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Abstract

Domains are fundamental subunits of proteins, and while they play major roles in facilitating protein–DNA,
protein–RNA and other protein–ligand interactions, a systematic assessment of their various interaction modes is
still lacking. A comprehensive resource identifying positions within domains that tend to interact with nucleic acids,
small molecules and other ligands would expand our knowledge of domain functionality as well as aid in detecting
ligand-binding sites within structurally uncharacterized proteins. Here we introduce an approach to identify per-
domain-position interaction “propensities” by aggregating protein co-complex structures by domain and ascertaining
how frequently residues mapping to each domain position interact with ligands. We perform this domain-based
analysis on ∼82,000 co-complex structures, and infer positions involved in binding DNA, RNA, peptides, ions, or
small molecules across 4,120 domains, which we refer to collectively as the InteracDome. Cross-validation testing
reveals that ligand-binding positions for 1,327 domains can be con�dently modeled and used to identify residues
facilitating interactions in ∼60–69% of human genes. Our resource of domain-inferred ligand-binding sites should be
a great aid in understanding disease etiology: whereas these sites are enriched in Mendelian-associated and cancer
somatic mutations, they are depleted in polymorphisms observed across healthy populations. The InteracDome is
available at http://interacdome.princeton.edu.

INTRODUCTION

The rate at which new genomes are sequenced has long since outpaced our ability to experimentally characterize
the biological functions of the encoded genes and their protein products. Leveraging the fact that similar protein
sequences or subsequences tend to share similar functions, computational approaches have been developed to
mitigate this sequence-to-function discrepancy by rapidly detecting and modeling the sequence similarity between
proteins [1]. Such homology-driven analyses of large-scale protein sequence databases have revealed many thousands
of recurrent, probabilistically-modelable protein subsequences called “domains” [2, 3, 4]. These sequence-derived
domains correspond to evolutionarily and functionally related substructures of proteins and are found in various
modular combinations within proteins from species across the tree of life [5].

Individual protein domains are associated with speci�c functionalities, among the most important of which are
mediating the interactions proteins make with nucleic acids, other proteins, and various other molecules in the cell.
Indeed, protein–DNA and protein–RNA interactions have been found to occur via domain interfaces so frequently
that factors associated with transcriptional and post-transcriptional activity are regularly classi�ed according to their
incorporation of particular nucleic acid-binding domains [6, 7]. Moreover, a signi�cant proportion of protein–protein
interactions in signaling pathways are mediated by modular binding domains [8].
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Although simply knowing which domains mediate various ligand interactions has already accelerated our ability
to annotate protein functions [9], pinpointing the ligand-contacting positions within these domains would enable a
more precise analysis of the many thousands of sequenced proteins across species that contain domain instances but
lack further biological characterizations. Indeed, more comprehensive knowledge of protein interaction interfaces
will have considerable implications for investigating the evolution and natural variation of interaction network
connectivities [10], for determining the mechanistic impact of coding variants [11], for prioritizing germline and
somatic perturbations to uncover disease etiology [12, 13], and for designing targeted therapeutic drugs [14].

Identifying positions within domains that interact with ligands from sequence alone is nontrivial, as a minority of
positions within a domain may be involved with ligand binding, and these positions may not be proximal with respect
to the linear protein sequence (e.g., of 264 positions in the tyrosine kinase domain, only 16 noncontiguous positions
contact ATP) [15]. Further, while some ligand-binding positions are largely invariant across domain instances—for
example, the zinc-contacting positions in the Cys2-His2 zinc �nger (C2H2-ZF) domain are required for proper domain
folding and thus are highly conserved—other binding positions are not: amino acids within DNA-contacting positions
in these same C2H2-ZF domains, for example, vary dramatically across domain instances to confer diverse binding
speci�cities, and thus cannot be identi�ed by conservation-based analyses [16].

On the other hand, analyses of three-dimensional structures of proteins co-complexed with ligands are highly
accurate in identifying positions comprising interaction interfaces. Previously, co-complex structures of a single
or a few manually-selected domain instances have been used as models to distinguish domain positions involved
in ligand binding from those that are not [17, 18]. However, binary classi�cations of domain binding positions
determined from single structures are not always generalizable; indeed, analyses of structurally distinct instances of
some domain families have revealed that the positions involved in binding peptides or other domains can vary [19]. As
such, although various databases have associated domain families with corresponding structures and bound ligands,
particularly in the context of domain–domain interactions, they have largely avoided attempts to systematically
determine, across multiple ligand types, the positions within these domains that mediate interactions [20, 21, 22, 23, 19].

Here we introduce a robust, large-scale structural aggregation approach to systematically identify positions within
domains that are likely to interact with ligands. Our main contributions are as follows. First, we analyze over 82,000
protein–ligand co-complex structures in the context of domains and develop a proximity-based scoring function
that determines real-valued ligand-binding propensities across individual positions in 4,120 domains; we compute
per-position binding propensities separately for DNA, RNA, peptide, ion, metabolite, and other small molecule
ligands. Second, we show via cross-validation testing that the resultant per-domain-position binding propensities can
accurately reveal positions that bind ligands in held-out structures. Third, we utilize these Interaction Domains,
which we refer to collectively as the InteracDome, to infer interaction sites across ∼60% of human genes with
high con�dence, and up to ∼69% of human genes more broadly; this represents the most comprehensive resource
of this type to date. Fourth, we uncover that these domain-inferred interaction sites across human proteins exhibit
signi�cant functional constraints: they are depleted for natural variants across healthy human populations, while they
are enriched for Mendelian disease-associated and cancer somatic mutations. Finally, we conclude with a discussion
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Figure 1: Work�ow for computing per-position binding propensities for domains. (a) Structures of
protein-ligand binding complexes are obtained from BioLiP [24]; pictured here are proteins in complex with DNA
(green, PDB ID: 4auw), RNA (orange, PDB ID: 5els), peptides (purple, PDB ID: 5ibk), a zinc ion (pink, PDB ID: 1aay),
and the small molecule GMP (yellow, PDB ID: 5tzd). Protein chains are colored gray. (b) Instances of Pfam domain
families are found across BioLiP structures. For each Pfam domain family found in (b), we (c) aggregate all instances
by ligand-binding type, (d) calculate distributions of minimum distances from residues to ligands, and (e) calculate a
real-valued binding propensity for each domain position for each ligand type.

of how our InteracDome resource can be leveraged to provide valuable, medically-relevant insights by detecting and
interpreting the mechanistic e�ects of disease-associated coding mutations.

