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Abstract.  
The Oxford Nanopore sequencing enables to directly detect methylation sites in DNA from 
reads without extra laboratory techniques. In this study, we develop DeepSignal, a deep 
learning method to detect DNA methylated sites from Nanopore sequencing reads. DeepSignal 
construct features from both raw electrical signals and signal sequences in Nanopore reads. 
Testing on Nanopore reads of pUC19, E. coli and human, we show that DeepSignal can achieve 
both higher read level and genome level accuracy on detecting 6mA and 5mC methylation 
comparing to previous HMM based methods. Moreover, DeepSignal achieves similar 
performance cross different methylation bases and different methylation motifs. Furthermore, 
DeepSignal can detect 5mC and 6mA methylation states of genome sites with above 90% 
genome level accuracy under just 5X coverage using controlled methylation data. 

Introduction 

DNA methylation, as a crucial form of epigenetic marks, plays important roles in a number 
of key biological processes [1, 2]. N6-methyladenine (6mA) and 5-methylcytosine (5mC) are 
the two most prevalent and well-studied base methylations. 5mC usually plays a role in 
embryonic development [3], atherosclerosis [4], aging and diseases [5]; and 6mA is important 
in transcriptional regulation [6], cancer development [7] and neurodevelopment [8]. 

Recently, the single molecule sequencing technologies, such as PacBio single molecule real 
time (SMRT) sequencing and Nanopore sequencing, are demonstrated to be able to detect the 
DNA methylation marks directly. Both technologies distinguish modified bases from standard 
nucleotide bases based on their distinctive signals. For PacBio SMRT sequencing, base 
modification would affect DNA polymerase kinetics, and then can be detected through different 
interpulse duration [9]. However, the accuracy of SMRT sequencing for detecting DNA 
methylation is heavily affected by the sequence coverage [10, 11]. Meanwhile, it also has 
been found that electrical signals in Nanopore sequencing are sensitive to epigenetic changes 
in the nucleotides [12, 13, 14]. Several studies have demonstrated that Nanopore sequencing 
can be used to detect DNA methylation. 

Both statistics based and model based methods have been developed to identify base 
methylation from Nanopore sequencing reads. Simpson et al. [15] proposed a hidden Markov 
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model (HMM) based approach to detect 5mC in CpG from events of Nanopore reads. The 
HMM model trained from E. coli data can detect CpG methylation in human Nanopore reads 
with 87% accuracy at read level. Due to the limitation in training data, the HMM method of 
Simpson et al. was not able to identify non-CpG methylation or a mixture of methylated and 
unmethylated CpGs. Rand et al. [16] also proposed an HMM-HDP based tool, called 
signalAlign, to classify 5mC at the inner cytosine of CCWGG motifs and 6mA at GATC 
motifs from events of Nanopore reads. singalAlign achieved 86%-95% accuracies at genome 
level for the Nanopore R9 data of pUC19 and E. coli. McIntyre et al. [17] used four kinds of 
classifiers (neural network, random forest, naive Bayes and logistic regression) to detect 6mA 
in mouse, E. coli and Lambda phage data. They achieved 84% accuracy at read level and 94% 
accuracy at genome level under 15X or higher coverage. Stoiber et al. [18] adopted 
Mann-Whitney U-test [19] in MoD-seq to detect controlled methylation in E coli. They 
achieved 0.839-0.896 genome level accuracies for seven different 5mC and 6mA motifs. Liu 
et al. [20] used Kolmogorov-Smirnov test [21] in their NanoMod tool to identify modified 
bases. Testing on E. coli methylation data, NanoMod have 70% precision at 50% recall at 
genome level. Both statistics based method can detect base modification in the absence of 
training dataset. However, to identify the modified bases in a native DNA, both methods 
require a matched amplified DNA as a control sample. Furthermore, statistics based methods 
achieved less accuracy comparing to model based methods. 

