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Abstract 

 

Transcription of many bacterial genes is regulated by alternative RNA 

polymerase sigma factors as the sigma 54 (σ54). A single essential σ promotes 

transcription of thousands of genes and many alternative σ factors promote 

transcription of multiple specialized genes required for coping with stress or 

development. Bacterial genomes have two families of sigma factors, sigma 70 

(σ70) and sigma 54 (σ54). σ54 uses a more complex mechanism with 

specialized enhancers-binding proteins and DNA melting and is well known for 

its role in regulation of nitrogen metabolism in proteobacteria. The identification 

of these regulatory elements is the main step to understand the metabolic 

networks. In this study, we propose a supervised pattern recognition model with 

neural network to identify Transcription Factor Binding Sites (TFBSs) for σ54. 

This approach is capable of detecting σ54 TFBSs with sensitivity higher than 

98% in recent published data. False positives are reduced with the addition of 

ANN and feature extraction, which increase the specificity of the program. We 

also propose a free, fast and friendly tool for σ54 recognition and a σ54 related 

genes database, available for consult. S54Finder can analyze from short DNA 
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sequences to complete genomes and is available online. The software was 

used to determine σ54 TFBSs on the complete bacterial genomes database 

from NCBI and the result is available for comparison. S54Finder does the 

identification of σ54 regulated genes for a large set of genomes allowing 

evolutionary and conservation studies of the regulation system between the 

organisms.  

 

Keywords: Artificial intelligence, pattern recognition, feature extraction. 

 

Background 

 

Prokaryotic transcription process starts from the recognition of binding site on 

DNA sequence by RNA polymerase. The DNA dependent RNA Polymerase 

(RNAP) is the main enzyme in the transcription and gene expression [1]. It is 

composed of two subunits, the core enzyme α2ββ with the catalytic site of 

polymerization and the sigma factors, responsible for promoter recognition [1]. 

When the enzyme is linked with the sigma factor protein, the complex is called 

of RNAP holoenzyme (α2ββ'σ) and is ready for transcription [2]. 

Bacterial genomes have two families of sigma factors, sigma 70 (σ70) and 

sigma 54 (σ54). σ70 is the best studied and is responsible for transcription of 

the most bacterial genes in the exponential growth [3]. σ54 uses a more 

complex mechanism with specialized enhancers-binding proteins and DNA 

melting and is well known for its role in regulation of nitrogen metabolism in 

proteobacteria [4].  
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Each sigma factor recognizes different binding sites in the DNA sequence and 

is responsible for changing the transcription pattern mediated thorough 

redirection of transcription initiation [5]. The identification of these regulatory 

elements is the main step to understand the metabolic networks [6]. 

A single essential σ promotes transcription of thousands of genes and many 

alternative σ factors promote transcription of multiple specialized genes 

required for coping with stress or development [7]. 

The number of sigma factors varies from one in Mycoplasma genitalia [8], 

seven in Escherichia coli [9] to more than 60 in Streptomyces coelicolor [10].  

It was already shown that σ70 recognize a consensus sequence of hexamers 

placed between -10/-35 nucleotides upstream the start site and σ54 recognize 

high GC sequences located -24/-12 nucleotides upstream from the start site 

[11]. 

 

The σ54 factor has an important role in agriculture, due to the control of gene 

transcription, regulating the nitrogen fixation process that provides ammonia for 

the plant. This process dispenses chemical soil fertilization, reduces costs and 

protects the environment [12]. 

The classical approach for promoter prediction involves the development of 

algorithms that uses position weight matrices (PWMs) [13-17]. More recently, 

several methods propose the automatic identification of Transcription Factor 

Binding Sites (TFBSs) like Gibbs sampling algorithm [18, 19], genetic 

algorithms [20], and statistical over-representation [21, 22]. These methods 

works with single and double motifs identification but with a high false positive 

rate [23], and don’t allow complete genome sequences.  
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In this study, we propose the use of a supervised pattern recognition model with 

neural network to identify TFBSs for σ54 for whole genome sequence. The 

advantages of using neural network in pattern recognition include its 

generalization ability considering both the nonlinear and the diffuse nature of 

the datasets [24] and also can achieve high performance when processing 

extended genome sequences [25]. 