MATERIALS AND METHODS

Overview. In this section, we describe our framework for systematically evaluating how di�erent positions within
domains are involved in mediating various ligand interactions. Brie�y, we �rst obtain from BioLiP [24] a comprehensive
collection of structures of proteins co-complexed with various ligands (Figure 1a). Each of these structures contains
the three-dimensional locations of all atoms within a protein chain and all atoms within a ligand; the protein chains
are also represented linearly as sequences of amino acids. We then use probabilistic sequence matching to �nd
instances of protein domains within these protein sequences (Figure 1b). For those domain families with instances
across multiple protein sequences, we aggregate their instances into a multiple sequence alignment such that each
column of the alignment corresponds to a “core” domain position (i.e., a match state in the corresponding HMM
pro�le [2]), and each row corresponds to a di�erent domain instance (Figure 1c). Next, we analyze the structure
corresponding to each domain instance. For each amino acid residue in that instance corresponding to a core domain
position, we calculate the minimum Euclidean distance between any of the atoms in that residue’s side chain to
any atoms in a ligand. This process leaves us with a distribution of minimum residue-to-ligand distances observed
across structural instances for each domain position (Figure 1d). Finally, we distill each of these per-domain-position
distance distributions into a single “binding propensity” that re�ects that domain position’s propensity to bind a
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particular ligand (Figure 1e). We describe each of these steps in more detail next.

Aggregating structural co-complexes to identify interaction domains

We downloaded crystal structures of protein–ligand complexes on June 28, 2017 from BioLiP [24]; 6,368 structures
contain nucleic acid molecules, 8,314 contain peptides, and 74,726 contain additional ligands (Figure 1a). To identify
domains that mediate protein interactions, we query all BioLiP protein sequences for instances of 16,712 pro�le
Hidden Markov models from the Pfam-A database (v31.0) using HMMER (v2.3.2 and v3.1b2) [2, 25]. We restrict to
domain instances that pass Pfam’s default gathering thresholds, have residues at the �rst and last domain positions,
have the most likely residue at domain positions with information content ≥ 4 (corresponding to a distribution where
the most frequent amino acid appears with ∼95% probability), and contain at least one residue annotated by BioLiP to
be involved in ligand binding (Figure 1b).

Di�erentiating and grouping ligand types

We classify BioLiP ligands into biologically relevant groups. Protein residues responsible for determining DNA- and
RNA-binding speci�city often contact nucleic acid bases, whereas residues that primarily contact the backbones of
nucleic acid molecules may be more important for the stability and a�nity of the binding complex [17, 26]. As BioLiP
groups all DNA and RNA ligand molecules together, we reanalyze the original co-complex structures to characterize
ligand atoms based on the presence (RNA) or absence (DNA) of the 2’-hydroxyl in the ribose sugar; these ligands
respectively occur in 2,244 and 4,124 co-complex structures. We further group these ligand atoms into RNA base,
RNA backbone, DNA base or DNA backbone.

The 205 ligands from 34,705 co-complex structures with “ion” in their full names are assigned to the ion group; the
remaining 21,078 ligands from 58,650 co-complex structures are grouped as small molecules. BioLiP already excludes
molecular artifacts from crystallization bu�ers, yet does not explicitly di�erentiate cognate (i.e., naturally occurring
in vivo) from non-cognate ligands. To highlight domain positions whose residues comprise metabolically-relevant
and/or potentially druggable binding pockets, we further categorize small molecules as follows. Any small molecule
ligand with a Tanimoto coe�cient ≥ 0.9 (Open Babel Package, v2.4.1) [27, 28] between its SMILES string (wwPDB’s
Chemical Component Dictionary, v3.30) and the SMILES strings of one of 29,332 endogenous human metabolites
(Human Metabolome Database, v3.6) [29] and/or 7,162 drugs (DrugBank, v5.0.1) [30] is respectively classi�ed as
metabolite and/or druglike; these ligand types respectively occur in 19,117 and 43,535 co-complex structures.

Computing proximity-based positional binding propensities

For each domain with corresponding co-complex structure(s) (which we refer to as the modelable set of domain–ligand
interactions), we assess the ligand-binding propensities of individual domain positions by aggregating protein–ligand
atom proximity information across their corresponding co-complex structures (Figure 1c-e). For each instance of the
domain in a BioLiP structure that contains at least one residue in contact with a particular ligand type, for each of its
residues corresponding to a Pfam domain match state, we compute the minimum Euclidean distance between heavy
(i.e., non-hydrogen) side-chain atoms to any heavy ligand atom. We aggregate these distances by domain position
across all BioLiP instances for the same domain–ligand type pair, resulting in a per-domain-position distribution of
minimum distances to the ligand (Figure 1c-d). We next determine what fraction of these distances are within 3.6Å
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of the ligand (Figure 1e); however, to proportionally minimize the contribution of structural instances with highly
redundant sequences, we apply the Heniko� and Heniko� sequence weighting scheme [31] to the domain instances.
Thus, intuitively, our per-domain-position binding propensity computes the (weighted) fraction of times a residue in
that position is within 3.6Å of the ligand type considered. Note that the distance of 3.6Å will capture both hydrogen
bonds (2.6−3.3Å) and van der Waals contacts (2.8−4.1Å), but will eliminate water-mediated interactions (as in [32]).
We �nd that residue-to-ligand proximity cuto�s between 2.5 and 6.0Å do not signi�cantly alter downstream results.

Cross-validation testing of domain-to-ligand distance consistencies and positional
binding propensities

We refer to each domain–ligand type pair with at least three distinct (i.e., non-redundant) sequences across separate
PDB entries as belonging to the modelable-NR set. For each domain–ligand pair in the modelable-NR set, we evaluate
both the consistency of its structural interface as well as the accuracy of our aggregation approach in identifying
ligand-binding positions in cross-validation.

First, to evaluate consistencies of domain–ligand structural interfaces, for each domain–ligand pair in the
modelable-NR set, we �rst randomly split its structural instances into two folds. We next compute, across all instances
within each fold, the average minimum residue-to-ligand distance at each domain position. Finally, we compute the
Pearson’s correlation coe�cient (PCC) between the two resulting domain-length vectors. We report the average PCC
achieved across ten repetitions of this process as the consistency of the domain–ligand structural interface.

