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 Abstract 
 
Introduction 
While the generation of reference genomes facilitates the elucidation of gene-
phenome associations, reference models of the metabolome that are specific to 
organism, sample type (e.g. plasma, serum, urine, cell-culture), and state 
(including disease), remain uncommon. In studying heart disease in humans, a 
reference model describing the relationships between metabolites in plasma has 
not been determined but would have great utility as a reference for comparing 
acute disease states such as myocardial infarction. 
 
Materials and Methods  
We present a methodology for deriving probabilistic models that describe the 
partial correlation structure of metabolite distributions (“interactomes”) from 
metabolomics data. As determining partial correlation structures requires 
estimating p*(p-1)/2 parameters for p metabolites, the dimension of the search 
space for parameter values is immense. Consequently, we have developed a 
Bayesian methodology for the penalized estimation of model parameters in 
which the magnitude of penalization is drawn from probability distributions with 
hyperparameters linked to molecular structure similarity. In our work, structural 
similarity was determined as the Tanimoto coefficient of algorithmically-
generated “atom colors” that capture the local structure around each atom within 
each structure. A Gibbs sampler (a Markov chain Monte Carlo technique) was 
implemented for simulating the posterior distribution of model parameters. We 
have made software for implementing this methodology publicly available via 
the R package BayesianGLasso. 
 
Results / Conclusions  
First, we demonstrate robust performance of our methodology (sensitivity, 
specificity, and measures of accuracy) for recovering the true underlying partial 
correlation structure over simulated datasets (with simulated metabolite 
abundances and simulated known structural similarity). We then present an 
interactome model for stable heart disease inferred from non-targeted mass 
spectrometry data via this methodology. Inspection of the local graph topology 
about cholate reveals probabilistic interactions with other primary bile acids, 
secondary bile acids, and many steroid hormones sharing the same precursors.   
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1. Introduction 

Untargeted profiling of the metabolome of an organism 

provides a view into the small molecule determinants of 

phenotype. While the genome of an organism may be 

conceptualized as a blueprint for the composition and 

organization of an organism that is largely immutable 

(barring epigenetic modifications, DNA damage, and 

genetic mutations) (Gao, Jia, Zhang, Breitling, & Brenner, 

2015; Keating & El-Osta, 2015; Martincorena & Campbell, 

2015), the metabolome of an organism is dynamic and 

variable (Dallmann, Viola, Tarokh, Cajochen, & Brown, 

2012; Krycer et al., 2017). Sources of variation within the 

metabolome of a single organism include tissue-, cell-, 

and organelle-specific localization of metabolic processes 

(Shlomi, Cabili, Herrgård, Palsson, & Ruppin, 2008; Voet, 

Voet, & Pratt, 2013); environmental exposures (Southam 

et al., 2014); and host-microbe interactions and 

metabolite exchange (Moriya, Satomi, Murata, Sawada, 

& Kobayashi, 2017). While the generation of reference 

human genomes has facilitated the interrogation of gene-

phenome associations (including human disease 

associations), the intrinsic variability and dynamic nature 

of the metabolome of an organism likely precludes the 

generation of such a reference model. While a single 

reference model of the metabolome of an organism may 

not be sensible, significant efforts such as the 

HUSERMET project (Dunn et al., 2014) have been 

undertaken to quantify the repertoire of metabolites in 

specific biofluids for examining metabolite-metabolite and 

metabolite-phenotype associations. In order to make 

systems-level comparisons of the differences in the 

metabolome across phenotypes, models of the 

conditional relationships between metabolites are 

necessary. By the determination of sample media and 

analytical platform-specific probabilistic interaction 

models, henceforth called “interactomes”, systems-level 

comparisons of phenotypes that can be made. A specific 

use case for such an interactome model is the generation 

of a plasma interactome for stable heart disease.  

Heart disease is the most prevalent cause of death 

globally (Benjamin et al., 2017). As a disease, heart 

disease does not represent a uniform condition, but rather 

a collection of diseases of varying etiologies (Kasper, 

2015). Of particular interest in the study of coronary artery 

disease (CAD) is the elucidation of the precipitants of 

acute disease events such as myocardial infarction 

(Arbab-Zadeh & Fuster, 2015) or unstable angina, 

metabolic pathways associated with disease phenotypes 

(Y. Fan et al., 2016), and determining the metabolic 

consequences of acute events (Trainor et al., 2017). To 

date, an interactome describing the conditional 

relationships between blood plasma metabolites in 

humans with heart disease does not exist. If such a 

reference model were determined, it would facilitate 

making systems-level inferences regarding metabolic 

perturbations that accompany acute disease events such 

as unstable angina or acute myocardial infarction (MI). 

While correlation networks have been used to describe 

the relationships between metabolites in many 

metabolomics experiments [see for example (Kotze et al., 

2013; Madhu et al., 2015; Suarez-Diez et al., 2017; L. 

Wang et al., 2015)], this approach is limited as the 

topology learned represents only the pairwise marginal 

associations between metabolites. Determining a 

conditional relationship between two metabolites allows 

for inference regarding how the abundance of a specific 

metabolite influences the abundance of another 

metabolite after conditioning on the abundance of other 

intermediates. In order to model such conditional 

probabilistic dependencies between metabolite 

abundances, a Gaussian Graphical Model (GGM) 

approach may be employed as in the present work. 

GGMs provide a suitable framework for representing the 

joint probability distribution of metabolites that are 

detected in metabolomics experiments and for 

representing the probabilistic interactions between 

metabolites and have been employed for such a task 

previously (Krumsiek, Suhre, Illig, Adamski, & Theis, 

2011; Shin et al., 2014). 