 

We also propose a free, fast and friendly tool for σ54 recognition and a σ54 

database available for consult.  

 

Methods 

 

Candidates sequences for σ54 TFBS and features extraction  

  

The set of intergenic regions to search for σ54 TFBSs candidates was defined 

as a range of 200 bases from the transcriptional start site of each coding 

sequence. Candidate sequences were set on 16 bases. The selection was done 

considering the presence of conserved bases (GG and GC) located in -14/-15 

and -2/-3 positions [11]. 18 features were extracted from the candidate 

sequences. The first sixteen were the nucleotides encoded to numbers (A: 0.0; 

C: 1.0; G: 2.0; T: 3.0); the 17th feature was the result of the alignment of the 

candidate sequence with the consensus sequence, extracted from 

experimentally confirmed sequences available in literature [11, 26, 27]; and the 

18th feature was the result of the alignment of the sequence candidate with a 
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consensus of the less frequent bases (present in the true sequences- called as 

anti-consensus). 

 

Training data set 

 

Networks were trained using groups of positive sequences collected in the 

literature and sequences artificially generated, considered as negatives. Those 

sequences were generated using the MatLab algorithm of string generation. 

The artificially generated strings were divided into two groups, the first group 

have only nucleotide base pairs and the same string length of positive 

sequences. In other side the second group uses also the same length, but it 

also includes the conserved base pairs shown in the positive sequences. 

Positive patterns were defined by sequences experimentally retrieved [26, 27] 

and a database with 5662 sequences from more than 60 genomes, available in 

www.sigma54.ca web site [28]. The artificial dataset comprised two groups of 

random sequences. The groups had the same number of bases observed in the 

positive pattern and differ by the presence and absence of the highly conserved 

bases (GG and GC). 

  

ANN test 

 

Tests with MLP (Multilayer perceptron), FAN (Free Associative Neurons), RBF 

(Radial Basis Function) and SVM (Support Vector Machine) neural networks 

were performed. RBF and SVM did not show better results than MLP and FAN 

neural networks. The best architecture used to classify the sequences using 
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MLP neural network had 7 neurons in the first hidden layer and three neurons in 

the second one. For FAN neural network we used the default setting with fuzzy 

set support of 100, diffuse neighboring of 6, shuffling the training set every time. 

The accuracy for each neural network tested on the same database was 

95.19% for MLP and 97.95% for the chosen one, the FAN network (Table 1).  

 
Table 1. Performance comparison for neural networks. 

 MLP FAN 

True positives, % 92.15 95.51 
False positives, % 3.29 2.09 
True negatives, % 96.71 97.91 
False negatives, % 7.85 4.49 
Accuracy, % 95.19 97.95 

 

The ANN test was performed using 3 datasets from published studies 

comprising 281 proposed σ54 TFBS sequences that were not used for training 

(Table 2). For more recent data, the sensitivity test showed more than 98% of 

right predictions for σ54 binding sites sequences. The decrease of sensitivity 

observed on Barrios database was due to the presence of candidate sequences 

in the σ54 TFBS database. 

 
Table 2. ANN sensitivity in comparison with published data. 

Dataset ANN Positive Total Sensitivity (%) 

Studholme, 2000 [29] 34 34 100 
Leang, 2009 [30] 90 91 98.9 
Barrios, 1999 [11] 127 156 81.4 

The sequences that did not had the conserved bases GG and GC and without known amino acids, were excluded from 
the test. 

 

S54Finder tool  

 

S54Finder is a fast tool developed to work with complete genome sequences. It 

works with annotated sequences stored in a gbk file format parsing the 

information to perform the analysis. If the query is a flat fasta file the software 

uses an in-house ORFinder to identify and annotate the coding regions and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2018. ; https://doi.org/10.1101/393736doi: bioRxiv preprint 

https://doi.org/10.1101/393736
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

extract the intergenic sequences. The output of the S54Finder is 2 files, a new 

gbk file with the predicted σ54 sequences marked and a text file with the 

predicted sequences and related ORFs positions to download.  