Second, to test the predictive power of our approach, for each domain–ligand type pair in the modelable-NR set,
we randomly divide its structural instances into up to ten folds. For each domain instance i in each hold-out fold
in turn, we examine the structure to assign a binary vector where 1s and 0s respectively indicate domain positions
whose residues are or are not in contact with the ligand (i.e., as annotated by BioLiP). Binding propensities are then
calculated as before from instances in the remaining folds. For each position in each instance in the hold-out fold, we
use the corresponding positional binding propensity, computed from the other folds, as its “score.” We then rank
in descending order all positions within the hold-out fold by score, with higher ranking positions corresponding to
the more con�dent predictions of binding. As we iteratively decrease the score threshold used to predict whether
a position is binding, we compute precision and recall with respect to the known binding (true positive) and non-
binding (true negative) positions inferred from the actual structures in the held-out set. This allows us to compute a
precision-recall curve (PRC) for each domain–ligand interaction. We refer to the set of domain–ligand interactions
that achieved a cross-validated precision of at least 0.5 at some threshold as the con�dently modeled set. We also
compute the area under under the PRC (AUPRC), and compare it to an average baseline AUPRC corresponding to the
fraction of binding positions in the held-out set.

We note that instances of the same domain family have by de�nition clearly identi�able sequence similarity
and thus can have highly similar amino acid sequences. Nevertheless, as an alternate cross-validation test, for each
domain–ligand type pair in the modelable set, we also try to divide all its instances within BioLiP into groups such
that the amino acid sequence identity between instances in di�erent groups is <90%. We repeat the steps above to
determine domain–ligand structural consistencies and cross-validated precisions and recalls by dividing these groups
of BioLiP instances with sequence identity ≥90%—rather than individual instances—into folds as before; these results
are reported in the Supporting Information section.
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Human protein, natural variation and disease mutation datasets

Protein sequences, corresponding cDNA sequences and corresponding genomic coordinates for 104,295 known and
predicted human protein isoforms encoded by 23,043 genes were downloaded from Ensembl (build GRCh38.p10).
We consider the subset of 89,024 protein isoforms from 22,712 human genes where the genomic DNA sequence
matched the cDNA sequence, the cDNA sequence translated to the protein sequence with ≤5% sequence mismatch,
and the protein transcript was not annotated with ‘decay’ nor ‘pseudogene.’ We functionally classify single nucleotide
variants (SNVs) with respect to the longest protein isoform for each gene by mapping SNVs onto Ensembl cDNA
sequences and translating to proteins.

Naturally occurring exonic SNVs from 123,136 healthy humans were downloaded from the Genome Aggregation
database (gnomAD, v2.0.2) [33]. We restrict to the set of 194,868 common missense SNVs that are found with frequency
≥ 0.001 across any gnomAD subpopulation. We also obtained 28,242 missense germline disease mutations a�ecting
24,823 sites across the canonical protein isoforms of 2,590 human genes from UniProtKB’s Humsavar database
(v2017_04) [34] and augmented this set with an additional 1,912 validated missense germline disease mutations
occurring an additional 159 human genes from OMIM (v2011_02) [35].

We also downloaded all open-access TCGA somatic SNV data and RNA-seq expression data from NCI’s Genomic
Data Commons on July 15, 2017 [36, 37]. We exclude all SNVs occurring after a frameshift or nonsense mutation in
the corresponding tumor sample and all SNVs from genes that were expressed at <0.1 TPM (in the corresponding
tumor sample or on average across other tumor samples of the same tissue type when expression data was missing).
These steps resulted in a �ltered set of 1,171,890 missense somatic SNVs across 18,627 genes using data from 10,037
tumors across 33 cancer types. Finally, 1,209 known cancer driver missense SNVs were downloaded from the Database
of Curated Mutations (DoCM, v3.2) [38].

Inferring putative ligand-binding positions in human proteins

We query the longest protein isoform of each human gene and infer ligand-binding positions in these proteins in
three ways. First, we extract human proteins from BioLiP, and obtain the residues identi�ed in this database to
interact with ligands. Next, we transfer structural binding information from BioLiP to human proteins with high
sequence similarity, as described previously [13]. Finally, for each domain where we have estimated per-position
binding propensities, we �nd matches to this domain in human sequences using HMMER as described above, and
transfer the ligand-binding propensities to any protein residue that corresponds to a core domain position. In practice
for this last step, only con�dently modeled domain–ligand pairs are used. For each of these domain–ligand pairs, the
threshold to de�ne ligand-binding positions is chosen as the value that resulted in cross-validated precision ≥0.5, as
described above.

Determining signi�cance of overlap with inferred ligand-binding sites

Given a set of sites of interest in human proteins (e.g., sites harboring common missense SNVs across populations) and
a set of putative ligand-binding sites in human proteins, we determine whether the overlap between these two sets is
signi�cantly larger or smaller than what is expected by chance alone using the Poisson binomial distribution. Here,
the N sites of interest across proteins are modeled as N independent Bernoulli trials, where the p1, ...,pN probabilities
of “success” (i.e., overlap with the putative binding sites) for each trial are non-uniform. Speci�cally, each success

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/394494doi: bioRxiv preprint 

https://doi.org/10.1101/394494
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript in Submission S.N. Kobren & M. Singh

Figure 2: Examples of domains scored according to ligand-binding propensity. Residues within interaction
domain structures are colored according to their ligand-binding propensities; domains pictured include: (a) C2H2-ZF
domain (PF00096, PDB ID: 1aay, second domain of chain A), the zinc ion is shown on top of the domain for visibility,
(b) Homeodomain (PF00046, PDB ID: 1ig7), (c) Pumilio domain (PF00806, PDB ID: 1m8w, third domain of chain B),
(d) WW domain (PF00397, PDB ID: 2n1o), (e) SH3 domain (PF00018, PDB ID: 2bz8), and (f) protein kinase domain
(PF00069, PDB ID: 1csn, subdomains I-V, both ATP molecules from two units shown).

probability pi is equal to the proportion of putative binding sites in the protein where the site of interest i occurs; this
way, sites of interest that occur in proteins with a large proportion of putative ligand-binding sites will not bias global
trends. We determine if K—the number of sites of interest observed to overlap with the putative binding sites—is
signi�cantly greater than or less than we would expect by chance by respectively computing Pr(X ≥ K ) and Pr(X ≤ K )
using the Poisson binomial implemented in R’s poibin package [39]. P-values computed as 0 are reported as 1e-15,
the lowest non-zero p-value we achieved using poibin.

