, Ethiopia: A Community-Based Cross Sectional Study. *Clinics Mother Child Health* 2016; **13**(221): 2.
- 29. Gultie T, Sebsibie G. Determinants of suboptimal breastfeeding practice in Debre Berhan town, Ethiopia: a cross sectional study. *Int Breastfeed J* 2016; **11**: 5,016-0063-z. eCollection 2016.
- 30. Tamiru D, Belachew T, Loha E, Mohammed S. Sub-optimal breastfeeding of infants during the first six months and associated factors in rural communities of Jimma Arjo Woreda, Southwest Ethiopia. *BMC Public Health* 2012; **12**: 363,2458-12-363.
- 31. Tamiru D, Tamrat M. Constraints to the optimal breastfeeding practices of breastfeeding mothers in the rural communities of Arba Minch Zuria Woreda, Ethiopia: A community-based, cross-sectional study. *S Afr J Clin Nutr* 2015; **28**(3): 134-9.
- 32. Adugna DT. Women's perception and risk factors for delayed initiation of breastfeeding in Arba Minch Zuria, Southern Ethiopia. *Int Breastfeed J* 2014; **9**: 8,4358-9-8. eCollection 2014.
- 33. Derso T, Biks GA, Tariku A, et al. Correlates of early neonatal feeding practice in Dabat HDSS site, northwest Ethiopia. *Int Breastfeed J* 2017; **12**: 25,017-0116-y. eCollection 2017.
- 34. Seid AM, Yesuf ME, Koye DN. Prevalence of Exclusive Breastfeeding Practices and associated factors among mothers in Bahir Dar city, Northwest Ethiopia: a community based cross-sectional study. *Int Breastfeed J* 2013; **8**(1): 14,4358-8-14.
- 35. Tewabe T. Timely initiation of breastfeeding and associated factors among mothers in Motta town, East Gojjam zone, Amhara regional state, Ethiopia, 2015: a cross-sectional study. *BMC Pregnancy Childbirth* 2016; **16**(1): 314.
- 36. Asemahagn MA. Determinants of exclusive breastfeeding practices among mothers in azezo district, northwest Ethiopia. *Int Breastfeed J* 2016; **11**: 22,016-0081-x. eCollection 2016.
- 37. Setegn T, Belachew T, Gerbaba M, Deribe K, Deribew A, Biadgilign S. Factors associated with exclusive breastfeeding practices among mothers in Goba district, south east Ethiopia: A cross-sectional study. *Int Breastfeeding J* 2012; **7**.
- 38. Sonko A, Worku A. Prevalence and predictors of exclusive breastfeeding for the first six months of life among women in Halaba special woreda, Southern Nations, Nationalities and Peoples' Region/SNNPR/, Ethiopia: a community based cross-sectional study. *Arch Public Health* 2015; **73**: 53,015-0098-4. eCollection 2015.

- 39. Biks GA, Tariku A, Tessema GA. Effects of antenatal care and institutional delivery on exclusive breastfeeding practice in northwest Ethiopia: a nested case—control study. *International breastfeeding journal* 2015; **10**(1): 30.
- 40. Arage G, Gedamu H. Exclusive Breastfeeding Practice and Its Associated Factors among Mothers of Infants Less Than Six Months of Age in Debre Tabor Town, Northwest Ethiopia: A Cross-Sectional Study. *Advances in Public Health* 2016; **2016**.
- 41. Adugna B, Tadele H, Reta F, Berhan Y. Determinants of exclusive breastfeeding in infants less than six months of age in Hawassa, an urban setting, Ethiopia. *International Breastfeeding Journal* 2017; **12**(1): 45.
- 42. Egata G, Berhane Y, Worku A. Predictors of non-exclusive breastfeeding at 6 months among rural mothers in east Ethiopia: a community-based analytical cross-sectional study. *International breastfeeding journal* 2013; **8**(1): 8.
- 43. Teka B, Assefa H, Haileslassie K. Prevalence and determinant factors of exclusive breastfeeding practices among mothers in Enderta woreda, Tigray, North Ethiopia: a cross-sectional study. *International breastfeeding journal* 2015; **10**(1): 2.
- 44. Sefene A, Birhanu D, Awoke W, Taye T. Determinants of exclusive breastfeeding practice among mothers of children age less than 6 month in Bahir Dar city administration, Northwest Ethiopia; a community based cross-sectional survey. *Sci J Clin Med* 2013; **2**(6): 153-9.
- 45. Hunegnaw MT, Gezie LD, Teferra AS. Exclusive breastfeeding and associated factors among mothers in Gozamin district, northwest Ethiopia: A community based cross-sectional study. *Int Breastfeeding J* 2017; **12**(1).
- 46. Lenja A, Demissie T, Yohannes B, Yohannis M. Determinants of exclusive breastfeeding practice to infants aged less than six months in Offa district, Southern Ethiopia: a cross-sectional study. *Int Breastfeed J* 2016; **11**: 32.
- 47. Tadesse T, Mesfin F, Chane T. Prevalence and associated factors of non-exclusive breastfeeding of infants during the first six months in rural area of Sorro District, Southern Ethiopia: a cross-sectional study. *Int Breastfeed J* 2016; **11**: 25,016-0085-6. eCollection 2016.
- 48. Tariku A, Alemu K, Gizaw Z, et al. Mothers' education and ANC visit improved exclusive breastfeeding in Dabat Health and Demographic Surveillance System Site, northwest Ethiopia. *PLoS One* 2017; **12**(6): e0179056.
- 49. Abera K. Infant and young child feeding practices among mothers living in Harar, Ethiopia. *Harar Bulletin of Health Sciences* 2012; **4**: 66-78.
- 50. Taddele M, Abebe L, Fentahun N. Exclusive breastfeeding and maternal employment in Ethiopia: a comparative cross-sectional study. *Int J Nutr Food Sci* 2014; **3**(6): 497-503.