A significant challenge in evaluating the relationships 

between metabolites in an untargeted metabolomics 

experiment is that the dimension of metabolites may be 

greater than the number of samples. Even given a 

relatively high ratio of samples to metabolites detected, in 

the evaluation of pairwise conditional relationships 

between metabolites, the number of parameters to be 

estimated can be prohibitive. For example, if 𝑝 = 500 

metabolites are detected, an evaluation of all pairwise 

conditional relationships would require the simultaneous 

estimation of 124,750 parameters. The use of 

regularization is a well-established approach for 

guaranteeing the existence of Gaussian Graphical Model 

parameters, amenable to the case that the sample size 𝑛 

is less than 𝑝 (Banerjee, El Ghaoui, & d'Aspremont, 2008; 

J. Fan, Feng, & Wu, 2009; Friedman, Hastie, & Tibshirani, 

2007; Meinshausen & Bühlmann, 2006; Yuan & Lin, 

2007). 

Penalized estimation of GGM parameters provides a 

natural mechanism for integrating a priori knowledge 

regarding the molecular structure of metabolites with 

experimental metabolomics data. The integration of 

empirical data and scientific knowledge regarding 

metabolism is common in metabolomics studies. 

Typically, univariate and/or multivariate analyses first 

identify sets of metabolite features for which evidence of 

differences between experimental conditions or 

phenotypes are observed. After identifying interesting 

metabolite features, these sets are tested for enrichment 

of specific metabolic pathways or biological processes 

greater than that expected by chance (Xia & Wishart, 

2010). A promising alternative to pathway analyses 
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discussed in (Dinesh Kumar Barupal & Fiehn, 2017) is to 

use structural similarity and chemical ontology as a priori 

knowledge to generate study-specific metabolite sets for 

contextualizing empirical results. The current work is of a 

similar paradigm and predicated on the assumption that 

the individual biochemical reactions that result in 

statistical dependence between metabolic intermediates 

also generate statistical dependence in structural 

similarity between the same intermediates. In our 

application, structural similarity is determined by an 

approach that considers overlap in shared local structure 

between metabolites. Rather than considering fixed sets 

of metabolites such as pathways, sets, or modules and 

subsequently quantifying enrichment of these sets in 

empirical results, we consider a priori knowledge of the 

relationships between metabolites as probabilistic 

statements about the relatedness of compounds. Thus, 

the a priori scientific knowledge is used to generate prior 

probability distributions that influence GGM model 

selection, so that posterior inference probabilistically 

combines empirical data and prior scientific knowledge to 

yield an updated model of the probabilistic interactions 

between metabolites. In the present work, we introduce a 

methodology for using molecular structure similarity to 

generate prior distributions that control the degree of 

penalization in parameter estimation for learning a GGM 

metabolite interactome from metabolomics data. 

We first evaluated the methodology using simulation 

studies. For these simulation studies, autoregressive 

processes were simulated for representing linear 

biological processes in which the correlation between 

simulated metabolites decreased in tandem with 

decreasing structural similarity. We evaluated the 

sensitivity, specificity, AUC, and F1 measure of the 

proposed method in recovering the true pairwise 

conditional correlations structures that were specified in 

advance. Finally, we applied our methodology to a human 

plasma dataset, specifically for the development of a 

reference model for stable heart disease.  

2. Methods 

 

2.1. Gaussian Graphical Models (GGM) 

We consider Markov Random Fields (MRFs) which are 

graphical models in which random variables 𝑋𝑖 ∈ 𝑉, 𝑖 =

1, 2, … , 𝑝 are represented as vertices and edges in the 

edge set 𝐸 ⊆ 𝑉 × 𝑉 represent probabilistic interactions. 

Gaussian Graphical Models (GGMs) represent a special 

class of MRFs in which the underlying joint probability 

distribution represented by the graph is assumed to be 

multivariate Gaussian (Koller & Friedman, 2009). In 

addition to the joint distribution being multivariate 

Gaussian, the marginal distribution for each 𝑋𝑖 is 

Gaussian, as are the conditional distributions for 𝑋𝑖|𝑋𝑗. 

Given a multivariate Gaussian distribution 𝓝(𝛍, 𝛀−1), 

where 𝛍 is a vector of means and 𝛀 is the inverse of the 

covariance matrix 𝚺 (i.e. a concentration matrix), the 

entries 𝜔𝑖𝑗 of the concentration matrix are of particular 

importance as 𝜔𝑖𝑗 = 0 implies that 𝑋𝑖 and 𝑋𝑗 are 

conditionally independent and with respect to the graph 

topology, there does not exist an edge between 𝑋𝑖 and 𝑋𝑗. 

Further from the entries of 𝛀, the partial correlation 

coefficient between two random variables 𝑋𝑖 and 𝑋𝑗 can 

be computed as: 𝜌𝑖𝑗|∙ = −𝜔𝑖𝑗/√𝜔𝑖𝑖𝜔𝑗𝑗. 

2.2. GGM parameter estimation 

It has been shown previously that if 𝑛 < 𝑞 where 𝑞 

represents the maximal clique size of the GGM then a 

maximum likelihood estimator does not exist (Buhl, 1993). 