Here, we present a deep learning method, called DeepSignal, to detect DNA methylated 
bases from Nanopore sequencing reads (Figure 1). DeepSignal employs two modules to 
construct features from raw electrical signals of Nanopore reads (Figure 1). First, since the 
methylation of a base does not only affect the signals of itself, but also affect the signal of its 
neighbors [20], the signal feature module in DeepSignal use convolutional neural network 
(CNN) to construct features directly from raw electrical signals around methylated base. 
Second, the methyltransferase need to bind to certain motif around the methylated site. To catch 
the sequence information around the methylated site, the sequence feature module in 
DeepSignal use bidirectional recurrent neural network (BRNN) to construct features from 
sequences of signal information. Then, features built from two modules are concatenated and 
fed into a fully connected neural network to predict the methylation states. We evaluate 
DeepSignal using both 5mC and 6mA data and the results show that DeepSignal achieves 
higher accuracy at both read level and genome level and requires less coverage of reads than 
previous HMM based methods do. 
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Figure 1. DeepSignal model for detecting methylation states 
 

Results 

Methylation signal in Nanopore reads 
Previous studies [18] already showed that it is possible to distinguish the raw electrical 

signals of methylated site from those of unmethylated site using statistical tests. Figure 2 shows 
the boxplots of signals in methylated and unmethylated CpG and CCWGG of E. coli. The 
difference between raw signals of targeted base C is not significant between methylated and 
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unmethylated reads. Meanwhile, the raw signal distribution of bases around targeted base C 
showed significant difference between methylated and unmethylated reads. Although statistics 
based method can identify signal difference of bases around targeted base, they ignored the 
relationship between bases. In this study, we design a deep learning method that try to catch 
both the signal and sequence information of bases around targeted base. 

 

 

A 

 

B 
Figure 2. Boxplots of signal distribution of each base in methylated and unmethylated CpG and 
CCWGG of E. coli. A) CpG, B) CCWGG. The reads are from E. coli R9 2D data 
 
Evaluation of DeepSignal on GATC methylation data of pUC19 plasmid 

We first test DeepSignal using GATC methylation (6mA) data of pUC19 plasmid [16], 
which contains Nanopore reads of dcm methyltransferase treated pUC19 vector DNA and its 
PCR-amplified control. After extracting signal using nanoraw [18], we use 40% of reads for 
training both DeepSignal and signalAlign. Then, we test both models by randomly selecting 40 
methylated and 40 unmethylated reads from the remaining 60% reads. We repeat our testing 
experiments 100 times. For each targeted site in reference genome, the methylation state is 
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summarized from the predicted probabilities of all reads aligned to this site. When the model 
trained from template strand data is used, DeepSignal achieve 100% accuracy while 
signalAlign just get accuracy of 0.922 (Table 1). When both models trained from template and 
complement strand data are used, DeepSignal still achieve 100% accuracy while the accuracy 
of signalAlign is reduced to 0.906 (Table 1). Specially, DeepSignal achieves much higher 
specificities than siganlAlign does. 
 
Table 1. Performance comparison of DeepSignal and signalAlign on classifying 6mA in GATC motifs of 

pUC19 DNA. Values are average and standard deviation of 100 replicated tests.  

strand method accuracy Sensitivity specificity Precision 

template 
DeepSignal 1.000(+/-0.000) 1.000(+/-0.000) 1.000(+/-0.000) 1.000(+/-0.000) 

signalAlign 0.922(+/-0.024) 0.962(+/-0.027) 0.882(+/-0.042) 0.892(+/-0.034) 

both 
DeepSignal 1.000(+/-0.000) 1.000(+/-0.000) 1.000(+/-0.000) 1.000(+/-0.000) 

signalAlign 0.906(+/-0.030) 0.986(+/-0.020) 0.826(+/-0.053) 0.852(+/-0.039) 

 
Evaluation of DeepSignal on CCWGG methylation data of pUC19 plasmid  

We also test DeepSignal using the CCWGG methylation (5mC) data of pUC19 plasmid, 
which contains Nanopore reads of dam methyltransferase treated pUC19 vector DNA and its 
PCR-amplified control. We also use 40% of reads for training both DeepSignal and signalAlign. 
Then, we randomly select 40 methylated and 40 unmethylated reads from the remaining 60% 
reads for testing. The performances are also evaluated on per targeted site of reference genome. 
When the model trained from template strand data is used, DeepSignal achieves accuracy of 
0.996 while signalAlign just gets accuracy of 0.980 (Table 2). When both models trained from 
template and complement strand data are used, DeepSignal still achieve 100% accuracy while 
the accuracy of aignalAlign is 0.965. Similar to the performance on GATC methylation data, 
DeepSignal achieve similar sensitivities, but higher specificities. 
 