- 51. Echamo M. Exclusive breast feeding in Arbaminch, SNNPR, Ethiopia. *Harar Bull Health Sci* 2012; **5**: 44-59.
- 52. Tewabe T, Mandesh A, Gualu T, Alem G, Mekuria G, Zeleke H. Exclusive breastfeeding practice and associated factors among mothers in Motta town, East Gojjam zone, Amhara Regional State, Ethiopia, 2015: a cross-sectional study. *Int Breastfeed J* 2017; **12**: 12,017-0103-3. eCollection 2016.
- 53. Musa Seid A. Vaginal Delivery and Maternal Knowledge on Correct Breastfeeding Initiation Time as Predictors of Early Breastfeeding Initiation: Lesson from a Community-Based Cross-Sectional Study. *ISRN Epidemiology* 2014; **2014**.
- 54. Patel A, Badhoniya N, Khadse S, Senarath U, Agho KE, Dibley MJ, South Asia Infant Feeding Research Network (SAIFRN)*. Infant and young child feeding indicators and determinants of poor feeding practices in India: secondary data analysis of National Family Health Survey 2005–06. *Food and nutrition bulletin* 2010; **31**(2): 314-33.
- 55. Seema M, Iqbal K, Roy S, Agho K, Upul S, Dibley M. Determinants of infant and young child feeding practices in Bangladesh: secondary data analysis of Demographic and Health Survey 2004. *Food and Nutrition Bulletin* 2010; **31**(2): 295-313.
- 56. Senarath U, Dibley MJ, Godakandage SS, Jayawickrama H, Wickramasinghe A, Agho KE, South Asia Infant Feeding Research Network (SAIFRN)*. Determinants of infant and young child feeding practices in Sri Lanka: secondary data analysis of Demographic and Health Survey 2000. *Food and nutrition bulletin* 2010; **31**(2): 352-65.
- 57. Ogunlesi TA. Maternal socio-demographic factors influencing the initiation and exclusivity of breastfeeding in a Nigerian semi-urban setting. *Matern Child Health J* 2010; **14**(3): 459-65.
- 58. Okafor I, Olatona F, Olufemi O. Breastfeeding practices of mothers of young children in Lagos, Nigeria. *Nigerian Journal of Paediatrics* 2014; **41**(1): 43-7.
- 59. Subedi N, Paudel S, Rana T, Poudyal A. Infant and young child feeding practices in Chepang communities. *Journal of Nepal Health Research Council* 2012; .
- 60. Agho KE, Dibley MJ, Odiase JI, Ogbonmwan SM. Determinants of exclusive breastfeeding in Nigeria. *BMC pregnancy and childbirth* 2011; **11**(1): 2.
- 61. Ghwass MMA, Ahmed D. Prevalence and predictors of 6-month exclusive breastfeeding in a rural area in Egypt. *Breastfeeding medicine* 2011; **6**(4): 191-6.
- 62. Vieira TO, Vieira GO, Giugliani ERJ, Mendes CM, Martins CC, Silva LR. Determinants of breastfeeding initiation within the first hour of life in a Brazilian population: cross-sectional study. *BMC Public Health* 2010; **10**(1): 760.