Noting the likelihood function for the concentration matrix 

𝛀: 

𝑙(𝛀) = log(det 𝛀) − (
𝐒

𝑛
𝛀), 

where 𝐒 = 𝐗𝑇𝐗 is the sum of products matrix. As the log-

likelihood function is not guaranteed to be convex, 

regularization of this likelihood has been proposed 

(Banerjee et al., 2008; Friedman et al., 2007; 

Meinshausen & Bühlmann, 2006) as a solution for 

estimating 𝛀. Friedman et al. (2007) proposed a method, 

known as the graphical Lasso (Least Absolute Shrinkage 

and Selection Operator) for finding the maximum of the 𝐿1 

norm penalized log-likelihood: 

𝑙(𝛀) = log(det 𝛀) − (
𝐒

𝑛
𝛀) − 𝜌||𝛀||

1
, 

via a coordinate descent algorithm. 

A Bayesian approach has been proposed for the 

regularized estimation of 𝛀 (H. Wang, 2012) that provides 

a natural structure for integrating a priori scientific 

knowledge and high-throughput molecular biology data 

such as untargeted metabolomics data. H. Wang (2012) 

introduced a hierarchical Bayesian representation of the 

regular graphical Lasso as well as the adaptive graphical 

Lasso (J. Fan et al., 2009). The frequentist adaptive 

graphical Lasso was devised to link the magnitude of the 

penalty parameter to the norm of individual concentration 

matrix entries and proposes the following penalized 

likelihood for 𝛀: 

𝑙(𝛀) = log(det 𝛀) − (
𝐒

𝑛
𝛀) − 𝜆 ∑ ∑ 𝑤𝑖𝑗|𝜔𝑖𝑗|

1≤𝑗≤𝑝1≤𝑖≤𝑝

 

with weights 𝑤𝑖𝑗 = 1/|𝜔̃𝑖𝑗|
𝛼
 where 𝛼 > 0 and 𝜔̃𝑖𝑗are 

estimates for the concentration matrix entries, such as 
regular graphical Lasso estimates.  
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As a Bayesian model: 

 
 

In the above model formulation for the density of 𝛀 

conditional on the 𝜆𝑖𝑗, DE(∙ |𝜆𝑖𝑗) represents the double 

exponential, or Laplace distribution, and EXP(∙ |𝜆𝑖𝑗) the 

exponential distribution with scale parameter 𝜆𝑖𝑗. The 

space of positive definite matrices is represented by 

1𝛀∈𝑀+. Finally, 𝐶 represents the normalizing constant so 

that 𝑝 (𝛀|{𝜆𝑖𝑗}
𝑖≤𝑗

) is a proper probability distribution. For 

the non-adaptive Bayesian graphical Lasso, 𝜆𝑖𝑗 = 𝜆 for all 

𝑖 and 𝑗, in other words the shrinkage parameter is not 

specific to each concentration matrix entry. H. Wang 

(2012) chooses a gamma prior for 𝜆𝑖𝑗, that is 𝜆𝑖𝑗 ∼

Gamma(𝑟, 𝑠), where 𝑟 and 𝑠 are hyperparameters and 

develops a data-augmented block Gibbs sampler for 

sampling from the posterior distribution of 𝛀. Further, it is 

shown that the conditional distribution of the shrinkage 

parameter is then 𝜆𝑖𝑗|𝛀~GA(1 + 𝑟, |𝜔̂𝑖𝑗| + 𝑠). In this case, 

the scale hyperparameter for the shrinkage varies with the 

norm of the current MCMC iteration estimate 𝜔̂𝑖𝑗 for each 

𝜔𝑖𝑗 allowing for adaptive penalization as introduced by J. 

Fan et al. (2009). We propose that to incorporate prior 

knowledge regarding the relatedness of compounds, the 

scale hyperparameter can be linked to structural 

similarity, that is by specifying the prior distribution 𝜆𝑖𝑗 ∼

Gamma(𝑟, 𝑠𝑖𝑗) where 𝑠𝑖𝑗 is a measure of structural 

similarity between compound 𝑖 and compound 𝑗. The 

conditional expected value of each 𝜆𝑖𝑗 is then: 𝐸(𝜆𝑖𝑗|𝛀) =

(1 + 𝑟)/(|𝜔̂𝑖𝑗| + 𝑠𝑖𝑗). 

2.3. Generating informative priors from molecular 

structure  

To generate informative shrinkage priors for the adaptive 

Bayesian graphical Lasso, we utilized a local structure 

similarity metric. This metric was adapted from the 

previously described Chemically Aware Substructure 

Search (CASS) algorithm (Mitchell, Fan, Lane, & 

Moseley, 2014). In this adaptation, the structural similarity 

between any two chemical structures (𝐴 and 𝐵)  was 

estimated using strings representing local chemical 

structure (referred to as the atom’s color) centered at 

every atom in the two structures. The color of every atom 

was constructed as follows. First, for every bonded atom, 

its element type and the order of the bond connecting it to 

the center atom are joined to form a component string that 

is added to a list of components. For example, if the center 

atom has a double bonded oxygen, this would contribute 

a ‘O2’ component to the component list. Every component 

represents a portion of the local bonded structure at the 

center atom. Second, the components strings are then 

sorted alphanumerically and concatenated to produce a 

description of the bonded structure one bond away from 

the center atom. Finally, to the front of this string, the 

element type of the center atom is then added to yield the 

atom’s color. Each color uniquely maps to a single locally 

bonded structure (e.g. the ‘CC1O1O2’ coloring 

represents a carbon of a carboxylate). Since the 

component list was first sorted alphanumerically, this 

color is consistent for all identical local structures 

regardless of how they are ordered in their representation. 

