
Discovery of tandem and interspersed segmental duplications using high

throughput sequencing

Arda Soylev 1 ‡, Thong Le 2,3 ‡, Hajar Amini 4,
Can Alkan 1,5,6∗ and Fereydoun Hormozdiari 2,7,8∗

1 Department of Computer Engineering, Bilkent University, Ankara, 06800, Turkey
2 UC-Davis Genome Center, University of California, Davis, CA, USA.

3 Department of Computer Science, University of California, Davis, CA, USA.
4 Department of Plant Biology, University of California, Davis, CA, USA.

5 Bilkent-Hacettepe Health Sciences and Technologies Program, Ankara, 06800, Turkey
6 Department of Computer Science, ETH Zürich, 8006, Switzerland
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Abstract

Motivation: Several algorithms have been developed that use high throughput sequencing technol-
ogy to characterize structural variations. Most of the existing approaches focus on detecting relatively
simple types of SVs such as insertions, deletions, and short inversions. In fact, complex SVs are of crucial
importance and several have been associated with genomic disorders. To better understand the contri-
bution of complex SVs to human disease, we need new algorithms to accurately discover and genotype
such variants. Additionally, due to similar sequencing signatures, inverted duplications or gene conver-
sion events that include inverted segmental duplications are often characterized as simple inversions; and
duplications and gene conversions in direct orientation may be called as simple deletions. Therefore,
there is still a need for accurate algorithms to fully characterize complex SVs and thus improve calling
accuracy of more simple variants.
Results: We developed novel algorithms to accurately characterize tandem, direct and inverted inter-
spersed segmental duplications using short read whole genome sequencing data sets. We integrated these
methods to our TARDIS tool, which is now capable of detecting various types of SVs using multiple
sequence signatures such as read pair, read depth and split read. We evaluated the prediction perfor-
mance of our algorithms through several experiments using both simulated and real data sets. In the
simulation experiments, TARDIS achieved 97.67% sensitivity with only 1.12% false discovery rate. For
experiments that involve real data, we used two haploid genomes (CHM1 and CHM13) and one human
genome (NA12878) from the Illumina Platinum Genomes set. Comparison of our results with orthogo-
nal PacBio call sets from the same genomes revealed higher accuracy for TARDIS than state of the art
methods. Furthermore, we showed a surprisingly low false discovery rate of our approach for discovery of
tandem, direct and inverted interspersed segmental duplications prediction on CHM1 (less than 5% for
the top 50 predictions). The algorithms we describe here are the first to predict insertion location and
the various types of new segmental duplications using HTS data.
Availability: TARDIS software is available at https://github.com/BilkentCompGen/tardis
Contact: fhormozd@ucdavis.edu and calkan@cs.bilkent.edu.tr
‡ These authors contributed equally. ∗ Joint corresponding authors.
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1 Introduction

Genomic differences between individuals of the same species, or among different species, range from single
nucleotide variation (SNVs) [18] to small insertion/deletions (indels) [22] up to 50 bp, structural variation
(SVs) [2] that affect >50 bp, and larger chromosomal aberrations [23]. Among these types of variants,
SNVs were extensively and systematically studied since the introduction of microarrays, which can also be
used to genotype short indels [18]. SVs, especially copy number variations (CNVs), were first identified
using BAC arrays [27, 25], and then oligonucleotide array comparative genomic hybridization [28, 7] and
SNV microarrays by analyzing allele frequencies[19, 8]. Chromosomal aberrations such as trisomy, or large
translocations (e.g., Philadelphia chromosome [26]) can be tested using fluorescent in-situ hybridization [23].

Fine scale SV discovery was made possible using fosmid-end sequencing [36], and later indels were
identified at breakpoint level using whole genome shotgun (WGS) sequencing data [22]. However, both
approaches used the Sanger sequencing technology, which is prohibitively expensive to scale to analyze
thousands of genomes. High throughput sequencing arose as a cost effective alternative [29] to characterize
SVs first using the Roche/454 platform [14], and then Illumina [3, 9, 37, 21, 16, 30, 1, 37].