RESULTS

Our fully automated procedure to build the InteracDome resource identi�es 4,120 domain families with modelable
ligand interactions with one or more instances across structural co-complexes. Of these, 2,055 domain families have
at least three non-redundant instances in complex with the same ligand type across distinct PDB structures; these
domain–ligand interactions comprise the modelable-NR set. Within the modelable set of domain interactions, 572
domain families are co-complexed with DNA, 491 are co-complexed with RNA, 2,553 are co-complexed with ions,
840 are co-complexed with other peptides, and 2,830 are co-complexed with one or more small molecules. In the
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modelable-NR set, 168, 189, 1,019, 225, and 1,341 domain families are respectively co-complexed with DNA, RNA,
ions, peptides, and/or small molecules.

Case studies: InteracDome includes well-known interaction domains and recapitulates
known ligand-binding domain positions

We begin by ascertaining how well the interaction domains pro�led in the InteracDome cover known ligand-binding
domains. Towards this end, we compiled a list of 54 DNA-binding domain families from the Thornton Lab review [40],
12 RNA-binding domain families from the review by [41], and 78 human peptide-binding domain families listed on the
Pawson Lab site (http://pawsonlab.mshri.on.ca). We �nd that our modelable set of domain–ligand interactions includes
all the DNA-binding domain families, all the RNA-binding domain families, and ∼85% of postulated protein-binding
domain families, many of which have been particularly di�cult to structurally characterize due to the low a�nity
and transience of protein–protein interactions in signaling pathways [42]. Of these known ligand-binding domains,
36 (67%) DNA-binding domains, 8 (50%) RNA-binding domains and 39 (50%) peptide-binding domains are found in the
modelable-NR set; these numbers are 36 (67%), 6 (50%) and 36 (46%), respectively, for known ligand-binding domains
found in the con�dently modeled set.

Next, we turn our attention to how well our per-domain-position binding propensities identify manually curated
ligand-binding domain positions. In particular, domain positions involved in ligand binding have previously been
established for a few well-studied domains using one or a few structural co-complexes. Intuitively, our method
automates this approach at a much larger scale; thus, we expect that domain positions assigned high binding
propensities by our method will largely be in agreement with previous knowledge of domain binding. We highlight
below a few well-studied nucleic acid-, peptide- and metabolite-binding domains to show that indeed, when we
compare InteracDome binding propensities with literature-curated knowledge of domain–ligand binding, high
propensity domain positions recapitulate known interaction positions.

We �rst consider three nucleic acid binding domains. The C2H2-ZF domain is known to specify its DNA targets
via four DNA-base contacting positions (-1, 2, 3 and 6 in the α-helix contacting DNA) [32]; these four positions have
the highest DNA base-binding propensities for this domain in the InteracDome. Additionally, there are two highly
conserved cysteines and histidines that coordinate the zinc ion—required for proper domain folding—and these four
positions have our highest ion-binding propensities (Figure 2a, Figure S1a). In the DNA-binding homeodomain, our
highest DNA base-binding propensities correspond to positions 45–46, 49–50 and 53–54 in the DNA recognition helix,
followed by positions 1–4 in the N-terminal arm (Figure 2b, Figure S1b); these are known speci�city-determining
positions in the domain [43, 18]. In the RNA-binding pumilio domain, the highest RNA base-binding propensities are
found in positions 14, 16, 17 and 20 of the repeating alpha-helix section (Figure 2c, Figure S1c). Indeed, positions
16, 17 and 20 confer RNA-binding speci�city, and position 14 contacts RNA backbone ribose rings, likely a�ecting
binding [26].

We next examine InteracDome binding propensities for two peptide-binding domains. In the WW domain, our
highest peptide-binding propensities are found at positions 17, 19, 21, 24, 26 and 28—all corresponding to known
binding residues. The next highest peptide-binding propensities identify positions 8, 10 and 11—all known to confer
binding speci�city di�erences between type I and IV domains (Figure 2d, Figure S1d) [44]. Our high propensity sites
for the SH3 domain are also relevant for peptide binding. In particular, our highest propensity positions are 4, 6,
32 and 47—the four most conserved peptide-binding sites—and positions 9–13, 27–30, 34 and 45—all known to be
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Figure 3: Domain-to-ligand distance consistencies. Structural instances across BioLiP for each domain–ligand
type in the modelable-NR set are randomly split into two folds. Shown are Pearson’s correlation coe�cients (PCCs)
of the average residue-to-ligand distances across each domain position between the two folds, averaged across ten
repetitions. Relative domain-to-ligand distances across domain positions tend to be highly consistent between
structural instances of the same domain–ligand pair. Total number of domain–ligand interactions included in each
boxplot are listed above the corresponding distributions.

important for distinct peptide-binding speci�cities (Figure 2e, Figure S1e) [45].
Finally, our approach also recapitulates ATP-binding positions in the kinase domain. Our high small molecule

propensities include several residues from subdomains I–VII that are responsible for interacting with and anchoring
ATP’s adenine ring (i.e., positions 7, 15, 28, 77–80, 84), α , β and γ phosphates (i.e., positions 11–13, 30, 128, 141), and
ribose hydroxl group (i.e., position 127) [15]. We also highly rank an additional six sites within three amino acids of a
known binding position (Figure 2f, Figure S1f).

Domain-to-ligand proximities are consistent across instances

We next show, in a systematic analysis, that structural interfaces between domains and their ligands in the modelable-
NR set tend to be conserved. Brie�y, we compare the residue-to-ligand distances across di�erent structural instances of
a domain–ligand interaction type to each other (see Materials and Methods). We �nd that analogous positions across
domain instances indeed tend to have similar distances to ligands: the median PCC of domain–ligand interactions
is 0.97 and the PCC ≥ 0.8 for 90% of domain–ligand interactions (Figure 3, Figure S2). Thus, domains tend to have
highly consistent structural interaction interfaces with the same ligand type across instances.