Each chemical structure can be represented as the list of 

its constituent atom’s colors and these lists of colors can 

be compared to determine structural similarity. To 

Figure 1: Theoretical relationship 

between the structural similarity of a pair 

of metabolites and the expected value of 

the shrinkage parameter 𝜆𝑖𝑗 during model 

estimation. The horizontal axis represents 

a current estimate for a concentration 

matrix entry for a pair of metabolites. The 

vertical axis represents the expected 

value of the shrinkage parameter. Color 

values show the structural similarity 

between the pair of metabolites.   

𝑝(𝐱𝑖|𝛀) = 𝑵(𝟎, 𝛀−1)      𝑖 = 1, 2, … , 𝑛 
 

𝑝 (𝛀|{𝜆𝑖𝑗}
𝑖≤𝑗

) ∼ 𝐶{𝜆𝑖𝑗}
𝑖≤𝑗

−1 ∏ DE(𝜔𝑖𝑗|𝜆𝑖𝑗)

𝑖<𝑗

∏ EXP(𝜔𝑖𝑖|𝜆𝑖𝑖/2 )

𝑝

𝑖=1

∙ 1𝛀∈𝑀+ , 

𝑝 ({𝜆𝑖𝑗}
𝑖≤𝑗

| {𝜆𝑖𝑖}𝑖=1
𝑝

) ∝ 𝐶{𝜆𝑖𝑗}
𝑖≤𝑗

∏ GA(𝑟, 𝑠)

𝑖<𝑗
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determine structural similarity between compounds using 

the color string representations, the Tanimoto coefficient 

between pairs of compounds was computed, which is 

defined as (Chen & Reynolds, 2002): 

 

𝑠(𝐴, 𝐵)

=
∑ min(𝑛𝑖(𝐴), 𝑛𝑖(𝐵))𝑚

𝑖=1

∑ 𝑛𝑖(𝐴)𝑚
𝑖=1 + ∑ 𝑛𝑖(𝐵) − ∑ min(𝑛𝑖(𝐴), 𝑛𝑖(𝐵))𝑚

𝑖=1
𝑚
𝑖=1

 

 

where 𝑛𝑖(𝐴) represents the count of unique colored atoms 

indexed by 𝑖 = 1, 2, … , 𝑚 for molecule 𝐴. The Tanimoto 

dissimilarity is then 𝑑(𝐴, 𝐵) = 1 − 𝑠(𝐴, 𝐵).  

After determining the Tanimoto dissimilarity between 

each pair of metabolites, the gamma hyperprior 

distribution for the shrinkage parameter 𝜆 can be 

determined by linking the gamma distribution shape to the 

dissimilarity, that is by setting 𝑠𝑖𝑗 = 𝑓(1 − 𝑑(𝑖, 𝑗)) where 

𝑖, 𝑗 index metabolites and 𝑓(𝑥) is a monotonic function. 

The conditional distribution of the shrinkage parameter is 

then 𝜆𝑖𝑗|𝛀~GA(1 + 𝑟, |𝜔̂𝑖𝑗| + 𝑠𝑖𝑗). A plot of the relationship 

between the structural similarity of two hypothetical 

metabolites and the expected value of the shrinkage 

parameter is shown in Figure 1.  

2.4. Posterior inference of model parameters 

To determine a graphical model (or a set of models of high 

probability) given structural priors samples may be drawn 

from the posterior distribution of 𝑝(𝛀|𝐗), using a Gibb’s 

sampler similar to that introduced by Wang (2012). 

Previous work has shown that the exponential power 

family of probability distributions can be represented as a 

scale mixture of normal distributions with a defined mixing 

density (West, 1987). Using this fact and introducing the 

latent scale parameter 𝜏, the unnormalized posterior 

distribution can be written as: 

 

 𝑝(𝛀, 𝛕|𝐗, 𝚲) ∝ |𝛀|
𝑛
2 exp (−𝐭𝐫 (

1

2
𝐒𝛀)) 

× ∏ (𝜏
𝑖𝑗

−
1
2 exp (−

𝜔𝑖𝑗
2

2𝜏𝑖𝑗

) exp (−
1

2
 𝜆𝑖𝑗

2 𝜏𝑖𝑗))

𝑖<𝑗

 

× ∏ exp (−
1

2
 𝜆𝑖𝑗𝜔𝑖𝑗)

𝑝

𝑖=1

1𝛀∈𝑀+ 

The block Gibb’s sampler cycles through column-wise 

partitions of 𝛀, drawing from the conditional distribution of 

a single column of the matrix 𝛀, conditioned on the current 

values of the remaining columns. We developed an R 

package, BayesianGLasso, for implementing this and 

other samplers for the Bayesian Graphical Lasso. The 

underlying sampler was written in C++ using Rcpp and 

RcppArmadillo to make use of the Armadillo linear 

algebra library. In addition to providing Gibb’s sampling 

methods the R package developed by our group includes 

classes for storing the Markov chains generated by the 

sampler along with relevant parameters and 

hyperparameters, and methods for conducting statistical 

inference over the simulated posterior distributions. 

2.5. Efficacy analysis via simulation studies 

To evaluate the efficacy of the proposed method, we 

employed simulation studies. We sought to evaluate the 

relative performance of the adaptive Bayesian Graphical 

Lasso (BGL) using informative priors versus (1) the 

adaptive Bayesian Graphical Lasso using non-informative 

priors, and (2) the Bayesian Graphical Lasso (non-

adaptive). For the informative prior case, we further 

manipulated the degree to which the priors were accurate 

relative to the partial correlation structure utilized to 

generate the data. We evaluated the methods by 

simulating both simple partial correlation structures as 

well as more complex structures utilizing two simulation 

schemas. Under the first schema, a simple 

autoregressive (AR) process of order 1 was simulated for 

representing a linear biological process with decreasing 

structural similarity with increasing process distance. 