The 1000 Genomes Project, launched in 2008, used the HTS platforms to catalog SNVs, indels, and
SVs in the genomes of 2,504 human individuals [35]. Many algorithms were developed that use one of four
basic sequence signatures to discover SVs, namely read depth, read pair, split reads, and assembly [20, 2],
however, most of these tools focus on characterizing only a few types of SVs. More modern SV callers
such as DELLY [24], LUMPY [15], and TARDIS [31] integrate multiple sequencing signatures to identify a
broader range of SVs such as deletions, novel insertions, inversions, and mobile element insertions. However,
there is still a lack of accurate algorithms to characterize several forms of complex SVs, such as tandem
or interspersed segmental duplications (SDs) [6, 5]. Note that read depth based methods can identify the
existence of SDs [3, 33], but cannot detect the location of the new copies of the duplications.

Here we describe novel algorithms to accurately characterize both tandem and interspersed SDs using
short read HTS data. Our algorithms make use of multiple sequence signatures to find approximate locations
for the duplication insertion breakpoints. We integrated our methods into the TARDIS tool [31] therefore
extending its capability to simultaneously detect various types of SVs. We test the new version of TARDIS
using both simulated and real data sets. We show that TARDIS achieves 97.67% sensitivity with only
1.12% false discovery rate (FDR) in simulation experiments. We also used real WGS data sets generated
from two haploid genomes (i.e., CHM1 [12] and CHM13 [32]). Comparison of our predictions with de novo
assemblies generated using long reads from the same DNA resources [32] revealed ¡5% false discovery rate
for the duplications with high score.

The algorithms we describe in this manuscript are the first methods to discover the insertion locations
of segmental duplications using high throughput sequencing data. Coupled with the previously documented
capability of TARDIS to identify deletions, novel and mobile element insertions, and inversions, we are one
more step closer towards a comprehensive characterization of SVs in high throughput sequenced genomes.

2 Methods

2.1 Motivation

The 1000 Genomes Project provides a catalog of SVs in the genomes of 2,504 individuals from many
populations [34]. The project primarily focused on characterizing deletions, insertions, and mobile element
transpositions, however, it also generated a set of inversion calls. A careful analysis shows that a substantial
fraction of the predicted inversions are in fact complex rearrangements that include duplications, inverted
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duplications, and deletions within an inverted segment (Figure 1). This is because the read pair signatures
that signal such complex SVs are exactly the same as shown in Fig. 2. Therefore, any algorithm based on read
pair (and/or split read) signature may incorrectly classify these complex events as simple inversions, unless
it tries to characterize all such events simultaneously, with additional probabilistic models to differentiate
events that show themselves with the same signature.

54%
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7%
5%

Simple inversion

Inverted duplication

Inversion and deletion

Multiple deletions 

and inversion
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Figure 1: Relative abundance of complex SVs among the inversion calls reported in the 1000 Genomes
Project [34]. 54% of predicted inversions are in fact inverted duplications and only 20% are correctly
predicted as simple inversions.
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Figure 2: Read pair sequence signatures of inversions, deletions, inverted duplications, and gene conversions.
Note that the signatures for inversions, inverted duplications, and inverted gene conversion events are exactly
the same. Similarly, deletions, direct duplications and gene conversions with direct duplication show the
same signature.

2.2 Read pair and split read clustering

TARDIS uses a combination of read pair, read depth and split read sequencing signatures to discover
SVs [31]. TARDIS formulation is based on algorithms we developed earlier using maximum parsimony [9, 11]
objective function. The proposed approach has two main steps: First clustering read pairs and split reads
that signal each specific type of SV, and second apply a strategy to select a subset of clusters as predicted
SV. In this paper we extend TARDIS to characterize a complex set of SVs, which are incorrectly categorized
by state of the art methods for SV discovery. Specifically the methods we present here will advance our
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capability in discovery of duplication based SVs. Furthermore, our new methods are capable of
separating inversions from more complex events of inverted duplications and are also able to predict the
insertion locations of the new copies of segmental duplications. We would argue that considering these more
complex types of SV is crucial in improving the accuracy of predicting other types of SVs. Furthermore,
we have modified TARDIS to calculate a likelihood score for each SV provided the observed read pair,
read depth and split read signatures. Figure 3 summarizes the read pair signatures that TARDIS uses to
find tandem and interspersed duplications in both direct and inverted orientation. Although not shown
on the figure for simplicity, similar rules are required for split reads that signal the same types of SVs
(Supplementary Figure 1).

2.2.1 Maximal valid clusters

We have previously described algorithms to calculate maximal valid clusters for deletions, inversions, and
mobile element insertions [9, 10, 11, 31].