As we have just shown, domains generally tend to interact with their ligands in a relatively consistent fashion.
However, some interaction domains are also known to have multiple binding modes, where di�erent combinations
of domain positions confer binding speci�city and a�nity [44, 45]; these cases cannot be detected by examining
structural domain instances in isolation, but may be revealed using our aggregation approach. To get a better idea of
how much domain positions vary with respect to their roles in ligand binding, for each domain–ligand type pair
in the modelable-NR set, we use empirical bootstrapping of structural instances with 1,000 repetitions to obtain
standard errors of all binding propensities; smaller standard errors indicate a domain position’s consistent role in
binding, whereas larger bootstrapped standard errors indicate a position’s more variable role in binding. Importantly,
standard errors tend to be low for the full range of ligand-binding propensities (Figure 4a, Figure S3a). Moreover, as
expected, positions with more extreme binding propensity values (i.e., ≥0.95 or ≤0.05) tend to have lower standard
errors. Conversely, positions with intermediate binding propensities also exhibit more variation in their estimates

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/394494doi: bioRxiv preprint 

https://doi.org/10.1101/394494
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript in Submission S.N. Kobren & M. Singh

Figure 4: Bootstrapped standard errors of binding propensities. (a) For each domain position with a positive
binding propensity in each domain–ligand interaction pair in the modelable-NR set, we plot its ligand-binding
propensity (x-axis) and the standard error of this propensity (y-axis), computed as the standard deviation of its
ligand-binding propensity as measured over 1,000 bootstrap samples. Distribution medians at each binding
propensity decile are shown as black dots and are connected by gray lines for visual e�ect. (b) Bootstrapped standard
errors decrease as the number of structural domain instances with non-redundant sequences increase, illustrating the
ability of our structural aggregation approach to determine how domain positions are generally involved in ligand
binding. Boxplots are colored according to the relative size of each distribution; the number of total domain positions,
across domain–ligand type pairs, is listed above each boxplot.

in bootstrapped samples. We also show that with more sequentially-distinct structural examples of domain–ligand
complexes, the standard errors of computed binding propensities decrease overall (Figure 4b, Figure S3b). This
indicates that aggregating information across structural domain instances allows us to infer which positions within
domains bind particular ligands more con�dently than we could if we were limited to only one or a few structural
examples.

Cross-validation highlights power of binding propensities

We next evaluate how well the binding propensities for a given domain–ligand type pair indicate positions involved in
binding across previously unobserved structural instances. To measure this, we employ cross-validation to compute
PR curves for each domain–ligand pair in the modelable-NR set, and compare the AUPRCs to corresponding baseline
AUPRCs (see Materials and Methods). We �nd that the average (across folds) actual AUPRCs are typically substantially
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Figure 5: Cross-validation testing of binding propensities. Accuracy of each domain–ligand interaction from
the modelable-NR set is measured as the average AUPRC in cross-validation with up to 10 folds. (a) For each
domain–ligand pair, we compute the fold change between the actual AUPRC and a baseline AUPRC corresponding to
the fraction of binding positions in the hold-out set. (b) We use each positional binding propensity computed across
domain–ligand pairs as a threshold to distinguish predicted binding from non-binding domain positions, and we
measure the precision achieved in each held-out set of domain–ligand structural instances using each of these
thresholds. Shown is the average precision computed across domain–ligand interactions in the modelable-NR set at
binding propensity thresholds varying from 1 (highest) to 0 (lowest).

higher than their corresponding baseline AUPRCs, particularly for domain–ion interactions which tend to involve
far fewer domain binding positions and thus have lower baseline AUPRCs (median fold improvement of actual over
baseline AUPRCs = 24.0, fold improvement ≥ 5 for 95.5% of domain–ligand interactions, Figure 5a). We also note that
the cross-validated precisions for domain–ligand type pairs in the modelable-NR set tend to be high across a range of
binding propensity cuto�s (Figure 5b). Moreover, when we repeat this process with stricter fold divisions, ensuring
that structural instances of domain–ligand interactions in separate folds have <90% sequence similarity, we again �nd
that the improvement of actual over baseline AUPRCs remains high (median fold improvement of actual over baseline
AUPRCs = 21.9, fold improvement ≥ 5 for 93.8% of domain–ligand interactions, Figure S4). This benchmarking
demonstrates that our binding propensities can be used to infer domain binding positions across previously unseen,
sequentially diverse structural instances. For the remainder of our analysis, we consider a �ltered con�dently modeled
set of 10,299 domain–ligand interactions, involving 1,327 distinct domains, from the modelable-NR set that achieve a
cross-validated precision ≥0.5 at some binding threshold.

Analysis of InteracDome-inferred binding sites in human

We next use our InteracDome resource to infer sites in human proteins that may be involved in interactions with
DNA, RNA, peptides, ions, metabolites and small molecules.
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Figure 6: Interaction domain-based coverage of human genes. (a) Structural and domain-based coverage of
22,712 human genes. Dark gray bars indicate ways by which to structurally model protein interactions.
(b) Percentages of genes estimated to interact with speci�c ligand types using the con�dently modeled set of
domain–ligand interactions.

Domain-based approach doubles coverage of human genes with modeled interactions.

As of June 2017, only 2,871 (12.6% of 22,712 total) human genes were associated with biologically relevant protein–
ligand complex structures in BioLiP. Homology modeling as described in [13] allows us to infer binding residues in
an additional 2,990 genes. Together, these two approaches cover 25.8% of all human genes (Figure 6a) [46, 47, 13]. We
note that there are an additional 786 human genes associated with co-complex structures in the Protein Data Bank
(PDB) [48], but these proteins are either complexed with non-biologically relevant ligands or with peptides longer
than 30 residues (which are not included in our analysis).

Approximately 90% of human genes contain complete instances of ∼6,000 Pfam domain families. Of course, not all
of these domains have associated structural co-complex information, and thus neither their roles in mediating binding
nor which positions within them are involved in ligand binding are known. However, 13,654 (60.1%) genes contain
InteracDome domain instances with con�dently modeled interactions or homology-inferred binding interfaces.
Including any modelable interaction domain with 10+ or 1+ instances in BioLiP, rather than only domains with
con�dently modeled interactions, respectively covers 61.4% and 68.7% of human genes. Our InteracDome resource thus
represents a 2.3- to 2.7-fold increase in coverage over current state-of-the-art approaches to infer putative interaction
sites across human genes. Furthermore, our approach covers a diverse range of interaction types, as substantial
fractions of these genes have con�dently modeled sites involved in binding DNA, RNA, peptide, ions, metabolites and
other small molecules (Figure 6b). Altogether, the InteracDome represents a considerable improvement in our ability
to infer diverse protein–ligand interaction sites across large numbers of proteins across species.