Simulated structural similarity was taken to be 

deterministically known, that is a structural similarity 

matrix was defined as: 𝚺 = [𝜎𝑖𝑗] where 𝜎𝑖𝑗 = 𝜌|𝑖−𝑗|. To 

simulate metabolite abundances, a random matrix was 

sampled from the multivariate normal distribution 𝑵(𝟎, 𝚺). 

In the “accurate” informative prior case, the shrinkage 

hyperprior 𝑠𝑖𝑗  was defined as 𝑠𝑖𝑗 = 𝜔𝑖𝑗
−1, where 𝜔𝑖𝑗

−1 are 

the elements of 𝛀 =  𝚺−1. After generating simulated 

datasets, the adaptive BGL (with informative and non-

informative priors) as well as the non-adaptive BGL were 

utilized for estimating the concentration matrix and 

corresponding graph topology. Given the simple 

dependence structure in the AR(1) case, a measure of 

ground truth was available as the existence of edges 

between simulated metabolites was known a priori. We 

evaluated the sensitivity, specificity, and F1 measure of 

each method for detecting the presence of edges by 

utilizing the magnitude of the estimated concentration 

matrix entries: |𝜔̂𝑖𝑗|. In addition, we report the area under 

the receiver operating characteristic curve for assessing 

each technique, which considers the range of possible 

fixed cutoff values of |𝜔̂𝑖𝑗| for estimating the presence or 

absence of edges. While each technique draws shrinkage 

parameters from a Gamma distribution, the shape and 

scale of each distribution depends both on empirical data 

and hyperparameters. We conducted shape and scale 

hyperparameter optimization separately for each 

technique via a grid search over simulated datasets prior 

to the evaluation of performance. 
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2.6. A plasma interactome for stable heart disease 

In order to determine changes in the plasma metabolome 

associated with myocardial infarction (MI) characterized 

by thrombotic etiology versus non-thrombotic etiology, 

DeFilippis and colleagues assembled a human cohort as 

previously described (DeFilippis et al., 2016; DeFilippis et 

al., 2017; Trainor et al., 2017). Briefly, 80 human subjects 

presenting with suspected acute MI or stable coronary 

artery disease (CAD) were enrolled. Utilizing a stringent 

criteria based on clinical presentation, angiographic 

evidence, and histological evidence, MI subjects were 

adjudicated as thrombotic MI or non-thrombotic MI. Blood 

samples were collected at the time of acute presentation 

(presentation to the coronary artery catheterization lab 

prior to procedures) and at a follow-up evaluation 

approximately three months later. To estimate the 

structure of a stable heart disease plasma interactome, 

we used the follow-up evaluations from all available MI 

subjects as well as the evaluations from stable CAD 

subjects. The analytical sample thus consisted of 47 

whole blood samples from human subjects with definitive 

heart disease who were not experiencing an acute event 

at the time of sampling.  

Details of the metabolite quantification have been 

described previously (Trainor et al., 2017), but a brief 

overview is provided as follows. Plasma samples were 

prepared from whole blood and a recovery standard was 

added. Vigorous shaking was applied utilizing a 

GenoGrinder 2000 (Glen Mills, Metuchen, NJ) and 

methanol was added and to precipitate proteins. The 

extract containing small molecules was divided into five 

aliquots, four of which were analyzed using different 

platforms while the remaining aliquot was reserved. Two 

aliquots were analyzed by ultra-performance liquid 

chromatography-tandem mass spectrometry (UPLC-

MS/MS) with negative and positive ion mode electrospray 

ionization (ESI). A third aliquot was also analyzed by 

UPLC-MS/MS with negative ion mode ESI and a method 

optimized for polar metabolite detection. The fourth 

aliquot was analyzed by gas chromatography-mass 

spectrometry (GC-MS). 1,032 chemical species were 

detected utilizing the multiple platforms in the analysis of 

the plasma samples. Of these, 590 compounds were 

identified by matching to authentic standards based on 

retention index, mass to charge ratio, and MS2 data; 73 

were identified based on experimental data matched to 

curated databases; and 369 could not be confidently 

Figure 2: True and estimated concentration matrix graphs for a randomly selected AR(1) simulation study with 𝑝 = 20 simulated 

random variates (metabolites) and a simulated sample size of 𝑛 = 10. Graphs represent the: (a) true concentration structure given 

an AR(1) covariance structure with 𝜌 = 0.95, (b) sample covariance matrix, (c) concentration matrix estimated by the non-adaptive 

BGL, (d) concentration matrix estimated by the adaptive BGL with non-informative priors, (e) concentration matrix estimated by the 

adaptive BGL with chemical structure informative priors.  
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identified. As the original data dependent acquisition was 

conducted utilizing both acute event samples and stable 

heart disease samples, metabolites not detected in the 

stable heart disease samples were removed. Metabolites 

missing from greater than 70% of the samples or without 

compound identification were also removed, resulting in a 

final dataset with 522 metabolites across 47 samples. 

Minimum values were then imputed for the remaining 

metabolite relative abundances with missing data. As 

many of the metabolites exhibited approximately log-

normal relative abundance distributions, metabolite 

abundances were log-transformed. Finally, the data was 

mean centered so that each metabolite’s relative 

abundance distribution was centered about zero. 

