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Abstract: Profound loss of DNA methylation is a well-recognized hallmark of cancer. Given its 

role in silencing transposable elements (TEs), we hypothesized that extensive TE expression 

occurs in tumors with highly demethylated DNA.  We developed REdiscoverTE, a computational 

method for quantifying genome-wide TE expression in RNA sequencing data.  Using The 

Cancer Genome Atlas database, we observed increased expression of over 400 TE subfamilies, 

of which 262 appeared to result from a proximal loss of DNA methylation.  The most recurrent 

TEs were among the evolutionarily youngest in the genome, predominantly expressed from 

intergenic loci, and associated with antiviral or DNA damage responses. Treatment of 

glioblastoma cells with a demethylation agent resulted in both increased TE expression and de 

novo presentation of TE-derived peptides on MHC class I molecules.  Therapeutic reactivation 

of tumor-specific TEs may synergize with immunotherapy by inducing both inflammation and 

the display of potentially immunogenic neoantigens.   

One Sentence Summary: Transposable element expression in tumors is associated with 

increased immune response and provides tumor-associated antigens 
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Main Text:  
 

One of the key insights from the Human Genome Project was the discovery that at least 50% of 

the human genome is comprised of repetitive sequences, most of them derived from transposable 

elements (TE) of unknown function (1). Like all eukaryotic genomes (2-4), the human genome 

encodes multiple defense strategies to silence the expression and mobility of TEs, including 

epigenetic repression by DNA methylation. In the context of cancer pathogenesis, transformation 

to a malignant state is frequently accompanied by a global loss of DNA methylation (5, 6). 

Conceivably, this global epigenetic dysregulation in cancer cells leads to extensive TE 

expression, which in turn impacts both tumor-cell intrinsic functions and anti-tumor immune 

response. Indeed, there is converging evidence from in vitro and in vivo preclinical studies that 

treatment with DNA demethylation agents triggers expression of certain human endogenous 

retroviruses (HERV) in cancer cells and activate a robust type I interferon response (7, 8). As 

such, epigenetic therapies may have the potential to sensitize patients to immune checkpoint 

therapy by inducing inflammation (9) and by the formation of immunogenic TE-derived peptide-

MHC class I complexes. In support of this possibility, in a hematopoietic stem cell 

transplantation trial in kidney clear cell carcinoma, tumor regression was associated with donor T 

cells’ recognition of HERV-E antigens (10, 11).   

 

A major impediment to understanding TE expression and its potential relevance to tumor 

immunity is the analytic challenge of accurate quantification of short-read sequences from 

repetitive regions in the transcriptome.  Standard pipelines typically discard repetitive reads (12). 

Most current TE quantification techniques rely on: mapping reads to consensus sequences, 

exclusion of multi-mapping reads, or step-wise operations that could introduce considerable 
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biases (13-16). We have developed and benchmarked a new method, REdiscoverTE, to quantify 

TE expression from RNA-seq data, then applied it to thousands of cancer and normal tissue 

samples from The Cancer Genome Atlas (TCGA) and the Cancer Genome Project (CGP) (17).  

In this study, we characterized the patterns of genome-wide TE expression, related expression to 

DNA methylation, and identified numerous ways in which TE expression may impact innate and 

adaptive immune responses to the tumor.  

 

Results 

 

Genome-wide TE expression quantification approach 

 

REdiscoverTE, whose features are detailed in the Methods, was devised to allow simultaneous 

quantification of all annotated genes and TEs expressed in the human genome using a 

comprehensive human transcriptome reference that included all human RepeatMasker sequences 

(18) (Fig. 1A, Table S1). To mitigate the uncertainty associated with mapping reads to repetitive 

features, we leveraged a recently developed lightweight mapping approach for isoform 

quantification, Salmon, which uses an expectation-maximization (EM) algorithm to assign multi-

mapping reads probabilistically to transcripts, based on evidence from uniquely mapped reads 

(19).  

 

While the REdiscoverTE transcriptome reference includes all 5 million human RepeatMasker 

repetitive elements, we restricted our downstream analysis to TEs only, which encompass 4 

million elements classified into 1,052 distinct TE subfamilies in 5 classes: long interspersed 
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nuclear elements (LINE), short interspersed nuclear elements (SINE), long terminal repeats 

(LTR), SINE-VNTR-Alu (SVA), and DNA transposons (Fig. S1A).  We were primarily 

interested in measuring the total transcriptional output from a group of related TEs regardless of 

their genomic location. Therefore, after quantification at the individual locus specific-level, we 

chose to aggregate expression for individual elements to the TE subfamily level. We further 

divided the aggregate expression for each TE subfamily into exonic, intronic and intergenic 

expression by stratifying all elements under a given TE subfamily by their genomic locations 

with respect to host genes as defined in Gencode (20). For example, of the 1,610 annotated 

instances of L1HS, 951 are located in the intergenic regions, 654 in host gene intronic regions 

and 5 in host gene exons. Here, L1HS intergenic expression was defined as the aggregate 

expression from the 951 elements within the intergenic regions. Other subfamilies were treated 

similarly. 