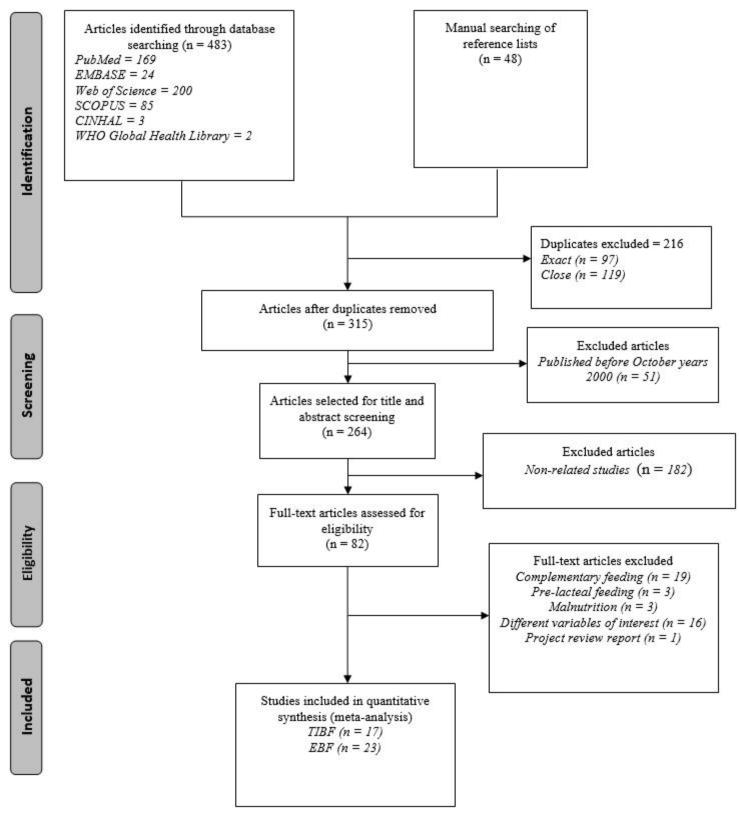
- 63. El Shafei AM, Labib JR. Determinants of exclusive breastfeeding and introduction of complementary foods in rural Egyptian communities. *Glob J Health Sci* 2014; **6**(4): 236-44.
- 64. Bashour HN, Kharouf MH, AbdulSalam AA, El Asmar K, Tabbaa MA, Cheikha SA. Effect of postnatal home visits on maternal/infant outcomes in Syria: a randomized controlled trial. *Public Health Nursing* 2008; **25**(2): 115-25.
- 65. Su LL, Chong YS, Chan YH, et al. Antenatal education and postnatal support strategies for improving rates of exclusive breast feeding: randomised controlled trial. *BMJ* 2007; **335**(7620): 596.
- 66. Ogada IA. Effectiveness of couple counselling versus maternal counselling in promoting exclusive breast feeding: a randomised controlled trial in Nyando District, Kenya. 2014;

Figure 1: PRISMA flow diagram of literature screening and selection process; "n" in each stage represents the total number of studies that fulfilled particular criteria. (Note: There are studies reported more than one outcome indicator)

Figure 2: Forest plot of the unadjusted odds ratios with corresponding 95% CIs of studies on the association of gender of new-born and TIBF. The horizontal line represents the confidence

interval, the box and its size in the middle of the horizontal line represents the weight of sample size. The polygon represents the pooled odds ratio. The reference category is 'Female'. TIBF = timely initiation of breastfeeding; LIBF = late initiation of breastfeeding; REM = random-effects model.

Figure 3: Forest plot of the unadjusted odds ratios with corresponding *95% CI*s of studies on the association of ANC and TIBF. The horizontal line represents the confidence interval, the box and its size in the middle of the horizontal line represents the weight of sample size. The polygon represents the pooled odds ratio. The reference category is 'No ANC follow-up'. TIBF = timely initiation of breastfeeding; LIBF = late initiation of breastfeeding; REM = random-effects model;


Figure 4: Forest plot of the unadjusted odds ratios with corresponding *95% CI*s of studies on the association of new-born gender and EBF. The horizontal line represents the confidence interval, the box and its size in the middle of the horizontal line represents the weight of sample size. The polygon represents the pooled odds ratio. The reference category is 'Female'. EBF = Exclusive breastfeeding; NEBF = Non-exclusive of breastfeeding; REM = random-effects model.