Putative Binding Sites are Depleted of Natural Variants, Enriched for Disease Mutations.

Because the vast majority of proteins’ functions are carried out through speci�c interactions, even rare DNA variants
or mutations that alter interaction-mediating protein residues can have critical impacts in human disease. As such,

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/394494doi: bioRxiv preprint 

https://doi.org/10.1101/394494
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript in Submission S.N. Kobren & M. Singh

Figure 7: Natural variants show opposite trends from disease mutations with respect to ligand-binding
sites. Putative ligand-binding sites correspond to protein positions overlapping domain match states whose binding
propensities resulted in a precision of at least 0.5 in cross-validation testing (i.e., con�dently modeled interactions,
see Materials and Methods). Shown on the y-axis (top) is the fold change between the observed (K) and expected
(E[K]) numbers of InteracDome-inferred putative binding sites (any type, DNA, RNA, peptide, ion, metabolite or
small molecule) and other sites of interest (common naturally varying, Mendelian disease mutated, cancer
somatically mutated). We compute the signi�cance of this overlap (y-axis, bottom) using the Poisson binomial
distribution. (a) Putative ligand-binding sites exhibit a signi�cant lack of overlap with commonly varying sites across
human proteins. (b) Conversely, putative ligand-binding sites overlap signi�cantly with sites harboring Mendelian
disease mutations. (c) Protein sites harboring missense cancer somatic mutations also overlap signi�cantly with
putative ligand-binding sites, suggesting that these sites are preferentially altered in human cancers.

we expect inferred protein interaction sites to be relatively conserved across healthy human individuals, whereas
we would expect these same sites to be perturbed across individuals with disease [13]. To determine whether
our InteracDome-inferred binding residues exhibit these expected functional constraints, we perform an initial
analysis on missense mutations where we consider any protein residue overlapping a domain match state with a
corresponding binding propensity that resulted in a cross-validated precision ≥ 0.5 to be a con�dently modeled
“putative” ligand-binding site (see Materials and Methods).

We �rst assess whether commonly varying sites across healthy human individuals tend to globally overlap
with putative ligand-binding sites as expected across the human proteome [33]. We �nd that the overlap between
commonly varying sites and con�dently modeled domain-inferred binding sites is signi�cantly less than expected
by random chance (p < 1e-15, Poisson binomial test, Figure 7a). This global trend indicates that sites identi�ed by
InteracDome as potentially ligand-binding are generally conserved across healthy individuals, in accordance with
what we would expect and further demonstrating the utility of our resource to highlight functionally important
protein interaction positions.

We next consider whether protein positions harboring known disease-associated mutations overlap with these
same putative binding sites. We uncover that Mendelian disease-mutated sites coincide with putative binding sites far
more than expected by chance (p < 3.3e-14, Poisson binomial test, Figure 7b) [34, 35], in concordance with previous
studies of speci�c diseases [49, 50], and that these mutations a�ect a broad range of ligand-binding sites (Table S1).

Finally, we assess whether somatically mutated sites across human cancers overlap with putative binding positions
across all human proteins as we might expect by random chance. Others have noted the propensity of cancer mutations
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Method # Binding Muts. # Non-Binding Muts. Odds
Ratio p-value

del. tol. del. tol.

SIFT 19,353 7,528 432,420 275,475 1.64 4e-297
PP2, HDIV 17,695 9,780 367,417 357,362 1.76 ∼0
PP2, HVAR 15,568 11,912 287,478 437,244 1.99 ∼0
MutationTaster 5,362 3,509 118,207 87,423 1.13 3e-8
PROVEAN 5,738 2,887 95,824 104,762 2.17 7e-259
REVEL 2,829 6,020 44,178 161,084 1.71 1e-109
MutPred 5,333 2,700 84,898 100,789 2.34 1e-291

Table 1: Fisher’s Exact Tests comparing deleteriousness predictions between binding and non-binding
mutations. Each distinct somatic mutation in the pan-cancer dataset is classi�ed as either binding (i.e., falls into an
InteracDome-inferred, con�dently modeled putative binding position in at least one human protein) or non-binding.
Corresponding deleteriousness scores for each of these mutations were retrieved, where available, from the Database
for Nonsynonymous SNPs’ Functional Predictions (v3.5) [52]; many mutations analyzed did not have corresponding
deleteriousness scores for one or more predictors. Score thresholds to distinguish deleterious (“del.”) from tolerated
(“tol.”) mutations were set as recommended by each method or to ≥0.5 when not speci�ed for REVEL and MutPred
scores. PolyPhen2 is abbreviated as “PP2”.

to coincide with ligand interaction sites across smaller gene sets and in known driver genes in particular [13, 51]. We
�nd that nearly a quarter of the 1,209 unique cancer-driving somatic mutations (DoCM, v3.2) [38], for instance, fall
into con�dently modeled putative ligand-binding sites inferred using InteracDome (Table S2), even though these
sites constitute only ∼4.5% of the entire proteome and ∼12.8% of the proteome modeled by an interaction domain
(p < 2.5e-20, binomial test). Moreover, when we repeat our global, site-based analysis, considering all somatically
mutated sites across >10,000 tumor samples from 33 cancer types and using a much more comprehensive set of
inferred binding sites than previous studies, we con�rm the same trend. Sites harboring somatic missense mutations
tend to coincide with inferred binding sites signi�cantly more than expected by random chance (p < 6.9e-12, Poisson
binomial test, Figure 7c), strongly suggesting that protein interaction perturbation is a frequent mechanism by which
somatic mutations contribute to tumor �tness. Indeed, the somatic mutations a�ecting InteracDome-inferred putative
binding sites have higher deleteriousness scores relative to non-binding mutations, as evaluated by various mutational
impact predictors (p < 1e-7, Fisher’s exact tests, Table 1) [52]. However, unlike these other deleteriousness predictors,
our InteracDome-inferred binding sites can not only be used to pinpoint potentially disease-relevant mutations, but
can also be used to reason about their molecular, mechanistic impacts on protein interaction functionality.