 

We first benchmarked the performance of REdiscoverTE with extensive simulations using RSEM 

(21) and found REdiscoverTE to be highly accurate (Fig. 1B, Fig. S1C-G). While REdiscoverTE 

can accurately quantify expression in a locus-specific manner, we found the approach of count 

aggregation of expression to the subfamily level achieved much higher the accuracy of TE 

quantification, likely by reducing mapping noise observed at the individual element level (Fig. 

S1F-G, more details in Supplementary Notes).  REdiscoverTE performed best on intergenic 

TEs, followed by exonic, then intronic TEs (Fig. S1F-G).  Exonic TE expression, which 

comprised a minority of the total TE read fraction, was excluded from further analysis to rule out 

the potential confounding expression from overlapping host genes and ease down-stream 

interpretation. 
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For further confirmation, we performed a direct comparison of REdiscoverTE to a previously 

published study on a restricted set of 66 human endogenous retroviruses (HERVs) in TCGA by 

Rooney et al. (15). We found the results were generally consistent (median r = 0.76, Fig. S1K), 

particularly for 3 previously identified tumor-specific HERVs: ERVH-5, ERVH48-1 and ERVE-

4 (Fig. S1J). However, REdiscoverTE has the advantage of efficiently capturing expression by 

all REs.  

 

Finally, we compared REdiscoverTE to Repenrich(14), a two-step alignment-based TE 

expression quantification method that first aligns reads to host genes using Bowtie (22), then 

quantifies TE expression. Benchmarking against simulated data, we showed that REdiscoverTE 

performed with higher accuracy and computational efficiency (Fig. S1H-I), while RepEnrich 

showed significant over-estimation of TE expression.  Likely reasons for RepEnrich’s over-

estimation include the addition of padding sequences in its TE reference and the assignment of 

reads that belong to genes and retained introns to overlapping TEs. REdiscoverTE overcomes 

these biases with the inclusion of intron sequences in its transcriptome and simultaneous host 

gene/RE quantification.  

 

TE expression is dysregulated in cancer 

 

To characterize the landscape of TE expression in cancer, we applied REdiscoverTE to 7,345 

TCGA RNA-seq samples (containing 1,232 tumor and matched normal samples, the rest are 

tumor samples without normals) across 25 cancer types. For validation of our findings in select 
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cancer types, we also analyzed an additional 405 tumor and matched normal RNA-seq samples 

across 5 cancer types (Table S2) from CGP (17). Both datasets were generated from poly-dT 

RNA-seq library preparations, which can capture poly-adenylated TEs transcripts. On average, 

1% of RNA-seq output mapped to TEs (Fig. S2A). Notably, TE expression was observed from 

all TE classes (N=5) and most families (N=43), including both retrotransposons and DNA 

transposons (Fig. S2B). For each TE class, the bulk of expression stem from intergenic regions 

(Fig. S2C), suggesting autonomous TE expression from intergenic loci compared to read-

through transcription in host, protein-coding genes. Human DNA transposons had been thought 

to be completely inactive, based on the lack of evidence for transposition in the human 

genome(23). Although these data cannot address transposition, our results, coupled with other 

recent studies (24, 25), suggest active gene expression by DNA transposons.   

In all cancer types, TE expression was detected in both tumor and matched normal tissues, 

suggesting basal levels of TE transcriptional activities in normal tissues. Across the two datasets, 

10 cancer types showed a significantly higher proportion of reads mapping to TEs in tumor 

compared to matched normal tissues, suggesting that TE expression may be particularly active in 

these cancers; the reverse was observed in 4 cancer types (Fig. S2A, Fig. S2D, Fig. S2E). 

Consistent with this, differential expression analysis of tumor samples with respect to matched 

normals (26-28) revealed that stomach, bladder, liver, and head and neck tumors show 

predominantly over-expression of TEs, while thyroid, breast, kidney chromophobe and lung 

adenocarcinoma tumors show predominantly reduced TE expression compared to normal (Fig. 

2A). Across all tumor types, many TEs showed differential expression: out of 1,052 TE 

subfamilies, 587 were differentially expressed in at least one TCGA cancer type studied, of 

which, 463 are over-expressed in at least one cancer type (Fig. 2A-C, Table S3, S4). Notably, 
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for many cancer types, a number of TE subfamilies showed low expression in normal samples 

but significantly higher expression in tumor samples (Fig. 2B). The TE class LTR showed the 

highest number of over-expressed subfamilies followed by DNA and LINE.  However, this 

enrichment pattern was largely consistent with the total number of subfamilies defined in these 

TE classes, hence there is little evidence of class preference for over-expression (Fig. 2C). The 

pattern of over-expression in tumor versus normal tissue was highly consistent across the two 

data sets (TCGA and CGP), suggesting that the TE expression profile may be characteristic of 

tumor/tissue type (Fig. 2D).   