To approximate the posterior distribution of 𝑝(𝛀|𝐗), a 

Markov Chain was generated of length 1,000 with a 250 

iteration burn-in period. From each sample from the 

posterior distribution 𝑝(𝛀|𝐗), a partial correlation 

coefficient matrix was computed, yielding a simulated 

posterior distribution for the matrix of partial correlation 

coefficients. 

3. Results  

3.1. Simulation studies Ω 

Results from the simulation studies given an 

autoregressive covariance structure are shown in Table 1 

and Figures 2-3. In Figure 2 a graphical model 

representation of the underlying covariance structure is 

shown along with the graphical model representations of 

the sample covariance matrix and the concentration 

matrices estimated by the multiple techniques evaluated 

in this study. These figures were generated from a 

randomly sampled simulation study. GGM estimation by 

the Bayesian Graphical Lasso (BGL) and Adaptive BGL 

exhibited similar performance characteristics with respect 

to sensitivity, specificity, AUC, and F1 measure. The 

performance of the chemical structure informative 

adaptive BGL varied significantly based on the suitability 

of the informative prior distribution for shrinkage 

parameters. In the “good prior” case in which it is 

assumed that the structural similarity and data generating 

process were deterministically linked, the structure 

adaptive BGL demonstrated significantly higher 

sensitivity, specificity, AUC, and F1 measure than the 

other techniques. Conversely, in the “poor prior” case in 

which the relationship between the simulated structural 

similarity and the data generating process was masked by 

gaussian noise, average AUC and F1 measure were 

significantly lower for the structure adaptive BGL than the 

remaining techniques.  

  

Table 1: Results of the AR(1) simulation studies. For each of the compared techniques, sensitivity, specificity, area under 

the receiver operating characteristic curve (AUC), and F1 measure are reported. Reported values represent the sample 

mean and standard deviation over the simulation study replicates.  

Technique Sensitivity Specificity AUC F1 Measure 

Bayesian Graphical Lasso 
(BGL) 

0.6792 ± 0.073 0.9896 ± 0.007 0.9740 ± 0.014 0.7786 ± 0.054 

Adaptive BGL 0.6702 ± 0.079 0.9936 ± 0.006 0.9793 ± 0.014 0.7827 ± 0.062 

Chemical Structure Adaptive 
BGL (Good prior) 

0.9894 ± 0.019 0.9997 ± 0.001 1.000 ± 0.000 0.9938 ± 0.011 

Chemical Structure Adaptive 
BGL (Poor prior) 

0.8175 ± 0.068 0.8763 ± 0.033 0.9148 ± 0.036 0.6448 ± 0.066 

 

Figure 3: Results of the AR(1) simulation studies. The comparative performance of the techniques (as the ability 

to detect an edge, given an edge is truly present) is presented. Subfigure (a) shows a histogram of the observed 

area under the receiver operating characteristic curve (AUC) values, while (b) shows the F1 measure.  
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Figure 4: Heatmap showing the structural similarity between metabolites detected in plasma of human subjects 

presenting with heart disease. A local substructure coloring approach was utilized for quantifying similarity as the 

degree of overlap (presence and absence) of local structures based on atom types and bonds. Dendrograms 

were generated via agglomerative hierarchical clustering utilizing Ward’s minimum variance criterion and 

distances defined as 1 - similarity.  

Figure 5:  Time series plots for the MCMC sampler 

for the shrinkage parameter 𝜆𝑖𝑗 and for the 

concentration matrix entry 𝜔𝑖𝑗 for the following 

metabolite pairs: (cholate, tyrosine), (cholate, 

cortisone), (cholate, glycochenodeoxycholate).  
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Figure 6: Graphical representation of the plasma metabolite interactome estimated by the chemical structure 

adaptive Bayesian Graphical Lasso (BGL) for stable heart disease. A simulated posterior distribution for the 

matrix of partial correlation coefficients was determined from the simulated posterior distribution of the 

concentration matrix 𝛀.  Median values of each partial correlation coefficient were then determined and are 

represented as colored edges (negative values represented in red, positive values in blue). Subfigure (A) shows 

all metabolites in the interactome along with edges for which |𝜌| > 0.05.  
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3.2. Plasma interactome for stable heart disease 

A heatmap representation of the structural similarity 

between metabolites is shown in Figure 4. This heatmap 

was constructed using agglomerative hierarchical 

clustering using Ward’s method and squared distances 

(with distance computed as 𝑑𝑖𝑗 = 1 − 𝑠𝑖𝑗, where 𝑠𝑖𝑗 is the 

structural similarity between compounds). For illustrative 

purposes, the cluster containing cholate was retrieved 

from the root dendrogram by extracting the branch with 

height 0.6, as the structural-adaptive BGL subnetwork 

generated by cholate is considered later. Considering 

clusters generated by branches with low merge heights 

(high structural similarity), cholate was a member of a 

cluster with other closely related compounds such as 

deoxycholate, 3b-hydroxy-5-cholenoic acid, and 

glycocholate. Considering the more inclusive cluster 

generated by the branch at join height 3, other members 

included many intermediates in progestagen, androgen, 

glucocorticoid, and mineralocorticoid steroid metabolic 

pathways. These steroid hormone metabolites were all 

members of a cluster with similar within-cluster distances. 

Finally, at the same branch height that joined steroid 

hormone and cholate metabolites, a branch consisting of 

tocopherols cluster and squalene cluster was also joined. 