The respective overlap (and lack thereof) of inferred binding sites with mutated or varying sites is signi�cant
even when considering only speci�c types of ligand binding in turn (Figure 7). Somatically mutated sites in particular
appear to overlap with putative DNA-binding sites across proteins signi�cantly more than expected, in accordance
with what we know about impaired DNA repair functionality and perturbed regulatory processes in cancer [53].
Importantly, we continue to observe the same overall trends for sites exhibiting naturally occuring variation, Mendelian
disease mutations, and somatic mutations when we consider alternate precision-based de�nitions of putative ligand-
binding sites from the modelable-NR set (Figure S5). Overall, given that natural missense variants across healthy
populations are depleted in putative binding sites, and Mendelian disease-associated missense mutations as well as
somatic missense mutations across cancer tumors are enriched in them, computational approaches that leverage our
InteracDome resource to identify perturbed interaction sites are likely to be highly relevant for identifying disease
genes and informing disease mechanisms.
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DISCUSSION

We have introduced here a fully automated approach for aggregating protein co-complex structural data in the context
of domains to reveal how positions within these domains are generally involved in mediating interactions with DNA,
RNA, ions, peptides, metabolites, and other small molecules (Figure 1). This collection of 4,120 interaction domains,
called the InteracDome, can be applied to pinpoint putative interaction sites in various proteins across species; here
we show how a subset of 1,327 domains with con�dently modeled ligand interactions can be used to infer functionally
relevant interaction sites across the greatest proportion of human genes to date (Figure 6a).

Previously, interaction site information has been transferred from structurally modeled proteins to uncharacterized
proteins with similar sequences or subsequences using various homology-based approaches [13, 46, 47]. Sequence
motifs have also been semi-manually annotated with highly conserved metal ion binding or catalytic site information
for use in identifying functional sites in new proteins, although such approaches are limited due to their rigid sequence
match requirements [54]. Indeed, the ability of traditional homology-based approaches to infer binding information
across larger, more diverse sets of protein sequences using existing structural templates is restricted in general because
even as the number of resolved protein structures is increasing, the diversity of their sequences is not. Here, we
develop a structurally-aware, domain-based approach to calculate real-valued binding propensities across individual
domain positions. These probabilistically-modeled domain pro�les are better able to capture conserved residues
required for proper domain folding and thus can be used to accurately transfer binding site knowledge across a far
more diverse set of proteins.

Determining the binding positions within these domains represents a challenging task due to biases inherent
in structural data: structures often harbor confounding experimental artifacts, are dominated by non-cognate drug
interactions, and can have highly redundant sequences to each other [24]. We show that by addressing each of these
issues in turn, our systematic approach models binding positions across thousands of domains—including nearly all
known DNA-, RNA-, and peptide-binding domains—that are highly indicative of ligand-binding positions in well
characterized domains as well as in structural instances that were held out in cross-validation testing (Figure 2,
Figure 5). Moreover, we �nd that aggregating domain co-complex structures to develop a general understanding of
how a domain participates in interactions is superior to using only one or a few structures for this task (Figure 4b).

Substantial previous work has focused on detecting and characterizing the domain–domain interactions that
mediate a number of protein–protein interactions across cellular interaction networks [55, 56, 19, 57, 58]. We make
the distinction that in our work, we focus not on detecting the particular domain-mediated interfaces between
speci�c protein partners, but rather on understanding which positions within protein domains mediate a variety of
interactions in general with nucleic acids, peptides, metabolites, and a wide range of small molecules. Though we
do not consider proteins in complex with other whole proteins here, our framework can be naturally extended to
characterize domain–domain interactions in more depth.

Overall, we believe that our structural aggregation framework and resultant InteracDome resource lay the
groundwork for many future domain-centric analyses and thus will be of broad use for the community. Not only
can knowledge of domain binding positions be used to further group, subtype, subdivide, or functionally annotate
domain families themselves, but the putative interaction sites inferred across proteins using the InteracDome should
be relevant in understanding disease etiology. Indeed, we �nd that these sites are globally conserved across healthy
human individuals yet preferentially perturbed in tumor samples and disease populations. As such, we anticipate that
future approaches that utilize InteracDome to detect interaction-altering protein coding variants will be a great aid in
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both prioritizing disease-associated mutations as well as reasoning about their molecular e�ects.
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SUPPORTING INFORMATION

Figure S1. Examples of ligand-proximity scores across domains.

e           SH3     peptide

1 5 10 15 20 25 30 35 40 45

b           Homeodomain     DNA base

a                C2H2 zinc finger     DNA base                                                                                zinc ion

D
is

ta
nc

e 
to

 L
ig

an
d 

(Å
)

IC
 (b

its
)

0
2
4

1 5 10 15 20 1 5 10 15 20

1 5 10 15 20 25 30 35 40 45 50 55

c           Pumilio     RNA base

1 5 10 15 20 25 30 35 1 5 10 15 20 25 30

Position in Domain

d          WW     peptide

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/394494doi: bioRxiv preprint 

https://doi.org/10.1101/394494
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript in Submission S.N. Kobren & M. Singh

75 80 85 90 95 100 105 110 115 120 125

% weighted domain instances with 
a residue within 3.6Å of ligand

0% 100%20% 40% 60% 80%10% 30% 50% 70% 90%

f           Protein kinase (first 146 of 264 positions)     ATP

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70

145140135130

For each position in each interaction domain, we show violin plots depicting the distribution of minimum receptor–ligand distances
across instances in BioLiP, colored according to the fraction of the weighted distribution within 3.6Å. Gray lines connect the
�rst deciles of each distribution. The x-axis is labeled with a sequence logo generated from the multiple sequence alignment of
domain instances in BioLiP, where column height corresponds to information content. Previously identi�ed ligand-contacting
residues [59, 43, 26, 44, 45, 15] are marked with blue asterisks. The x-axis is labeled with a logo generated using Weblogo3 from
the multiple sequence alignment of Pfam domain hits across BioLiP. The height of each column in the logos corresponds to the
information content (IC) of that column; the logos in (a-f) are scaled equally according to the scale in (a). The particular interaction
domains are: (a) Cys2-His2 zinc �nger domain (PF00096), (b) Homeodomain (PF00046), (c) Pumilio domain (PF00806), (d) WW
domain (PF00397), (e) SH3 domain (PF00018), and (f) the �rst 146 of 264 positions of protein kinase domain (PF00069).
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Figure S2. Domain-to-ligand distance consistencies between structural instances
with <90% sequence identity.

Structural instances across BioLiP for each domain–ligand type are grouped by sequence similarity (≥90% identity), and then these
groups are randomly split into two folds. Shown are Pearson’s correlation coe�cients (PCCs) of the average residue-to-ligand
distances across each domain position between the two folds. Total number of domain–ligand interactions included in each boxplot
are listed above the corresponding distributions. The median PCC of domain–ligand interactions across these groups is 0.89.
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Figure S3. Standard errors of binding propensities obtained by bootstrapping groups
of structural instances with ≥90% sequence identity.