A minority of TEs were recurrently expressed in multiple cancer types: 61 TE subfamilies were 

significantly over-expressed in at least 4 cancer types (Fig. 2C). Among these, L1HS, the human 

specific subfamily of the LINE1 family, was over-expressed in 8 cancer types (Fig. 2E, Fig. 

S2G). A number of TE subfamilies belonging to the human endogenous retrovirus (HERV) 

group were also consistently over-expressed. Full-length HERV sequences are characterized by 

the presence of two LTRs flanking a proviral genome (23, 29). HERVK11D-int, a member of the 

HERVK family (HERVK is the youngest family of HERVs), was over-expressed in 7 cancer 

types (Fig. 2E, Fig. S2G). LTR7Y, the youngest variant of the LTRs associated with HERVH 

(30), was over-expressed in 8 types of tumors. We discovered that coincident with the over-

expression of LTR7Y, HERVH-int, the proviral portion of HERVH, was over-expression in six 

of the same cancer types (Fig. 2E, Fig. S2H, Fig. S2I, Table S4), suggesting either shared 

regulation with LTR7Y or potential expression of full length HERVH sequence. A similar 

pattern of co-expression was also found for HERVL18-int and its associated LTR element 

LTR18A, and to some extent L1HS and SVA_F (Fig. S2I).   
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The evolutionary age of TE subfamilies can be estimated by their divergence from their 

consensus sequence (Smit, 2013). By this method, we found that the younger TE members are 

generally more consistently over-expressed across tumor types, in keeping with the above 

observation of prevalent over-expression of L1HS, HERVK and HERVH, which are known to 

be among the youngest TEs in the human genome (Fig. 2F, Fig. S2F). This suggests that 

younger TEs may be more likely to be active in tumor genomes, due either to more intact 

sequences and thus preserved promotors and transcriptional potential or to fewer overlapping 

mechanisms of silencing.  

 

Reactivation of TEs is associated with loss of DNA methylation 

 

To elucidate the role of DNA methylation alterations in TE expression, we examined TCGA 

DNA methylation changes from normal to tumor at both the global and TE-proximal level using 

TCGA Illumina 450K array data, which captured 70K CpG sites overlapping with 1,007 TE 

subfamilies (Fig. S3A). Across 10 cancer types, we observed that, much like differential TE 

expression, the global pattern of differentially methylated CpGs (DMCs) was cancer type-

dependent: CpGs in certain tumor types are often highly demethylated, e.g. LIHC and HNSC, 

while in other types they are often over-methylated, e.g. KIRP and PRAD (Fig. 3A, Fig. S3B, 

Fig. S3C, Table S5). Furthermore, in all cancer types considered, we discovered a strong 

enrichment of demethylation at CpG sites located within TEs, as compared to background 

demethylation at all CpG sites on the 450K array (Fig. 3A, Fig. S3C, Table S5). More 

strikingly, in all cancer types other than KIRP, tumor samples showed dramatic enrichment of 

de-methylation relative to over-methylation at TE-proximal CpG sites, indicating that loss of 
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DNA methylation in these specific regions may be a common tumor pathology. Consistent with 

the known role of DNA methylation for TE silencing, the extent of demethylation, in terms of 

log-ratio of demethylated vs. over-methylated TE CpGs, was strongly associated with the extent 

of TE over-expression across cancer types (Fig. 3B). 

To gain better resolution on methylation patterns around TEs, we performed sample-level 

correlation and spatial analysis of DMCs. We illustrate the approach with intergenic L1HS 

expression and methylation analysis in BLCA. Relative to normal bladder tissue, L1HS is 

significantly over-expressed in bladder tumor (log2FC = 2.3, p=4x10-7, limma, Fig. 3C); and an 

inverse relationship is seen for methylation marks, with L1HS proximal CpG sites being 

significantly demethylated in tumor compared to normal tissue (p=2x10-16, two sided t-test, Fig. 

3D). Across samples, the average L1HS methylation level was significantly inversely correlated 

with aggregate L1HS expression level (p=2x10-15, cor = -0.57, Fig. 3E). Next we created a 

spatial correlation profile between methylation level and aggregate expression level for a 10kb 

region around all L1HS loci and observed a deepening inverse correlation at the 5’ end of L1HS 

in BLCA (Fig. 3F). Finally, a DMC spatial enrichment profile for the same 10kb region further 

confirmed a strong enrichment of demethylated DMCs at the 5’ end of L1HS in BLCA (Fig. 

3G). These results together establish that intergenic L1HS activity in tissue is influenced by the 

DNA methylation state at its 5’ end.  