In this section we provide new methods to find maximum valid clusters for tandem and interspersed
(both direct and inverted) duplications.

A valid cluster is a set of alignments of discordant read pairs and/or split reads that signal the same
particular SV event denoted by

V Clusi = {vc1, vc2, ..., vcn}

There are a set of rules that each vci should satisfy in order to support the cluster, V Clusi, based on
the type of SV.

Inverted duplications : We assume the fragment sizes for read pairs are in the range [δmin, δmax], and
we denote the insertion breakpoint of the duplication as PBr and the locus of the duplicated sequence
is [PL, PR] (Figure 3A). We scan the genome from beginning to end, and we consider each position as a
potential duplication insertion breakpoint PBr. We consider all sets of read pairs where both mates map to
the same strand (i.e., +/+ and −/−) within interval [PBr − δmax, PBr] and [PBr, PBr + δmax] respectively
as clusters that potentially signal an inverted duplication.

Interspersed direct duplications : We create the valid clusters in a way similar to the inverted du-
plications, with the exception of the required read mapping properties. For direct duplications we require
each mate of a read pair to map to opposing strands (i.e., +/− and −/+).

Tandem duplications : We also create the clusters for tandem duplications as shown in Figure 3. In the
case of tandem duplications, discordant read pairs and split reads map in opposing strands, where the read
mapping to the upstream location will map to the reverse strand, and the read mapping to downstream
will map to the forward strand (i.e., −/+).

Similar to the valid cluster formulation, a maximal valid cluster is a valid cluster that encompasses all
the valid read pairs and split reads for the particular SV event (i.e., no valid superset exists). This can be
computed in polynomial time as follows:

1. We initially create maximal sets S = {S1, S2, ..., Sk} that harbors the read pair/split read alignments
Si = {rp1, rp2, ..., rpk}.
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Figure 3: Read pair sequence signatures used in TARDIS to characterize A) interspersed duplications in
inverted orientation, B) interspersed duplications in direct orientation, and C) tandem duplications.

2. For interspersed duplications, we use an additional step to bring mappings in both forward-forward and
reverse-reverse (forward-reverse and reverse-forward for inverted duplications) orientations together
inside the same set.

3. For each maximal overlapping set Si found in step 1, we create all the overlapping maximal subsets
si. (This step is necessary only for detecting inversions and interspersed duplications)

4. Among all the sets si found in Step 3, remove any set that is a proper subset of another chosen set.

2.3 Probabilistic Model

As we describe above different types of SVs may generate similar discordant read pair signatures (Figure 2).
We therefore developed a probabilistic model that makes use of the read depth signature to assign a
likelihood score to each potential SV. Our new probabilistic model has the ability to distinguish different
types of SVs with the same read pair signature.
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2.3.1 Likelihood model

Assume the set of maximum valid clusters SV = {S1, S2, . . . , Sn} is observed in the sequenced sample.
TARDIS keeps track the following information for each maximum valid cluster Si for 1 ≤ i ≤ n:

• observed read depth and read pair information (di, pi), i.e. di is the total observed read depth, and
pi is the number of discordantly mapped read pairs.

• potential duplicated or deleted or inverted region (αi, βi).

• potential breakpoint γi.

• potential SV type.

Assuming observed read depth and number of discordant read pairs follow a Poisson distribution, λ > 0,

Poisson(λ, x) =
λxe−λ

x!

here, λ is the expected number of read depth or read pairs, and x is the observed number of read depth or
read pairs respectively. However, the expected read depth or read pairs for some events might be zero, we
approximate the probability by,

Poisson(0, x) = εx

for a small ε > 0 (e.g. ε = 0.01 for read pairs and ε = 0.001 for read depth).

For each cluster Si, we define a random variable statei ∈ {0, 1, 2} in which the state of Si is homozygous
if statei = 2, heterozygous if statei = 1, and no event if statei = 0. We also define a random variable typei,
which represents the SV type for Si. Given statei = k and typei = δ, the likelihood of Si can be calculated
as:

Li(δ, k) = P (Si | δ, k)

= P ( read depth of Si | δ, k) · P ( read pairs of Si | δ, k)

= Poisson(di, λd) · Poisson(pi, λp)

=
λdid e

−λd

di!
· λ

pi
p e−λp

pi!

where λd is the expected read depth of Si given typei = δ, statei = k and λp is the expected read pairs of
Si given typei = δ, statei = k.

