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Abstract. We present several deep learning models for assessing the
morphometric fidelity of deep grey matter region models extracted from
brain MRI. We test three different convolutional neural net architectures
(VGGNet, ResNet and Inception) over 2D maps of geometric features.
Further, we present a novel geometry feature augmentation technique
based on parametric spherical mapping. Finally, we present an approach
for model decision visualization, allowing human raters to see the areas of
subcortical shapes most likely to be deemed of failing quality by the ma-
chine. Our training data is comprised of 5200 subjects from the ENIGMA
Schizophrenia MRI cohorts, and our test dataset contains 1500 subjects
from the ENIGMA Major Depressive Disorder cohorts. Our final models
reduce human rater time by 46-70%. ResNet outperforms VGGNet and
Inception for all of our predictive tasks.
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1 Introduction

Quality control (QC) has become one of the main practical bottlenecks in big-
data neuroimaging. Reducing human rater time via predictive modeling and
automated quality control is bound to play an increasingly important role in
maintaining and hastening the pace of scientific discovery in this field. Recently,
the UK Biobank publicly released over 10,000 brain MRIs (and planning to
release 90,000 more); as other biobanking initiatives scale up and follow suit,
automated QC becomes crucial.

In this paper, we investigate the viability of deep convolutional neural nets
for automatically labeling deep brain regional geometry models of failing qual-
ity after their extraction from brain MR images. We compare the performance
of VGGNet, ResNet and Inception architectures, investigate the robustness of
probability thresholds, and visualize decisions made by the trained neural nets.
Our data consists of neuroimaging cohorts from the ENIGMA Schizophrenia and
Major Depressive Disorder working groups participating in the ENIGMA-Shape
project [1]. Using ENIGMAs shape analysis protocol and rater-labeled shapes,
we train a discriminative model to separate FAIL(F) and PASS(P) cases. Fea-
tures are derived from standard vertex-wise measures.

For all seven deep brain structures considered, we are able to reduce human
rater time by 46 to 70 percent in out-of-sample validation, while maintaining
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FAIL recall rates similar to human inter-rater reliability. Our models generalize
across datasets and disease samples. Our models’ decision visualization, partic-
ularly ResNet, appears to capture structural abnormalities of the poor quality
data that correspond to human raters’ intuition.

With this paper, we also release to the community the feature generation
code based on FreeSurfer outputs, as well as pre-trained models and code for
model decision visualization.

2 Methods

Our goal in using deep learning (DL) for automated QC differs somewhat from
most predictive modeling problems. Typical two-class discriminative solutions
seek to balance misclassification rates of each class. In the case of QC, we focus
primarily on correctly identifying FAIL cases, by far the smaller of the two
classes (Table 1). In this first effort to automate shape QC, we do not attempt
to eliminate human involvement, but simply to reduce it by focusing human
rater time on a smaller subsample of the data containing nearly all the failing
cases.

2.1 MRI processing and shape features

Our deep brain structure shape measures are computed using a previously de-
scribed pipeline [2] [3], available via the ENIGMA Shape package. Briefly, struc-
tural MR images are parcellated into cortical and subcortical regions using
FreeSurfer. Among the 19 cohorts participating in this study, FreeSurfer ver-
sions 5.1 and 5.3 were used. The binary region of interest (ROI) images are then
surfaced with triangle meshes and spherically registered to a common region-
specific template [4]. This leads to a one-to-one surface correspondence across
the dataset at roughly 2,500 vertices per ROI. Our ROIs include the left and
right thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and nu-
cleus accumbens. Each vertex p of mesh model M is endowed with two shape
descriptors:

Medial Thickness, D(p) = ‖cp−p‖, where cp is the point on the medial curve
c closest to p.

LogJac(p), Log of the Jacobian determinant J arising from the template
mapping, J : Tφ(p)Mt → TpM.

Since the ENIGMA surface atlas is in symmetric correspondence, i.e., the left
and right shapes are vertex-wise symmetrically registered, we can combine the
two hemispheres for each region for the purposes of predictive modeling. Though
we assume no hemispheric bias in QC failure, we effectively double our sample.

The vertex-wise features above are augmented with their volume-normalized

counterparts: {D,J}normed(p) = {D,J}(p)
V { 1

3
, 2
3
} . Given discrete area elements of the

template at vertex p,At(p), we estimate volume as V =
∑

p∈vrts(M)

3At(p)J(p)D(p).

We normalize our features subject-wise by this volume estimate to control for
subcortical structure size.
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2.2 Human quality rating

Human-rated quality control of shape models is performed following the ENIGMA-
Shape QC protocol (enigma.usc.edu/ongoing/enigma-shape-analysis). Briefly,
raters are provided with several snapshots of each region model as well as its
placement in several anatomical MR slices. A guide with examples of FAIL
(QC=1) and PASS (QC=3) cases is provided to raters, with an additional cat-
egory of MODERATE PASS (QC=2) suggested for inexperienced raters. With
sufficient experience, the rater typically switches to the binary FAIL/PASS rat-
ing. In this work, all QC=2 cases are treated as PASS cases, consistent with
ENIGMA shape studies.