 

We extended this correlation analysis to 1,007 TE subfamilies in 10 cancer types, and discovered 

a strong inverse correlation for 431 TE subfamilies (Fig. S3D, Table S6), 262 of which showed 

significant over-expression in at least one cancer type. We highlight 13 TEs subfamilies from the 

LINE, LTR and SVA class that showed recurrent significant inverse correlation between 
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expression and proximal DNA methylation across cancer types (Fig. 3H, Fig. 3I, Fig. 3J).  Of 

note, we found that the over-expression of SVA, the youngest active group of retroelements in 

hominids (31), is strongly associated with proximal DNA de-methylation, particularly in head 

and neck squamous cell and lung squamous cell carcinoma (Fig. 3J, Fig. S3F).  

As noted above, we observed predominantly reduced levels of TE expression in tumor compared 

to normal tissue in a subset of cancer types (thyroid, breast, kidney chromophobe and lung 

adenocarcinoma). We examined DNA methylation status at 6 recurrently down-regulated TEs, 

but found no clear association between methylation and TE expression (Fig. S3D).  

Together, these data demonstrate that the over-expression of many TEs in tumor is associated 

with loss of DNA methylation, particularly at TE-proximal CpG sites, suggesting that a major 

mechanism of TE reactivation may be targeted loss of DNA methylation near TEs.   

 

TE expression is associated with DNA damage and immune response 

 

We next tested the hypothesis that tumor TE expression can impact cellular and immune 

response within the tumor by examining its relationship to transcriptional activities of major 

cellular pathways.  Twenty-four pathways were considered, including 8 related to cancer (e.g. 

P53 signaling), 6 related to DNA damage response (e.g. homologous recombination) and 8 

related to immune response (e.g. type I IFN response) (32) (Table S7).  For each pathway of 

interest, we first scored its overall activity in the tumor samples using singular-value weighted 

gene expression of the associated gene set. Scoring bulk tissue for expression signatures creates 

an interpretation challenge: as both tumor and non-tumor cells contribute to the mRNA signal, 

any observed differences across samples may result from differential tumor cell TE (or other 
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gene) expression or from differences in sample cellularity, i.e., in the relative abundance of 

tumor, immune, or stromal cell content. To isolate the contribution of TE to variable expression 

of these pathways, we compared two statistical models: (1) a cellularity-only model that relates 

pathway scores to estimates of sample tumor purity plus lymphoid and myeloid cell content (33) 

(Fig. S4A, Fig. S4B); and (2) a full lasso regularized regression model (34) that relates pathway 

scores to the expression of 1,052 TE subfamilies in addition to the 3 tumor cellular components 

(tumor, lymphoid, myeloid).  The difference between the goodness of fit (the r-squared values) 

of the two models was interpreted as the total explanatory power from all TE expression to each 

pathway, since the two models both account for cellularity variations in the samples. As Lasso is 

a statistical technique that selects representatives of correlated variables, the models also helped 

to identify representative top TE contributors to the variable expression of each pathway in 

question (Table S8). 

 

Comparing the full lasso model with the cellularity model revealed that total TE expression 

accounted for substantial explanatory power to expression of many pathways with change in r-

squared values exceeding 0.4, including DDR, type I IFN response, antigen processing 

pathways, cell cycle, P53 signaling and epithelial-mesenchymal transition (Fig. 4A, Fig. S4C, 

Table S8). Specifically for DDR pathways, the mean r-squared-values across cancer type was 

substantially higher in the full lasso model (0.74±0.14) than the cellularity only model 

(0.18±0.10).  MER75 (piggyBac family, DNA transposon), MER4A (ERV1 family), MER54A 

(ERV3), MER67A (ERV1) were identified by the full lasso model as top predictors for DDR 

activities (Fig. 4B, Fig. S4D, Fig. S4E).  
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For type I IFN response expression, the mean r-squared values across cancer type was 0.67±0.21 

in the full lasso model compared to 0.24±0.11 in the cellularity model.  MamGypLTR2b 

(Gypsy), LTR21B (ERV1), L1PBb (L1) and MER57F (ERV1) were identified as TEs with the 

strongest positive association to type I IFN response (Fig. 4B, Fig. 4C, Fig. S4D). Type I IFN 

response is indicative of activation of cell-intrinsic anti-viral pathways and has been suggested to 

be induced by intracellular sensing of dsRNA formed from TE transcripts (7, 8, 23).  These 

models suggest that total TE expression could be a major contributor to type I IFN activities in 

the tumor. Direct correlation analysis with estimated tumor immune infiltrates (33) also revealed 

for several cancer types positive association of LTR21B and MER57F to tumor plasma dendric 

cell (pDC) expression (Fig. 4C), which is consistent with known biological function of pDC as a 

potent producer of type I IFN. 