We calculate λd based on (typei, statei) and the expected read depth within the region (αi, βi) normalized
with respect to its G+C content using a sliding window of size 100 bp, denoted by Ed[(αi, βi)]. We calculate
λp based on the (typei, statei) and the expected number of discordantly mapped read pairs around the
potential breakpoint γi, denoted by Ep[γi]. For instance, if an event is categorized as homozygous deletion,
we expect to see almost no read depth inside the potential deleted region (αi, βi), and the expected number
of discordantly mapped read pairs should be approximately the expected number of reads containing the
potential breakpoint, i.e Ep[γj ]. For heterozygous deletion events, we expect to see half of the number of read
depths and half of the expected number of discordantly mapped read pairs. We also calculate the likelihood
score of no event at the potential region given that is categorized as deletion. For this case, we expect to
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see the expected number of read depths in that potential region and zero discordantly mapped read pairs.
Similarly, the value for λd, λp can be approximately for inversion and duplications. Table 1 shows the value
for λd, λp for each (typei, statei) using Ed[(αi, βi)] and Ep[γi]. Note that even though the formulation for
λd, λp are the same for all types of duplications, the likelihood score will be different because the potential
regions (αi, βi) are different based on the categorized type of the event being considered. Furthermore, the
read-pair support and signature will be different for each type of duplication which is the key in resolving
the type of duplication.

Table 1: Formulation for λd and λp for maximum valid cluster Si
SV Type State λd λp

Deletion
homozygous 0.0 Ep[γi]
heterozygous 0.5 · Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.0

Inversion
homozygous Ed[(αi, βi)] Ep[γi]
heterozygous Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.0

Inverted Duplication
homozygous 2 · Ed[(αi, βi)] Ep[γi]
heterozygous 1.5 · Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.0

Direct Duplication
homozygous 2 · Ed[(αi, βi)] Ep[γi]
heterozygous 1.5 · Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.0

Tandem Duplication
homozygous 2 · Ed[(αi, βi)] Ep[γi]
heterozygous 1.5 · Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.0

2.3.2 SV weight

For each potential SV we calculate a score to represent how likely a SV prediction is correct given the
observed signature. Note that, for each SV, we calculate the likelihood considering homozygous state and
heterozygous state (i.e., 1/1 or 0/1 respectively) separately, and then select the larger value to approximate
the likelihood of that prediction being correct. We define the score as log likelihood ratio of the putative
SV being true given the observed data over it being false. Note that we use log function to avoid numerical
errors. The score of potential SV Si is defined as follows:

score(Si) =
max (logLi(δi, k = 1), logLi(δi, k = 2))

logLi(δi, k = 0)

where δi is the potential SV type of Si. Again, k = 0, 1, 2 implies that the state of Si is no event,
heterozygous, homozygous respectively.

Then, the normalized weight of each cluster can be calculated as:

weight(Si) =
score(Si)

Ep[γi]

2.3.3 Multi-mapping reads

We previously showed that a greedy approach motivated by weighted-set cover problem performs well in
discovery of SVs with multiple mapping of the reads [9]. We therefore utilize a similar iterative approach

7

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2018. ; https://doi.org/10.1101/393694doi: bioRxiv preprint 

https://doi.org/10.1101/393694
http://creativecommons.org/licenses/by-nc/4.0/


here: 1) at each step we select the set with the best SV weight, and 2) we assign the relative discordant
read pairs and split reads to the selected SV and remove them from all other maximal clusters.

3 Results

3.1 Simulation

In order to evaluate performance of our SV detection algorithms, we developed a new simulator called
CNVSim in Python to simulate five classes of SVs including deletions, inversions, tandem duplications,
inverted duplications and interspersed direct duplications. We simulated SVs of lengths selected uniformly
random between 500 bp and 10 Kbp. For inverted duplications and interspersed direct duplications, the
distance from the new paralog to the original copy is chosen uniformly random between 5,000 bp and 50
Kbp. All segments are sampled randomly from the well-defined (i.e., no assembly gaps) regions in the
reference genome, and guaranteed to be non-overlapping. Each simulated SV can be in homozygous or
heterozygous state.