2.3 Feature mapping to 2D images

Because our data resides on irregular mesh vertices, we first interpolate the fea-
tures from an irregular spherical mesh onto an equiangular grid. The interpolated
feature maps are then treated as regular 2D images by Mercator projection. Our
map is based on the medial curve-based global orientation function (see [5]),
which defines the latitude (θ) coordinate, as well as a rotational standardization
of the thickness profile D(p) to normalize the longitudinal (φ) coordinate. The
resulting map normalizes the 2D appearance of D(p), setting the poles to lie
at the ends of the medial curve. In practice, the re-sampling is realized as ma-
trix multiplication based on trilinear mesh interpolation, resulting in a 128×128
image for each measure.

2.4 Data augmentation

Although our raw sample of roughly 13,500 examples is exceptionally large by the
standards of neuroimaging, this dataset may not be large enough to train gen-
eralizable CNNs. Standard image augmentation techniques, e.g. cropping and
rotations, are inapplicable to our data. To augment our sample of spherically
mapped shape features, we sample from a distribution of spherical deforma-
tions, i.e. changes in the spherical coordinates of the thickness and Jacobian
features. To do this, we first sample from a uniform distribution of vector spher-
ical harmonic coefficients Blm,Clm, and apply a heat kernel operator [4] to the
generated field on TS2. Change in spherical coordinates is then defined based
on the tangential projection of the vector field, as in [4]. The width σ of the
heat kernel defines the level of smoothness of the resulting deformation, and
the maximum point norm M defines the magnitude. In practice, each random
sampling is a composition of a large magnitude, smooth deformation (σ = 10−1,
M = 3 × 10−1) and a smaller noisier deformation (σ = 10−2, M = 3 × 10−2).
Once the deformation is generated, it is applied to the spherical coordinates of
the irregular mesh, and a new sampling matrix is generated, as above.
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2.5 Deep learning models

We train VGGNet [6], ResNet [7] and Inception [8] architectures on our data. We
chose these architectures as they perform well in traditional image classification
problems and are well-studied.

2.6 Model decision visualization

Deep learning models tend to learn superficial statistical patterns rather than
high-level global or abstract concepts [9]. As we plan to provide a tool that both
(1) classifies morphometric shapes, and (2) allows a user to visualize what the
machine perceives as a ’FAIL’, model decision visualization is an important part
of our work. Here, we use Prediction Difference Analysis [10], and Grad-CAM
[11] to visualize ’bad’ and ’good’ areas for each particular shape in question.

2.7 Predictive model assessment

We use two sets of measures to evaluate the performance of our models. To
assess the validity of the models’ estimated ’FAIL’ probabilities, we calculate
the area under the ROC curve (ROC AUC). We also use two supplementary
measures: FAIL-recall and FAIL-share. In describing them below, we use the
following definitions. TF stands for TRUE FAIL, FF stands for FALSE FAIL,
TP stands for TRUE PASS, and FP stands for FALSE PASS. Our first measure,
F-recall = TF

TF+FP , shows the proportion of FAILS that are correctly labeled
by the predictive model with given probability threshold. The second measure,
F-share = TF+FF

Number of observations , shows the proportion of the test sample labeled
as FAIL by the model. Ideal models produce minimal F-share, and an F-recall
of 1 for a given set of parameters.

3 Experiments

For each of the seven ROIs, we performed three experiments defined by three
DL models (VGGNet-, ResNet- and Inception-like architecture).

3.1 Datasets

Our experimental data from the ENIGMA working groups is described in Table
1. Our predictive models were trained using 15 cohorts totaling 5218 subjects’
subcortical shape models from the ENIGMA-Schizophrenia working group. For
a complete overview of ENIGMA-SCZ projects and cohort details, see [12].

To test our final models, we used data from 4 cohorts in the Major Depres-
sive disorder working group (ENIGMA-MDD), totaling 1509 subjects, for final
out-of-fold testing. A detailed description of the ENIGMA-MDD sites and its
research objectives may be found here [13].
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FAIL % accumbens caudate hippocampus thalamus putamen pallidum amygdala

Train mean±std 3.4±4.7 0.9±0.7 2.0±1.1 0.8±1.0 0.6±0.6 2.3±3.6 0.9±0.9
max 16.4 2.1 4.2 3.4 1.5 13.8 2.6
size 10431 10433 10436 10436 10436 10435 10436

Test mean±std 4.7±4.5 1.4±1.5 4.9±4.8 1.4±1.5 0.4±0.8 1.9±2.0 0.8±0.9
max 10.5 3.5 11.4 3.5 1.6 3.8 2.1
size 3017 3018 3018 3018 3017 3018 3018

Table 1: Overview of FAIL percentage mean, standard deviation and maximum
for each site. Minimum is equal to 0 for all regions and sites except for hippocam-
pus on train (FAIL percentage 5%). Sample sizes for each ROI vary slightly due
to FreeSurfer segmentation failure.