 

Several HERV subfamilies, LTR21B, MER57F and HERVL74-int (ERVL) were also identified 

as the top TE correlates to expression levels of type II IFN response, CD8 T effector activity and 

immune checkpoint. Direct correlation analysis with estimated immune infiltrates (33) confirmed 

positive association of LTR21B and MER57F to CD8+ Tells expression (Fig. 4C).  

 

Given the large explanatory power observed for DDR and immune response pathways, we next 

explored the directionality and strength of association from all individual TE subfamilies to these 

two biological systems using standard correlation analysis (Fig. S4F).  We identified striking 

positive correlations with DDR from a large number of TE subfamilies in KIRC (a.k.a. renal 

clear cell carcinoma, 327 subfamilies), pancreatic adenocarcinoma (PAAD, 111 subfamilies) and 

sarcoma (SARC, 51 subfamilies), suggesting TEs may be a significant contributor to DDR for 
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these 3 cancer types.  KIRC has been previously observed as an immunogenic type of tumor that 

responds well to immunotherapy yet it tends to have low tumor mutation burden (TMB)(15). As 

the overall level of DDR related expression in KIRC is comparable to many cancer types (Fig. 

S4G), one possible explanation for the observed extensive positive correlations in KIRC is that 

TEs may be a significant contributor to DDR. Somatic TE transposition events have been 

previously described in TCGA samples to lead to insertional mutations private to tumors (35) 

and retrotransposition is known to create DNA double-strand breaks (36). KIRC was recently 

observed to harbor the highest proportion of insertion-and-deletion tumor mutations compared to 

other TCGA cancer types (37). DDR is known to activate immune signaling and inflammation 

(38). In light of our observation of extensive correlation between TE expression and DDR 

expression, more research is needed to elucidate the connection between TE expression, DDR 

and immunogenicity.  

 

5-aza-2’-deoxycytidine treatment of glioblastoma cell lines induces TE expression and TE-

derived peptide presentation on MHC class I molecules 

 

While TE expression may contribute to innate immune activation and result in tumor 

inflammation, it may also contribute to the adaptive immune infiltration through presentation of 

TE-derived peptides on tumor cells (Fig. 5A).  Certain HERV transcripts have been shown to 

result in MHC class I-bound peptides at tumor cell surface and serve as triggers for cytolytic T 

cell response (10, 11).  We postulated that a variety TE peptides may be presented by tumor and 

subject to surveillance by the adaptive immune system.   
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To pursue this question, we re-analyzed a published multi-omic dataset (39) in which the authors 

originally examined the treatment effect of 5-aza-2’-deoxycytidine (decitabine, an inhibitor of 

DNA methyltransferase 1) on GBM cell lines through combined transcriptome, proteome and 

MHC class I peptidome analysis. Applying REdiscoverTE to the GBM transcriptome generated 

with rRNA depletion library prep, we discovered a much higher proportion of TE transcripts 

(~2.5%) and an enrichment of intronic TE expression in comparison to the data from poly-dT 

library preps, independent of treatment group (Fig. S5A, Fig. S5B).  Epigenetic de-repression by 

decitabine resulted in strong over-expression of TEs originating from intergenic and intronic 

regions in these GBM cell lines, particularly TEs from SVA (SVA_B, C, D, E, F),  ERV1 (n = 

27), L1 (n=2) and Alu (n = 9) families (FDR < 0.05 and FC > 2, Fig. 5B, Fig. S5C, Table S9).  

We searched the matching MHC class I peptidome and whole proteome data for translational 

products of TE by performing peptide identification and label-free quantification based on an 

augmented human proteome that included TE sequences from 51 over-expressed TE subfamilies.  

Using this approach, we identified 83 unique MHC-presented peptides derived from TEs and 

chose a subset of 39 peptides that were detected at least 3 times across all samples for further 

analysis. The majority of peptides mapped to TE elements resided in the intergenic regions of the 

reference genome, and some mapped to intronic regions (Table S10). These peptides were 

derived from over 10 subfamilies belonging to SVA (n=17), LTR (n=13), SINE (n=7) and LINE 

(n=2), with two subfamilies (SVA_D and LTR12C) representing half of the 39 peptides. 

Additionally, we identified 19 peptides derived from five of these subfamilies within the whole 

proteome data, adding further confidence in the translation potential of these TEs (Table S11). 

Sixteen (41%) peptides were detected only in the decitabine-treated condition, suggesting 

possible presentation of novel peptides, induced by a DNA demethylation agent. Seven of the 
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remaining 24 peptides showed a two-fold increase in abundance under decitabine treatment 

compared to untreated condition (Fig. 5C). A subset of the peptides detected under both treated 

and untreated conditions were synthesized; we were able to verify their identity by mass 

spectrometry and confirm their binding to MHC-I molecule by peptide exchange assay (Table 

S10). 