Structural instances across BioLiP for each domain–ligand type are grouped by sequence similarity (≥90% identity), and then
these groups are randomly selected with replacement to generate 1,000 empirically bootstrapped sets of structural instances. (a)
For each domain position with a positive binding propensity in each domain–ligand interaction pair, we plot its ligand-binding
propensity (x-axis) and the standard error of this propensity (y-axis), computed as the standard deviation of its ligand-binding
propensity as measured over 1,000 bootstrap samples. Distribution medians at each binding propensity decile are shown as black
dots and are connected by gray lines for visual e�ect. (b) Bootstrapped standard errors decrease as the number of domain–ligand
structural instances with <90% sequence identity increase. Boxplots are colored according to the relative size of each distribution;
the number of total domain positions, across domain–ligand type pairs, is listed above each boxplot.
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Figure S4. Cross-validation testing of binding propensities where structural
instances in distinct folds have <90% sequence identity to each other.

Structural instances across BioLiP for each domain–ligand type are grouped by sequence similarity (≥90% identity), and then
these groups are randomly split into up to 10 folds. Accuracy of each domain–ligand interaction with 2+ groups of structural
instances is measured as the average area under the precision-recall curve (AUPRC) in cross-validation. For each domain–ligand
pair, we compute the fold change between the actual AUPRC and a baseline AUPRC corresponding to the fraction of binding
positions in held-out sets.
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Figure S5. Natural variants show opposite trends from disease mutations to overlap
with putative ligand-binding sites.

Putative ligand binding sites are inferred across human proteins using domains from the modelable-NR set. Speci�cally, for
precision thresholds between 0 and 0.7 (x-axis), protein positions overlapping domain match states whose binding propensities
resulted in at least that precision in cross-validation testing (see Materials and Methods) are considered to be putative binding
sites. We compute the signi�cance of the overlap between InteracDome-inferred binding sites and other sites of interest using the
Poisson binomial distribution. Bolded along the x-axis is the value used to de�ne putative ligand-binding sites in the main text (i.e.,
con�dently modeled interactions); shown along the y-axis is the fold change between the observed number of overlapping sites
(K) and the expected number of overlapping sites (E[K]). (a) Putative ligand-binding sites exhibit a signi�cant lack of overlap with
commonly varying sites across human proteins. Each point corresponds to the fold change between these values for a particular
type of ligand-binding site (indicated by its color) for a particular precision-based de�nition of putative binding site. The shape of
each point corresponds to its computed p-value. Fold change values that have corresponding p-values ≥ 0.05 are not shown. (b)
Conversely, putative ligand-binding sites across human proteins overlap signi�cantly with sites harboring Mendelian disease
mutations; points are colored and shaped as in (a). (c) Protein sites harboring a missense cancer somatic mutation also overlap
signi�cantly with putative ligand-binding sites.
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Table S1. Counts of Mendelian disease mutations a�ecting particular types of
ligand-binding sites.

Binding Site Type Modelable-NR Interactions Con�dently Modeled Interactions

Total Mutations Total Mutations A�ected Sites A�ected Proteins

any 3,718 1,152 964 415
DNA 284 118 94 48
DNA base 157 81 68 40
DNA backbone 284 116 92 45

RNA 70 15 14 6
RNA base 40 3 3 3
RNA backbone 70 17 15 6

peptide 736 74 68 46
ion 974 273 218 107
metabolite 2,466 673 565 266
small molecule 2,880 743 625 291

We consider 30,154 distinct Mendelian-associated missense mutations across 26,434 protein sites in 2,749 proteins. We de�ne
putative ligand-binding sites in two ways. First, for each domain–ligand type pair in the modelable-NR set, we �nd matches to the
domain in canonical human protein isoform sequences, and consider any protein residue that overlaps with a domain match state
whose binding propensity is positive to be a putative ligand-binding site (i.e., modelable-NR interactions); 12% of mutations a�ect
these sites. Second, we consider any protein residue that overlaps with a domain match state whose binding propensity resulted in
a precision of at least 0.5 in cross-validation testing to be a putative ligand-binding site (i.e., con�dently modeled interactions, as in
the main text); 4% of mutations a�ect these sites. Columns (from left to right) are the type of ligand interaction, total mutations to
a�ect modelable-NR binding sites as described here, total mutations to a�ect con�dently modeled binding sites, total number of
mutated con�dently modeled binding sites, and total number of proteins with mutated con�dently modeled binding sites. Note
that the sets of putative nucleic acid base and backbone binding sites are overlapping.
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Table S2. Counts of known cancer-driving mutations a�ecting particular types of
ligand-binding sites.

Binding Site Type Modelable-NR Interactions Con�dently Modeled Interactions

Total Mutations Total Mutations A�ected Sites A�ected Proteins

any 473 279 88 27
DNA 61 22 5 1
DNA base 22 4 1 1
DNA backbone 61 22 5 1

RNA 1 0 0 0
RNA base 2 0 0 0
RNA backbone 1 0 0 0

peptide 214 0 0 0
ion 302 43 10 4
metabolite 202 17 5 3
small molecule 359 44 12 7

We consider 1,209 distinct cancer driver missense mutations across 571 protein sites in 128 proteins from the Database of Curated
Mutations. We de�ne putative ligand-binding sites in two ways. First, for each domain–ligand type pair in the modelable-NR set,
we �nd matches to the domain in the longest human protein isoform sequences, and consider any protein residue that overlaps with
a domain match state whose binding propensity is positive to be a putative ligand-binding site (i.e., modelable-NR interactions);
39% of mutations a�ect these sites. Second, we consider any protein residue that overlaps with a domain match state whose binding
propensity resulted in a precision of at least 0.5 in cross-validation testing to be a putative ligand-binding site (i.e., con�dently
modeled interactions, as in the main text); 23% of mutations a�ect these sites. Columns (from left to right) are the type of ligand
interaction, total mutations to a�ect modelable-NR binding sites as described here, total mutations to a�ect con�dently modeled
binding sites, total number of mutated con�dently modeled binding sites, and total number of proteins with mutated con�dently
modeled binding sites. Note that the sets of putative nucleic acid base and backbone binding sites are overlapping.
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