ANC=Antenatal care.

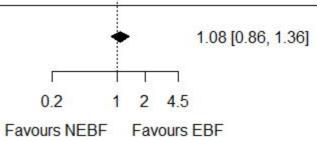
Figure 5: Forest plot of the unadjusted odds ratios with corresponding *95% CI*s of studies on the association of ANC and EBF. The horizontal line represents the confidence interval, the box and its size in the middle of the horizontal line represents the weight of sample size. The polygon represents the pooled odds ratio. The reference category is 'No ANC follow-up'. EBF = Exclusive breastfeeding; NEBF = Non-exclusive of breastfeeding; ANC = Antenatal care; REM = random effects model.

Figure 6: Forest plot of the unadjusted odds ratios with corresponding 95% CIs of studies on the association of PNC and EBF. The horizontal line represents the confidence interval, the box and

its size in the middle of the horizontal line represents the weight of sample size. The polygon represents the pooled odds ratio. The reference category is 'No PNC follow-up'. EBF = Exclusive breastfeeding; NEBF = Non-exclusive breastfeeding; PNC = Postnatal care; REM = random-effects model; D = Discarding; NotD = Not discarding.

	Male		Female			
Studies and Publication year	TIBF	LIBF	TIBF	LIBF	Od	dds Ratio [95% CI]
Regassa; 2014	488	107	389	110	F = -1	1.29 [0.96, 1.74]
Alemayehu et al,; 2014	75	141	99	103	⊢ ■→	0.55 [0.37, 0.82]
Berhe et al.; 2013	166	42	112	37	⊢	1.31 [0.79, 2.16]
Beyene et al.; 2017	262	51	255	50		1.01 [0.66, 1.54]
Lakew et al; 2015	3124	2860	3057	2511		0.90 [0.83, 0.97]
Liben et al; 2016	81	122	70	130	, -	1.23 [0.82, 1.85]
Setegn et al; 2011	164	152	150	133	1-	0.96 [0.69, 1.32]
Wolde et al; 2014	70	10	84	10	1	0.83 [0.33, 2.12]
Woldemichael et al; 2016	153	60	98	62		1.61 [1.04, 2.50]
Summary						1.03 [0.84, 1.26]

Favours LIBF Favours TIBF


0.2 1 2 4.5

	ANC		No	ANC					
Studies and Publication year	TIBF	LIBF	TIBF	LIBF	Od	ds Ratio [95% CI]			
Gultie et al; 2016	428	88	16	15	<u> </u>	4.56 [2.17, 9.56]			
Tamiru et al.; 2012	115	69	120	71	⊢ •	0.99 [0.65, 1.50]			
Tamiru et al; 2015	179	140	40	24		0.77 [0.44, 1.33]			
Berhe et al.; 2013	263	66	15	13	1 1	3.45 [1.57, 7.61]			
Adugna; 2014	179	140	40	24	H-	0.77 [0.44, 1.33]			
Beyene et al.; 2017	206	58	311	43	⊢■ →	0.49 [0.32, 0.76]			
Derso et al.; 2017	2135	2220	670	1364		1.96 [1.75, 2.19]			
Liben et al; 2016	110	196	41	56	<u> ■ </u>	0.77 [0.48, 1.22]			
Seid; 2014	680	94	29	12	 1	2.99 [1.48, 6.07]			
Setegn et al; 2011	270	238	37	45	I . ■ - 1	1.38 [0.86, 2.20]			
Tewabe; 2016	282	67	37	19	⊢	2.16 [1.17, 3.99]			
Woldemichael et al; 2016	194	41	57	81	⊢ ■1	6.72 [4.17, 10.84]			
Summary REM test for heterogeneity (Q = 117.07, df = 11, p = 0.00; I ² = 93.2%)									
					0.08 1 3 11				
				1	Favours LIBF Favours TIBF				