Simultaneous to TE expression increase, decitabine treatment also resulted in a striking induction 

of host gene expression, including many cancer testis antigen (CTA) genes such as the MAGE 

family genes, CYP1B1 and MELTF (Fig. S5D), as also reported in Shraibman et al. (39).  

Geneset enrichment analysis confirmed that decitabine treatment is associated with the over-

expression of not only CTA related pathways -- spermatogenesis (FDR = 5.1 x 10-3), allograft 

rejection (FDR = 1.3 x 10-2), but also a number of immune and cellular pathways that is 

consistent with above TCGA finding: inflammatory response (FDR = 4.0 x 10-7), TNFa 

signaling (FDR = 1.5 x 10-3), EMT (FDR = 6.4 x 10-2) and P53 response (FDR = 0.03, Table 

S12). Also consistent with above TCGA results are the observations that the expression of 

several TE subfamilies correlated with either IL1beta response or type I interferon response (Fig. 

5B). Interestingly, expression of two subfamilies with the most number of peptides detected: 

SVA_D and LTR12C, were both strongly associated with DNA damage repair and homologous 

recombination in the TCGA KIRC cohort. 

 

Discussion 

 

Our analysis revealed extensive TE expression in tumors, which strongly associated with the 

expression of innate immune genes and triggered the production of polypeptides that are 
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processed and presented on MHC I molecules. These finding were made possible due to the 

development of a novel computational approach that simultaneously quantified the expression of 

host genes and all annotated repetitive elements. Key findings included the demonstration of 

transcriptional activities from all 5 classes of TE, including DNA transposons, with an 

enrichment seen in the evolutionarily youngest TEs. Much of the TE expression was derived 

from intergenic loci, supporting autonomous expression of many TEs rather than read-through 

resulting from host, protein-coding genes. Advancing prior observations of global demethylation 

in cancer, REdiscoverTE permitted the demonstration that TE expression is tightly linked to 

proximal DNA demethylation in tumors. Importantly, our results demonstrated that the 

expression of TEs not only is associated with increased innate immune responses but also results 

the presentation of TE-derived peptides on tumor cell surfaces by MHC-class I molecules for the 

engagement of adaptive immunity. Taken together, these findings suggest that TE expression in 

the tumor, whether spontaneous or induced under epigenetic therapy, has important clinical 

implications for cancer immunotherapy (9, 40). 

 

Anti-viral response in the tumor has been demonstrated to potentiate patient response to 

immunotherapy (7, 8). In particular, for KIRC, where tumors have low mutational burden yet are 

highly immunogenic, HERV activity has been proposed to be a source of inflammation and 

mechanism of tumor regression(15). Analysis of point mutations alone, however, likely 

underestimates the true mutational burden (37). While the true extent of endogenously encoded 

antigens in the MHC-peptidome is not yet known, over the last 3 decades, about 10 HERV-

derived peptides have been reported to be presented on a tumor cell surface, generate CD8+ 

clonal expansion and anti-tumor response in KIRC (10, 11), colorectal cancer (41) and 
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melanoma (42, 43). Here, we demonstrate that LTR, LINE, SINE and SVA transcripts from 

intronic and intergenic regions could potentially be translated and presented on the MHC class I 

molecules of tumor cells.   

 
Human DNA transposons are widely believed to be immobile (23), and their transcription has 

seldom been described in the literature. We have detected transcripts from a number of DNA 

transposons and identified MER75 as a top correlate to tumor DNA damage response. MER75, 

first reported in the original paper for the Human Genome Project, is a member of the piggyBac 

DNA transposon family and one of the youngest DNA transposons (1). piggyBac DNA 

transposons, in addition to being widely used as a genomic engineering tool to create insertional 

mutagenesis (44), are also ancestral to several domesticated host genes, such as PGBD5. PGBD5 

was recently reported to encode an active DNA transposase expressed in the majority of 

childhood solid tumors and is responsible therein for site-specific oncogenic DNA 

rearrangements that require end-joining DNA repair (45). Together these findings suggest the 

possibility that activity of human DNA transposons may result in DNA damage, consistent with 

their known roles in chromosomal rearrangement and mutagenesis in other species (46, 47). 

However, it is still unclear whether TE activities by either DNA or re-retrotransposons, directly 

contribute or reflect other causes of genomic instability. Further experimental validation is 

necessary to establish the link between transcription of TEs such as MER75 and the tumor 

cellular DNA damage response. Nonetheless, in this study, we have provided strong evidence of 

correlation between TE expression and DDR in KIRC, pancreatic adenocarcinoma and sarcoma.  