Elements of the MCMC sampling iterations are presented 

in Figure 5. Continuing with the working example of the 

metabolite cholate, Markov chains are presented for the 

estimation of the concentration parameters for the pairs 

(cholate, tyrosine), (cholate, cortisone), and (cholate, 

glychochenodeoxycholate). These metabolites are 

highlighted as exemplars of metabolites with relatively 

low, medium, and relatively high chemical structure 

similarity with cholate. The time series of the MCMC 

sampling for the shrinkage parameter, 𝜆𝑖𝑗, demonstrated 

differences between the three pairs. Averaged across 

iterations, more shrinkage was applied with decreasing 

chemical similarity between the metabolite pairs. While 

the shrinkage parameter sample values for (cholate, 

cortisone) tended to be significantly smaller than the 

sample values for (cholate, cortisone), substantial overlap 

was observed in the posterior distribution of the 

concentration parameters for the same pairs. 

From the simulated posterior distribution of 𝛀, the 

posterior mean 𝐸(𝛀|𝐗) was estimated after discarding 

burn in iterations. The posterior mean of the distribution 

of partial correlation coefficients was also computed. The 

resulting plasma metabolite interactome inferred by the 

structure-adaptive Bayesian Graphical Lasso is 

presented in Figure 6. This figure presents both the entire 

graph representing the posterior mean partial correlations 

as well as the subgraph generated by considering the 

neighbors of cholate. For ease of viewing, only edges for 

which |𝜌𝑖𝑗| > 0.05 are plotted in the presentation of the full 

graph.  

Positive partial correlation coefficients were observed 

between cholic acid the following other primary bile acids: 

glycocholic acid, chenodeoxycholic acid, and 

glycochenodeoxycholic acid. Negative partial correlation 

coefficients were observed between cholate and the 

following: taurocholic acid, taurodeoxycholic acid, and 

taurochenodeoxycholic acid. In addition, the bile acid 7-

Hoca and the bile acid conjugate taurolithocholate 3-

sulfate were first neighbors of cholic acid. Multiple 

conjugated androsterones were observed to be first 

neighbors of cholic acid as was the glucocorticoid 

cortisone and the steroidal alkaloid solanidine. Other 

metabolites that were first neighbors of cholic acid 

included: 3-Carboxy-4-methyl-5-propyl-2-furanpropionic 

acid (CMPF), eugenol sulfate, erythritol, 2,3-

dihydroxyisolvalerate, threonate, quinate, pimelate, and 

azelate. 

4. Discussion  

Making inferences regarding how metabolic processes 

differ between phenotypes is the ultimate goal of most 

metabolomics and systems biology studies. Yet, unlike 

comparing the concentration or abundance of one 

metabolite across two or more phenotypes, for which 

simple statistical tests such as t-tests, Wilcoxon Rank-

Sum tests, or multi-group analogues are readily available, 

a statistical framework for determining if and how 

metabolic processes differ between phenotypes remains 

elusive. Both strictly empirical methods (e.g. correlation 

analyses) and a priori knowledge based approaches (e.g. 

pathway enrichment analyses) suffer from substantial 

flaws. In terms of empirical methods, the analysis of 

correlations (such as by the Pearson, Spearman or 

biweight midcorrelation coefficient) reveals the marginal 

associations between metabolites; however, these 

methods do not uncover the relationship between a pair 

of metabolites conditional on the abundances of the 

remaining metabolites. Gaussian graphical models have 

been proposed previously in the context of metabolomics 

(Krumsiek et al., 2011) as an alternative, as GGMs can 

be utilized to determine the partial or conditional 

relationship between metabolites. In their work Krumsiek 

et al. (2011) show that GGM edges (or concentration 

matrix entries) estimated from the analysis of blood serum 

samples from a large human cohort correspond to known 

metabolic pathway interactions. Consistent with this, our 

simulation studies illustrate the advantage of analyzing 

metabolite-metabolite interactions using the partial 

correlation coefficients from a GGM as opposed to 

correlation networks. In the case of an autoregressive 

correlation structure as might be observed given a linear 

metabolic pathway, correlation networks exhibit 

extremely high connectivity, and consequently could not 

be utilized to elucidate the order of reactions. In contrast, 

we observe high sensitivity and specificity in detecting the 

true edges using a Bayesian Graphical Lasso estimated 

GGM. While the approach utilized by Krumsiek et al. 
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(2011) was appropriate for the analysis of their data, it 

would not be possible to apply this approach in studies in 

which the sample size is smaller than the number of 

metabolites, as is common in many metabolomics 

studies. Frequentist regularization methods represent a 

class of solutions for ensuring that the concentration 

matrix, or equivalent GGM topology is estimable. In an 

implicit manner, frequentist regularization methods for 

estimating GGMs place a higher a priori probability on 

models with concentration matrix entries of smaller 

magnitude (H. Wang, 2012). However, this implicit prior 

cannot incorporate a priori knowledge as to whether some 

metabolites are more likely to be related than others. 