Based on the human reference genome (GRCh37), we simulated total of 1,200 SVs including 400 dele-
tions, 200 inversions, 200 tandem duplications, 200 inverted duplications and 200 interspersed direct du-
plications. We then simulated WGS data at four depth of coverages 10X, 20X, 30X, 60X using wgsim
(https://github.com/lh3/wgsim). We mapped the reads back to the human reference genome (GRCh37)
using BWA-MEM [17]. Finally we obtained structural variation call sets using TARDIS, DELLY [24], and
LUMPY [15].

Table 2: Summary of simulation predictions by TARDIS, LUMPY, and DELLY.

SV Type Cov.
TARDIS DELLY LUMPY

FDR TPR FDR TPR FDR TPR

Deletion

10X 0.063 0.933 0.312 0.958 0.315 0.790
20X 0.036 0.950 0.329 0.968 0.327 0.943
30X 0.047 0.960 0.330 0.973 0.328 0.948
60X 0.052 0.965 0.330 0.978 0.329 0.958

Inversion

10X 0.025 0.970 0.482 0.985 0.000 0.945
20X 0.011 0.980 0.495 0.985 0.000 0.965
30X 0.003 0.995 0.495 0.960 0.000 0.970
60X 0.009 0.995 0.495 0.990 0.000 0.970

Duplication

10X 0.004 0.933 0.204 0.500 0.202 0.408
20X 0.010 0.960 0.202 0.515 0.205 0.498
30X 0.004 0.967 0.204 0.515 0.202 0.502
60X 0.018 0.970 0.205 0.518 0.206 0.502

We show the true positive rate/recall and false discovery rates (TPR and FDR) of TARDIS, LUMPY, and DELLY at different
depths of coverage from 10X to 60X for deletions (Del), inversions (Inv), and segmental duplications (Dup). Note that LUMPY
and DELLY can not predict interspersed segmental duplications, therefore these tools miss such events. TARDIS consistently
shows low FDR with comparable sensitivity. In our simulation, the length of each SV is generated uniformly random between
500 bp and 10 Kbp.

Table 2 shows the true positive rate (TPR) and false discovery rate (FDR) of TARDIS compared to
DELLY and LUMPY on the simulated data. The sensitivity of TARDIS is comparable to others for deletions
and inversions, but TARDIS achieved a substantially higher TDR for tandem duplications. Additionally,
TARDIS suffered very low FDR compared to the other tools we tested.

Furthermore, TARDIS can classify duplications into tandem, interspersed directed duplication and
inverted duplication. However, DELLY and LUMPY are not designed to characterize interspersed segmental
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Table 3: Characterization of different types of segmental duplications using TARDIS on simulated data.
Duplication Type Coverage Total Calls Missed TRUE TPR FALSE FDR

Inverted Interspersed Duplication

10X 200 10 190 0.950 2 0.010
20X 200 7 193 0.965 4 0.019
30X 200 7 193 0.965 2 0.009
60X 200 7 193 0.965 14 0.047

Direct Interspersed Duplication

10X 200 18 182 0.910 1 0.004
20X 200 8 192 0.960 1 0.003
30X 200 7 193 0.965 1 0.003
60X 200 6 194 0.970 2 0.006

Tandem Duplication

10X 200 16 184 0.920 14 0.057
20X 200 11 189 0.945 15 0.050
30X 200 8 192 0.960 6 0.017
60X 200 6 194 0.970 11 0.028

TARDIS can classify duplications into tandem, interspersed directed duplication and inverted duplication. However,
DELLY and LUMPY are not designed to characterize these complex SVs. This table shows the true positive rate (recall)
and false discovery rate (TPR and FDR respectively) of TARDIS for each type of duplication.

Table 4: 50 highest scoring segmental duplications predicted by TARDIS in the CHM1 genome.
Duplication TARDIS Validation Duplication TARDIS Validation

Insertion Locus Dup. Type Score (PacBio) Insertion Locus Dup. Type Score (PacBio)