 
Regarding the computational methods presented herein, REdiscoverTE does not rely on 

consensus sequences, traditional short-read aligners, exclusion of multi-mapping reads, nor does 
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it utilize step-wise operations that potentially introduce read-assignment bias (13-16, 48). In this 

study we have focused on TE expression in cancer, however, the method automatically 

quantifies expression of all repeats including those that are not transposable, e.g. satellites, which 

have been implicated in epithelial tumors (49). This method is broadly applicable to landscape 

profiling of the RE/TE expression in research areas beyond cancer, including autoimmune (50) 

and neurodegenerative diseases (24, 51), as well as normal embryonic stem cell development 

where TE activation is a hallmark of cellular identity and pluripotency (13, 52-55). Lastly, 

REdiscoverTE can be applied to transcriptomic analysis of TEs and REs for any organisms 

whose genome contain such elements (12, 56, 57). 

 
In sum, our comprehensive in silico characterization of TE activities in tumors offers a number 

of predictions for experimental validation, and establishes a strong rationale for testing the newly 

identified class of TE-related, tumor-associated antigens as potential therapeutic vaccine targets. 
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Fig. 1. REdiscoverTE reference transcriptome and performance benchmarking 
 

A. REdiscoverTE whole transcriptome reference for RE quantification. Schematic depicts 

short reads mapping to host gene features (exons, introns) and REs either embedded 

within host genes or intergenic regions. RE genomic locations are derived from 
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RepeatMasker (RMSK). Reads stemming from repetitive elements (REs), exons, and 

introns are illustrated in orange, blue and green, respectively. 

 

B. Benchmarking the accuracy of RE quantification by REdiscoverTE with simulation. 

Two-dimensional histogram comparing REdiscoverTE quantification to simulated RE 

expression generated based on a TCGA THCA sample. Expression is aggregated to the 

subfamily level. Left to right: all RE expression regardless of genomic context, exonic 

RE expression, intronic RE expression, intergenic RE expression. Performance accuracy 

is measured in terms of Spearman correlation coefficient (r), mean relative difference 

(MRD), mean absolute relative difference (MARD). 
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Fig. 2. TE expression is dysregulated in cancer. (All differential expression analysis are 
based on intergenic TE expression and performed on matched tumor-normal sample pairs)    
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A. Number of differentially expressed TE subfamilies in 13 TCGA cancer types. Red bars: 

number of significantly over-expressed TE subfamilies. Blue bars: number of 

significantly under-expressed TE subfamilies. Cancer types are ordered from left to right 

by the ratio between number of over-expressed and under-expressed TE subfamilies. 

Significance is defined at log2 fold-change (FC) > 1 and FDR < 0.05.  

B. M-A plot showing TE expression FC of tumor over normal as a function of mean normal 

tissue TE expression (log2 counts per million; CPM) for 13 TCGA cancer types.  Each 

point is one TE subfamily. Red: significantly differentially expressed TE subfamilies. 

Cancer types are ordered as in Fig. 2A. 

C. Left: histogram of TE subfamilies by number of TCGA cancer types in which they are 

over-expressed to show recurrence of over-expression. In total, twenty-seven TE 

subfamilies were over-expressed in at least 5 cancer types. Right: number of TE 

subfamilies in each of 5 TE classes as defined by Repeatmasker GRCh38.  

D. Comparison of TE differential expression profile (tumor vs. matched normal) between 

TCGA and CGP RNA-seq data on matching cancer types.  

E. FC of expression for the 27 TE subfamilies are selected based on Fig. 2C. Heatmap 

colors indicate log2 FC (tumor vs. matched normal) values; columns are ordered as in 

Fig. 2A. CGP data are grouped with corresponding TCGA cancer types. 

F. Younger TEs tend to be more frequently over-expressed in multiple tumor types.  

Average divergence of TE (proxy for age) was calculated for each TE subfamily.  The 

plot summarizes the average divergence for TE subfamilies at a given frequency of TE 

over-expression across cancer types (grouping of TEs are based on Fig. 2C). Error bars 
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indicate standard error of the mean of average sequence divergence of TE subfamilies at 

a given prevalence. 
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Fig. 3. TE expression in cancer is associated with global and proximal epigenetic 
dysregulation 
  

A. Global differential methylation states across TCGA cancer types. Criteria for significant 

differentially methylated cytosines (DMCs): absolute (delta beta value) >= 10%, FDR < 

0.05. Top: proportion of DMCs among all Illumina 450K CpG sites. Bottom: proportion 

of DMCs at CpGs within TEs.  Blue: proportion of de-methylated DMCs among all CpG 

sites. Orange: proportion of over-methylated DMCs among all CpG sites.  

B. The extent of TE mRNA overexpression is strongly correlated with the extent of CpG 

demethylation within TEs. Each point represents one cancer type. Horizontal axis: log2 

ratio between the number of over-expressed TE subfamilies and the number of under-

expressed TE subfamilies. Vertical axis: log2 ratio between the number of de-methylated 

DMCs in TEs and the number of over-methylated DMCs in TEs. 