In contrast to empirical methods, a priori knowledge 

based approaches such as pathway enrichment analyses 

consider the relationships between metabolites to be 

deterministically known which are then used to 

contextualize empirical results. Previous work (Dinesh 

Kumar Barupal & Fiehn, 2017; Dinesh K. Barupal et al., 

2012) has highlighted that the coverage of metabolites 

detected in metabolomics studies in commonly utilized 

metabolic pathway and reaction databases may be 

extremely low. For example (Dinesh Kumar Barupal & 

Fiehn, 2017) observe that given 385 metabolites identified 

from the plasma of non-obese diabetic (NOD) mice, only 

135 metabolites (or 35.1%) could be mapped to KEGG 

pathways (Kanehisa & Goto, 2000; Kanehisa, Sato, 

Kawashima, Furumichi, & Tanabe, 2016). To address this 

problem, Dinesh Kumar Barupal and Fiehn (2017) 

propose an alternative approach that utilizes both existing 

chemical ontological terms and chemical similarity 

between metabolites to develop coherent categories of 

metabolites for enrichment analyses. In the current work, 

we have sought a framework for balancing the benefits of 

empiricism with the benefits of a priori knowledge based 

approaches, while seeking to minimize the risks 

associated with both approaches. As opposed to 

considering metabolites as deterministically assigned to 

fixed pathways, our approach assumes that metabolites 

that are linked by biochemical reactions will exhibit 

overlap in local substructures. From this, our approach 

generates prior distributions for shrinkage parameters for 

the estimation of Gaussian graphical models. The 

posterior distribution of GGM parameters is thus 

proportional to the likelihood of the concentration matrix 

parameters (or the partial correlations between 

metabolites) times the prior probability of the 

concentration matrix parameters (which are linked to the 

structural similarity between metabolites). Similar to the 

non-informative BGL approach, this approach ensures 

that the concentration matrix is estimable via the 

Bayesian analog of regularization, however the 

regularization is applied given the prior belief that stronger 

associations are a priori more likely given structurally 

related compounds than unrelated compounds. While we 

find better justification for using structural similarity to 

generate prior probability distributions for shrinkage 

parameters in estimating a GGM, this approach would 

generalize to the use of priors from metabolic pathway 

maps. A previous work sought to estimate a GGM using 

17 compounds quantified by NMR from 24 microglia cell 

culture samples using priors determined from KEGG 

(Peterson et al., 2013). 

In addition to evaluation via simulation studies, we have 

applied the chemical structure adaptive BGL to generate 

a media-specific (blood plasma) metabolite interactome 

for stable heart disease. This model may serve as a 

reference model for comparing how the probabilistic 

interactions between metabolites in circulation change 

during acute disease events such as myocardial infarction 

or unstable angina. From this model, we have observed 

probabilistic interactions that are consistent with previous 

research in metabolism, as can be observed by focusing 

on the metabolite cholate. Bile acids are the major 

catabolic intermediate of cholesterol (Russell, 2003). 

Within mammals, the bile acid pool consists of primary 

bile acids such as cholic acid and chenodeoxycholic acid 

which are synthesized from cholesterol by enzymes 

expressed in hepatocytes, as well as secondary bile acids 

that are synthesized from primary bile acids by bacteria in 

the gut (García-Cañaveras, Donato, Castell, & Lahoz, 

2012; Hofmann, Hagey, & Krasowski, 2010; Russell, 

2003). In addition to bile acids aiding in the digestion of 

nutrients in the gut, bile acids also act as signaling 

molecules that have been shown to regulate glucose and 

lipid metabolism (Ferrebee & Dawson, 2015; Khurana, 

Raufman, & Pallone, 2011). Given the substantial 

proportion of cholesterol that is converted to bile acids 

leading to elimination, bile acid metabolism is linked to 

atherosclerosis (Meissner et al., 2013). In addition bile 

acids as signaling molecules affect cardiac (Desai et al., 

2017; Rainer et al., 2013) and circulatory physiology 

(Khurana et al., 2011) via direct effects such as 

taurodeoxycholic acid mediated vasodilation (Khurana, 

Yamada, Wess, Kennedy, & Raufman, 2005). With 

respect to the current work, we observed relatively strong 

partial correlation between cholic acid and other primary 

bile acids. Additionally, partial correlations were observed 

between cholic acid and steroid hormones that share 

cholesterol as a common precursor. Given the importance 

of bile acids in cholesterol metabolism, atherosclerosis, 

cardiac physiology and circulatory physiology, a 

reference model of the probabilistic interactions of bile 

acids in circulation can help elucidate how acute disease 

events impact bile acid metabolism. 

As with any Bayesian approach, the choice of prior 

probability distribution has a direct influence on the 

posterior distribution of model parameters (Gelman, 

2014). In the current work, we have utilized informative 

priors that are linked to chemical structure similarity. This 

represents a potential limitation of the current work. Over 

the course of the simulation studies, we observed, 

unsurprisingly, that by introducing random noise into the 
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simulated structural similarity the performance of the 

chemical structure adaptive BGL deteriorated. Further, 

the performance of the technique given “poor” prior 

information was, on average, worse than the performance 

of techniques such as the non-adaptive BGL that rely on 

non-informative priors. One element of the chemical 

structure adaptive BGL is worth noting in this context. In 

our proposed formulation, other monotonic functions for 

relating structural similarity to the Gamma scale 

parameter may be employed, as well as different shape 

and scale hyperparameters can be utilized. In this 

manner, the experimenter can diminish or strengthen the 

degree to which structural similarity impacts shrinkage. A 

second limitation of the current work is the choice of a 

multivariate Gaussian distribution for representing the 

joint distribution of metabolite abundances. While 

transformations in the stable heart disease data were 

applied over each metabolite to reduce the degree of 

departure from normality, the underlying intensity data is 

not normally distributed. Further, there are many cases in 

which approximate normality is not an achievable aim. A 

metabolite that is only present in some samples (e.g. 

acetaminophen metabolites that are present in some 

human subjects who have taken this medication, but not 

others) is one such case. Following a missing value 

imputation procedure, such a metabolite would exhibit a 

bimodal distribution that would not be well described by a 

Gaussian model.  
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