chr11 63,698,518 - 63,702,043 Direct 0.000139 True chr2 37,928,244 - 38,101,822 Tandem 0.000073 N/A
chr3 194,542,832 - 194,546,551 Direct 0.000147 True chr20 60,032,847 - 60,033,402 Tandem 0.000118 True
chr5 143,512,368 - 143,515,435 Direct 0.000189 True chr1 207,097,488 - 207,097,792 Tandem 0.000143 True
chr4 190,606,509 - 190,610,728 Direct 0.000356 True (Tandem) chr5 3,323,854 - 3,324,308 Tandem 0.000150 N/A
chr20 2,359,601 - 2,360,962 Direct 0.000418 True chr7 2,554,438 - 2,554,794 Tandem 0.000157 True
chr9 112,285,745 - 112,286,960 Direct 0.000422 True chr12 110,099,331 - 110,099,745 Tandem 0.000164 True
chr19 4,511,103 - 4,511,949 Direct 0.000453 True (Tandem) chr6 168,052,169 - 168,052,467 Tandem 0.000164 True
chr17 46,615,511 - 46,617,628 Direct 0.000466 True chr16 86,008,690 - 86,009,146 Tandem 0.000174 True
chr18 69,711,699 - 69,713,216 Direct 0.000469 True chr10 127,513,387 - 127,513,671 Tandem 0.000181 True
chr6 160,877,581 - 160,956,646 Direct 0.000484 N/A chr14 106,049,119 - 106,049,358 Tandem 0.000181 True
chr2 10,825,652 - 10,827,218 Inverted 0.000118 True chr17 80,317,606 - 80,318,018 Tandem 0.000181 N/A
chr3 43,834,994 - 43,836,299 Inverted 0.000123 True chr20 62,720,019 - 62,720,214 Tandem 0.000181 True
chr2 125,051,481 - 125,053,239 Inverted 0.000127 True chr9 132,158,786 - 132,159,087 Tandem 0.000181 N/A
chr14 67,169,917 - 67,171,999 Inverted 0.000146 True chr10 132,974,718 - 132,975,317 Tandem 0.000190 True
chr2 72,440,066 - 72,441,647 Inverted 0.000159 True chr12 13,164,410 - 13,164,785 Tandem 0.000190 True
chr10 127,190,469 - 127,197,324 Inverted 0.000190 True chr8 2,215,816 - 2,216,235 Tandem 0.000201 N/A
chr9 107,816,536 - 107,817,623 Inverted 0.000200 True chr6 44,012,337 - 44,012,939 Tandem 0.000211 True
chr17 36,350,020 - 36,407,396 Inverted 0.000208 False chr9 34,681,543 - 34,681,898 Tandem 0.000266 True
chr12 71,532,693 - 71,534,000 Inverted 0.000318 True chr6 35,754,611 - 35,766,730 Tandem 0.000273 True
chr1 114,645,854 - 114,654,623 Inverted 0.000334 True chr20 59,567,846 - 59,590,250 Tandem 0.000287 True
chr18 11,508,829 - 11,511,479 Inverted 0.000353 True chr20 62,123,611 - 62,124,191 Tandem 0.000355 True
chr5 115,346,294 - 115,351,084 Inverted 0.000390 True chr18 77,831,328 - 77,831,783 Tandem 0.000369 N/A
chr7 31,586,823 - 31,590,394 Inverted 0.000437 True chrX 417,957 - 418,352 Tandem 0.000369 True
chr19 15,785,635 - 15,888,539 Inverted 0.000485 True (Tandem) chr20 42,325,185 - 42,325,572 Tandem 0.000399 True

chr10 127,940,156 - 127,940,689 Tandem 0.000452 True
chr3 197,117,149 - 197,117,806 Tandem 0.000463 N/A

Here we list the insertion locations of the top 50 scoring segmental duplications in CHM1 genome. All predictions are sorted
by the SV score (lower is better). If the validation is N/A, that means the incorrect prediction from PacBio data, which will
be skipped in the comparison. TARDIS only gives one false call and three interspersed duplications that are wrongly assigned
to tandem duplications.

duplications, therefore we cannot provide comparisons. Table 3 shows the TDR, FDR, and the exact count
of the number of True/False predictions for each type of segmental duplication.
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3.2 Haploid genome analyses

As the first experiment with real data sets, we downloaded short read HTS data generated from two haploid
cell lines, namely CHM1 and CHM13 [13, 32]. We mapped the reads to human reference genome (GRCh37)
using BWA-MEM [17]. We also obtained call sets generated with PacBio data from the same genomes [4],
but here we use updated SV calls (Mark Chaisson, personal communication), which we use as the true
inversion set to compare with our predictions.