C-G Association between L1HS intergenic expression and its DNA methylation state in 

BLCA.  Analysis was conducted using all samples. 

C. L1HS intergenic expression in normal and tumor samples. Blue: normal sample. Red: 

tumor samples. Filled circle: tumor samples with matched normal. Open circle: tumor 

samples without matched normal).  

D. L1HS proximal CpG M-value in normal and tumor samples. Blue: normal samples. Red: 

tumor samples. CpG sites are from 500bp+/- regions around intergenic L1HS 5’ bp 

(taken as TSS).  

E. Correlation between intergenic L1HS expression and methylation M value 

F. Spatial correlation between L1HS expression and CpG methylation M value 5kb+/- 

L1HS. Correlation was calculated for all samples at each CpG site, then smoothed with 

binsize = 500bp. Shading indicates 95% confidence interval.  
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G. Spatial distribution of de-methylated CpG (green), over-methylated CpGs (red) and CpGs 

with no methylation change (grey, dashed) 5kb+/- around L1HS. Binsize = 500bp. 

H-J. Examples of TE subfamilies with significant negative correlation (cor<= -0.4 & 

FDR<0.05) between intergenic expression and methylation in more than 4 types of tumors. 

Results are based on matched tumor-normal samples. 

H. Tumor vs. Normal differential expression of select TE subfamilies. Heatmap colors: log2 

FC. Significance level *: logFC>1&FDR<0.05; **: logFC>1&FDR<0.01; ***: 

logFC>1&FDR<0.001.   

I. Tumor - normal average delta beta value in 500bp+/- regions around 5’ bp of all 

intergenic loci of given TE subfamily.  

J. Correlation between intergenic TE expression and methylation M values around 500bp 

+/- 5’ bp of intergenic TE. Heatmap colors: correlation (cor) coefficient. Significance 

level *: abs(cor)>=0.4&FDR<0.05, **: abs(cor)>=0.4&FDR<0.01; ***: 

abs(cor)>=0.4&FDR<0.001 
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Fig. 4. TE activity is associated with cellular and immune response in the tumor 
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A. R2 estimated by two models for each of 9 gene signature scores.  Each panel is one gene 

signature, each point is one cancer type. HR: homologous recombination. APM: antigen 

processing machinery. EMT: epithelia-mesenchymal-transition. Pan-F-TBRS: pan-

fibroblast TGFbeta response signature. Red: R2 estimated by linear model to predict gene 

signature scores using 3 covariates -- tumor content, lymphoid and myeloid, as 

predictors. Blue: R2 estimated by Lasso model taking 3 covariates and expression level 

of all 1,052 TEs as predictors 

B. Examples of positive correlations between gene signature scores and TE expression 

levels in different TCGA cancer types. Each point is one tumor sample, grey line is the 

best fit from linear model. Cor: Spearman correlation coefficient. Gene signature scores 

were adjusted by tumor content using linear regression. 

C. Association heatmap between one TE subfamily and multiple gene signatures and 

estimated immune infiltrates across 25 TCGA cancer types.  Left: LTR21B. Right: 

MER57F.  Color: Spearman correlation coefficient (cor) from partial correlation 

adjusting for tumor purity. Significance of correlation: * abs(cor)>0.5 & FDR<0.05, ** 

abs(cor)>0.5 & FDR<0.01; *** abs(cor)>0.5 and FDR<0.001. Bottom bars show the 

differential expression log2 fold change and FDR values of TE in each cancer type. 

Magenta: up-regulated. Green: downregulated. Grey: either no normal samples available 

or the TE expression level was too low for a given cancer type. 
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Fig. 5. Decitabine treatment of GBM cell lines results in increased TE expression and TE-
derived MHC-I peptide presentation 
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A. Working model of the impact of TE expression in the tumor.  TE expression in the 

cytoplasm may trigger intracellular sensing of TE mRNA and result in type I IFN 

response.  TE may be a source of tumor-associated antigens that can be presented at the 

tumor cell surface and recognized by TE-antigen specific T cells 

B. Volcano plot showing differential intergenic expression of TE subfamilies, Aza 

(decitabine) vs. NT (non-treated). TE subfamilies are colored by class at the significance 

threshold of log2FC > 1 and adjusted p-value < 0.05 and labeled if log2FC>1.5 and 

adjust p-value < 0.01. 

C. Association between select over-expressed TE subfamilies and cytokine gene signatures 

D. Effect of decitabine treatment on TE peptide presentation. Middle panel: histogram on 

log2FC for TE peptides abundance TE subfamilies with over-expression of mRNA. The 

log2FC of peptide presentation was calculated by comparing spectral areas for each 

peptide in both Aza vs. NT conditions. Peptides detected only in Aza: peptides uniquely 

detected in the treated condition. No TE peptides were detected only in the NT condition 
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