	Male		Female			
Studies and Publication year	EBF	NEBF	EBF	NEBF	00	dds Ratio [95% CI]
Asemahagn; 2016	95	38	167	32	⊢• ⊣	0.48 [0.28, 0.82]
Setegn et al.; 2012	107	43	92	37	-	1.00 [0.59, 1.68]
Sonko et al; 2015	145	60	151	64	—	1.02 [0.67, 1.56]
Regassa; 2014	109	19	89	17		1.10 [0.54, 2.23]
Alemayehu et al,; 2014	97	119	77	128	-	1.36 [0.92, 2.00]
Biks et al; 2015	271	619	272	1148	H ⊞ H	1.85 [1.52, 2.24]
Arage et al; 2016	119	40	227	67	⊢ ■	0.88 [0.56, 1.38]
Adugna et al; 2017	169	88	153	119	⊢■⊣	1.49 [1.05, 2.12]
Egata et al; 2013	323	124	294	119	H = H	1.05 [0.78, 1.42]
Teka et al; 2015	158	60	214	98	⊢ ■-1	1.21 [0.82, 1.77]
Sefene et al; 2013	36	47	42	34	⊢	0.62 [0.33, 1.16]

Summary

REM test for heterogeneity (Q = 39.19, df = 10, p = 0.00; I^2 = 71.7%)

	ANC		No	ANC			
Studies and Publication year	EBF	NEBF	EBF	NEBF		C	Odds Ratio [95% CI]
Asemahagn; 2016	243	57	19	13		├- (2.92 [1.36, 6.25]
Gultie et al; 2016	263	253	10	21		<u> </u>	2.18 [1.01, 4.73]
Hunegnawu et al; 2017	341	109	17	11			2.02 [0.92, 4.45]
Lenja et al.; 2016	223	43	44	88		-	10.37 [6.37, 16.89]
Seid et al; 2013	405	372	7	35		 •	5.44 [2.39, 12.40]
Setegn et al.; 2012	166	65	27	10	1	-	0.95 [0.43, 2.06]
Sonko et al; 2015	258	88	38	36		⊢= ⊣	2.78 [1.66, 4.65]
Tadesse et al; 2016	211	121	59	123		⊢■⊣	3.64 [2.48, 5.33]
Tariku et al.; 2017	1979	1353	713	876			1.80 [1.59, 2.03]
Tewabe et al.; 2017	185	164	18	38		⊢= →	2.38 [1.31, 4.33]
Tamiru et al.; 2012	87	103	96	96	H	H	0.84 [0.57, 1.26]
Tamiru et al; 2015	228	92	27	37		1-1	3.40 [1.96, 5.90]
Biks et al; 2015	180	277	363	949		H SS H	1.70 [1.36, 2.12]
Abera; 2012	194	163	13	29			2.66 [1.34, 5.28]
Arage et al, 2016	384	39	18	12		⊢ ■	6.56 [2.95, 14.63]
Adugna et al; 2017	221	111	101	96		H■H	1.89 [1.32, 2.71]
Egata et al; 2013	233	135	384	108	H■H		0.49 [0.36, 0.66]
Taddele et al; 2014	90	98	6	23		1	3.52 [1.37, 9.04]
Echamo; 2012	332	360	25	51		├─■ ─┤	1.88 [1.14, 3.11]
Teka et al; 2015	325	134	47	24	E	= -1	1.24 [0.73, 2.11]
Summary REM test for heterogeneity (Q = 1	84.57, d	f = 19, p =	0.00; I ² =	= 91.5%)		•	2.25 [1.63, 3.10]
				- 20	0.0]
				0.	80	1 3 1	7
				F	avours NEBF	Favours EB	3F

	PNC		No PNC						
Studies and Publication year	EBF	NEBF	EBF	NEBF				Odd	ls Ratio [95% CI]
Asemahagn; 2016	137	25	125	45		0 0 0 0 0 0 0 0 0	⊢ •→1		1.97 [1.14, 3.40]
Lenja et al.; 2016	188	33	121	54			-		2.54 [1.56, 4.15]
Sonko et al; 2015	98	25	197	99			⊢= ⊣		1.97 [1.19, 3.25]
Tadesse et al; 2016	204	127	66	117			⊢∎⊣		2.85 [1.96, 4.14]
Tewabe et al.; 2017	116	81	87	121			⊢∎⊣		1.99 [1.34, 2.96]
Abera; 2012	29	31	178	161		ı -	1		0.85 [0.49, 1.47]
Teka et al; 2015	205	72	167	86			-■-1		1.47 [1.01, 2.13]
Summary	. A.A. JE	0 - 004	. 12	10/)			•		1.86 [1.41, 2.47]
REM test for heterogeneity (Q = 16).11, at = 1	b, p = 0.01	,1 = 63.4	F%)	Ţ			1	
					0.09	1	1 2	7	
				F	avours NI	EBF	Favou	s EBI	F