We present the comparison of the inversion predictions made by TARDIS and two state of the art
methods LUMPY and DELLY in Figure 4. Note that we only consider inversions of length > 100 bp.
Figure 4) (a) & (b) show the comparison of TARDIS predictions with those of other tools on CHM1 and
CHM13 respectively. Overall, TARDIS achieves better area under the curve (AUC) statistic. We also
tested the highest scoring set (n=50) of predicted inversions by each tool generated for the CHM1 genome.
Briefly, we used a reference-guided de novo assembly of PacBio reads generated from the same genome [4]
and mapped the contigs to the loci of interest (Figure 4) (c)). We show a ROC-like plot that uses actual
numbers of true and false calls instead of rates (TPR/FDR). Here we observe again that compared to
LUMPY and DELLY, TARDIS achieves better AUC. However, we note that the main reason for DELLY
and LUMPY curves being closer to that of TARDIS for low number of false calls is because there were several
predictions for which corresponding contigs did not exist in the assembled genome, therefore omitted from
this plot.
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Figure 4: Receiver operator characteristic (ROC) curve of comparison of inversion predictions on CHM1
and CHM13. Overall TARDIS achieves better area under the curve (AUC) statistic that the two other
approaches tested. (a), (b) comparison of CHM1 and CHM13 predicted inversions using PacBio reads
based on BLASR mappings. (c) validation of top predicted inversion of different tools using local assembly
of the PacBio reads of CHM1.

We provide the full set of the 50 highest scoring segmental duplications that TARDIS predicts in the
CHM1 genome together with in silico validation using the corresponding PacBio-based assembly (Table
4). Almost all of the predicted duplications, except one, were validated using long reads. We provide the
PacBio alignments of some of these events in the Supplementary Materials. Note that in most cases TARDIS
assigned the correct subtype of duplications (inverted, direct or tandem duplication) to the prediction. As
expected, the highest number of segmental duplications in the top 50 were tandem duplications (> 50% of
all duplications).
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3.3 NA12878 genome

We also analyzed the WGS data generated from NA12878 using TARDIS for various types of SV discovery
and compared the results against state-of-the-art methods for inversion prediction. Similar to the simulation
and CHM1/13 results, TARDIS outperformed the tested methods for SV discovery (see Supplementary
Figure 2 for inversion comparison with a set of validated inversions on this sample).

More interestingly, we have found an example of a large inverted duplication in NA12878 sample which
we validated using available orthogonal PacBio data generated from the same sample (Figure 5). The
interesting point about this inverted duplication is that it is larger than 10 Kbp and the distance between
locus of insertion and the duplicated region is also larger, which shows a potential start of a new segmental
duplication.

a)

NA12878

Reference

12 kbp

10kbp

CHM1

CHM13

NA12878

b)

Figure 5: a) Illumina signature for an inverted duplication, b) PacBio validation.

4 Discussion

Characterization of structural variants using HTS data is a well-studied problem. Still, due to the difficulty
of accurately predicting complex variants, most of the current approaches mainly focus on specific forms of
SVs. In this paper we describe novel algorithms to detect complex SV events such as tandem, direct and
inverted interspersed segmental duplications simultaneously with simpler forms SV using whole genome
sequencing data. Our approach integrates multiple sequence signatures to identify and cluster potential
SV regions under the assumption of maximum parsimony. However, complex SV events usually generate
similar signatures (i.e., inversion vs. inverted duplication), which make it difficult to differentiate particular
SV types. Therefore, we strengthened our method by using a probabilistic likelihood model to overcome
this obstacle by calculating a likelihood score for each SV.

Using simulated and real data sets, we showed that TARDIS outperforms state-of-the art methods in
terms of specificity for all types of SVs, and achieves considerably high true discovery rate for segmental
duplications. It should be noted that it TARDIS is currently the only method that can classify duplications
as tandem and interspersed in direct or inverted orientation using HTS data. Additionally, it demonstrates
comparable sensitivity in deletions and inversions.
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Future improvements in TARDIS will include addition of local assembly signature to help it achieve
better accuracy. Although simulation experiments demonstrated potential efficacy of TARDIS in segmental
duplication predictions, those that are generated from real genomes need to be experimentally verified to
fully understand the power and shortcomings of the TARDIS algorithm. We can then apply TARDIS to
thousands of genomes that were already sequenced as part of various projects, such as the 1000 Genomes
Project to advance our understanding of the SV spectrum in human genomes. Another possible direction
for TARDIS can be integration of new methods to better detect somatic structural variation detection,
which we can then apply to cancer genomes.
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