3.2 Model validation

All experiments were performed separately for each ROI. The training dataset
was split into two parts referred to as ’TRAIN GRID’ (90% of train data) and
’TRAIN EVAL.’ (10% of the data). The two parts contained data from each
ENIGMA-SCZ cohort, stratified by the cohort-specific portion of FAIL cases.

Each model was trained on ’TRAIN GRID’ using the original sampling ma-
trix and 30 augmentation matrices resulting in 31x augmented train dataset.
We also generated 31 instances of each mesh validation set using each sampling
matrix and validated models’ ROC AUC on this big validation set during the
training.

As models produce probability estimates of FAIL (PFAIL), we studied the
robustness of the probability thresholds for each model. To do so, we selected
PFAIL values corresponding to regularly spaced percentiles values of F-share,
from 0.1 to 0.9 in 0.1 increments. For each such value, we examined F-recall
the evaluation set.

Final thresholds were selected based on the lowest F-share on the TRAIN
EVAL set, requiring that F-recall ≥ 0.8, a minimal estimate of inter-rater re-
liability. It is important to stress that while we used sample distribution infor-
mation in selecting a threshold, the final out-of-sample prediction is made on an
individual basis for each mesh.

4 Results

Trained models were deliberately set to use a loose threshold for FAIL detection,
predicting 0.2-0.5 of observations as FAILs in the ’TRAIN EVAL’ sample. These
predicted FAIL observations contained 0.85-0.9 of all true FAILs, promising to
reduce the human rater QC time by 50-80%. These results largely generalized to
the test samples: Table 2 shows our best model and the threshold performance
for each ROI. When applied to the test dataset, the models indicated modest
over-fitting, with the amount of human effort reduced by 46-70%, while cap-
turing 76-94% of poor quality meshes. The inverse relationship between FAIL
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percentage and F-share (Figure 1) may indicate model failure to learn gener-
alizable features on smaller number of FAIL examples. ROC AUC and F-recall
performance generalize across the test sites. Since 68% of our test dataset is
comprised of the Münster cohort, it is important that overall test performance
is not skewed by it.

ROI Model
Eval
AUC

Test
AUC

Eval
F-share

Test
F-share

Eval
F-recall

Test
F-recall

Accumbens ResNet 0.86 0.8 0.3 0.35 0.83 0.78
Amygdala ResNet 0.8 0.75 0.5 0.54 0.92 0.8
Caudate ResNet 0.9 0.84 0.2 0.3 0.82 0.78
Hippocampus ResNet 0.85 0.93 0.3 0.36 0.81 0.92
Pallidum ResNet 0.86 0.91 0.3 0.32 0.81 0.91
Putamen ResNet 0.88 0.7 0.3 0.52 0.93 0.76
Thalamus ResNet 0.8 0.87 0.4 0.47 0.82 0.94

Table 2: Test performance of the best models for each region. ResNet performs
the best in all cases. Overall models’ performance generalizes to out-of-sample
test data.

Our experiments with decision visualization (see Fig. 2) indicate that in most
FAIL cases, the attention heat map generated by Grad-CAM corresponds to
human raters’ intuition while Prediction Difference Analysis tend to concentrate
on local ’bumps’ on shapes.

5 Discussion and Conclusion

We have presented potential deep learning solutions for semi-automated quality
control of deep brain structure shape data. We believe this is the first DL ap-
proach for detecting end-of-the-pipeline feature failures in deep brain structure
geometry. We showed that DL can robustly reduce human visual QC time by
46-70% for large-scale analyses, for all seven regions in question, across diverse
MRI datasets and populations. Qualitative analysis of models decisions shows
promise as a potential training and heuristic validation tool for human raters.

There are several limitations of our work. Our planar projection of vertex-
wise features introduces space-varying distortions and boundary effects that can
affect training, performance and visualization. Recently proposed spherical con-
volutional neural nets [14] may be useful to fix this issue. Second, our models’
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Fig. 1: Scatter plots of F-recall vs. ROC AUC on test datasets and F-share vs.
proportion of predicted FAIL cases on test datasets (F-share). Left: F-recall
vs ROC AUC. Right: Fail F-share vs FAIL percentage. F-share was calculated
based on thresholds from Table 2. Mark size shows the dataset size. Mark shape
represents dataset (site): © - CODE-Berlin (N=176); � - Münster(N=1033); 4
- Stanford (N=105); 5 - Houston(N=195)

.

Fig. 2: QC report for human raters (left) and decision visualization example
based on Grad-CAM for the ResNet model (right). Red colors correspond to
points maximizing the model’s FAIL decision in the last layer. Decision visu-
alization corresponds to the observable deviations from underlying anatomical
boundaries indicative of a ”FAIL” rating according to an experienced rater.

.

decision visualization only partly matches with human raters’ intuition. In some
cases, our models do not consider primary ”failure” areas, as assessed by a human
rater. Finally, our models are trained on purely geometrical features and do not
include information on shape boundaries inside the brain. In rare cases, human
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raters pass shapes with atypical geometry because their boundaries look reason-
able, and conversely mark normal-appearing geometry as failing due to poor a
fit with the MR image. Incorporating intensity as well as geometry features will
be the focus of our future work.
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