 

Results and discussion 

  

There is no TFBSs consensus for σ54, with only few sequences confirmed in 

laboratory. Several studies present candidate sequences as consensus but the 

size usually is not the same, since it differs between species. What is observed 

is that among the vast majority of the sequences there are at least 4 (GG and 

GC) conserved bases. This scenario turns difficult the pattern recognition since 

it increases the false positive rate. To overcome this problem we added the anti-

consensus feature, which allow us to decrease candidate number usually 

observed in other tools. To test S54Finder false positive rate we used 2012 

sequences generated by combination of bases preserving the high conserved 

ones (GG and GC). The results showed that S54Finder identified, from the total 

of possibilities, 1.89% of σ54 candidate sequences. This result confirms a high 

specificity of the S54Finder software. 

 

We tried to compare S54Finder with other available tools such as 

GenomeMatScan, but the test was not possible since GenomeMatScan does 

not perform whole genome predictions. The main features between the two 

software applications are contrasted in Table 3.  
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Table 3. Comparison between S54Finder and GenomeMatScan software. 

 S54Finder GenomeMatScan 

Web version Yes Yes 
Local processing Yes No 
Method FAN HMM 
Data entry Genbank file (.gbk) Input data copy-pasted into the 

browser 
Results Output in Genbank formats (.gbk), 

MatLab (.mat) and text 
Shown in browser 

Processing large 
regions of DNA 

Yes (complete genomes) No 

HMM: Hidden Markov Models. 

 

The distinguish feature of S54Finder is the ability to perform fast whole genome 

predictions. This allowed us to search for TFBSs in complete bacterial genomes 

across the entire NCBI database. From the complete genomes, s54finder 

obtained 79626 CDS sequences which could be ranked by the level of TFBSs 

occurrence next to homologous genes of different species.  

An in house tool was employed to cluster the CDS. A set of 9417 homologous 

CDS groups, within 2 or more homologous occurrences were determined. The 

minimal relative score considered to group a pair of genes was 0.5. To 

determine the annotation to be considered for each gene cluster we 

implemented a kmeans to support the choice in the set of original annotations.  

The generated data – TFBSs, CDSs, annotation, Homologous clusters – were 

gathered to perform a FASTA/BLAST formatted data base available and a web 

site (http://200.236.3.16/s54.php), that is available to validate the S54Finder 

predictions. Table 4 presents a list with the 29 groups that occurred 100 or 

more times. The glutamine synthetase protein and the nitrogen regulatory 

protein P II appears in the top of the list with 379 and 329 occurrences, 

respectively. Due to the importance of these proteins in the biologic nitrogen 

fixation their presence in the top predicted list was expected. We proposed a 

score to determine the correlation of a word present in an NCBI  annotation 
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found by s54finde with conserved clusters of genes related to TFBS. A binary 

matrix where columns represent the occurrence of each word and the lines the 

homologous groups, was joined to a column containing the number of 

occurrences of the respective homologous group, T. The ws54score of a word 

is then the Pearson correlation between the column that represent the word and 

homologous amount column, T. Our purpose was to identify possibly related 

words to σ54 regulated genes. Highest ws54scores were associated to gene 

names like glnL (0.3711), glnB (0.2959), glnE (0.2959) and PII (0.2959), whose 

association with the σ54 promoter is well known. However, words like MtrA and 

Thi1, also appeared in the top 10 list though not common in the literature; 

unknown conserved domains also appeared - DUF2233 (4) and DUF2971 (11) - 

in the top 15 list and we suppose they are likely related to the σ54. The list with 

annotation words and s54scores is in the Additional File. 

 

Conclusion 

 

The S54Finder presents good results regarding research in bacterial genomes. 

The main advantage is the fact that it is faster than other available tools. The 

pre-selection of candidates without the use of neural networks has shown that 

the pattern of conservation, based on published sequences and biologically 

confirmed, is capable of locating binding sites in bacterial genomes, but 

generates many false positives. 

False positives are reduced with the addition of ANN and feature extraction, 

which increase the specificity of the program. S54Finder allows the user the 

identification of σ54-regulated genes for a large set of genomes allowing 
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evolutionary and conservation studies of the regulation system between the 

organisms. The tool and the σ54 database are freely available in web. 
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