Table 2. Performance comparison of DeepSignal and signalAlign on classifying 5mC in CCWGG motifs 

of pUC19 DNA. Values are average and standard deviation of 100 replicated tests 

strand method accuracy sensitivity specificity Precision 

template 
DeepSignal 0.996(+/-0.014) 0.992(+/-0.027) 1.000(+/-0.000) 1.000(+/-0.000) 

signalAlign 0.980(+/-0.028) 0.995(+/-0.026) 0.965(+/-0.050) 0.968(+/-0.045) 

both 
DeepSignal 1.000(+/-0.005) 0.999(+/-0.010) 1.000(+/-0.000) 1.000(+/-0.000) 

signalAlign 0.965(+/-0.038) 1.000(+/-0.000) 0.929(+/-0.075) 0.938(+/-0.063) 

 
Evaluation of DeepSignal on cross organism prediction of CpG methylation states 

To further evaluate the performance of DeepSignal, we test it using CpG methylation (5mC) 
data of E. coli and human [15], which is previously studied by nanopolish. Both data include 
Nanopore reads of PCR-amplified DNA that was either untreated or treated with CpG 
methyltransferase M.SssI. We use nanoraw [18] to extract signals from Nanopore reads. In 
order to compare with nanopolish, we only select CpG sites have signals in both template and 
complement strands. There are 49378592 CpG sites for E. coli genome and 3120754 CpG sites 
for human genome. We train DeepSignal and nanopolish using 49378592 CpG sites of E. coli 
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genome and test them on 3120754 CpG sites of human genome. Both DeepSignal and 
nanopolish learn two models from template and complement data separately. During testing, 
we predict the targeted site on template and complement separately using different models. As 
in nanopolish, we only output the final prediction on template strand, which is summarized by 
predicted probabilities of methylation states on both strand. The performances of both tools are 
summarized per-read level. As shown in Table 3, DeepSignal achieve 0.949 accuracy, while 
nanopolish only get an accuracy of 0.894. While DeepSignal has a relatively higher specificity 
comparing to nanopolish (0.970 vs. 0.947), DeepSignal has much higher sensitivity comparing 
to nanopolish (0.930 vs. 0.844). This result shows that DeepSignal is more powerful than 
nanopolish in classifying CpG sites. 
 

Table 3. Performance comparison of DeepSignal and nanopolish on classifying CpGs in human 

method accuracy sensitivity specificity precision 

DeepSignal 0.949 0.930 0.970 0.970 

nanopolish 0.894 0.844 0.947 0.944 

 
Evaluation of the data coverage effect on DeepSignal 

The coverage of reads usually affects the methylation state prediction. We evaluate 
DeepSignal with three experiments of testing on sampled sub-set of reads. First, for human 
CpG data, we count the coverage of targeted sites and evaluate the accuracies of methylation 
states with different coverage separately. Table 4 shows that DeepSignal achieves higher 
accuracy than nanoplish does for all 5 coverage levels. Even with 1X coverage level, 
DeepSignal still has 0.922 accuracy, while nanopolish has 0.875. The performance of both 
DeepSignal and nanopolish get improved when the coverage is increased from 1X to 3X. The 
performances of both tools decrease at 4X and 5X coverage may due to dramatically reduced 
targeted sites.    
 

Table 4. Accuracies of DeepSignal and nanopolish for classifying CpGs in human R9 2D data in 
reference level under different coverages 

coverage threshold 
(number of CpG sites) 

1 
(2895001) 

2 
(137330) 

3 
(4681) 

4 
(282) 

5 
(65) 

DeepSignal 0.922 0.968 0.970 0.929 0.938 

nanopolish 0.875 0.932 0.942 0.894 0.815 

 
For CCWGG and GATC methylation data of pUC19 plasmid, we evaluate the coverage 

effect on DeepSignal by sampling different number of reads. As shown in table 5, when the 
model trained from template strand data is used for predict GATC methylation in pUC19, 
DeepSignal can achieve 0.951 accuracy with only 5 sample reads, which signalAlign need 30 
sample reads to have above 0.9 accuracy. When both models trained from template and 
complement strand data are used for predict GATC methylation in pUC19, DeepSignal can 
achieve 0.911 accuracy with only 2 sampled reads, which signalAlign need even 40 sample 
reads to have above 0.906 accuracy.  

Table 6 shows that DeepSignal can achieve 0.920 accuracy with only 5 sampled reads when 
the model trained from template strand data is used for predict CCWGG methylation in pUC19, 
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which signalAlign need 10 sample reads to have 0.920 accuracy. When both models trained 
from template and complement strand data are used for predict CCWGG methylation in pUC19, 
DeepSignal can achieve 0.952 accuracy with only 5 sampled reads, which signalAlign also 
need 10 sample reads to have above 0.9 accuracy. 
 
Table 5. Accuracies of DeepSignal and signalAlign for classifying 6mA in GATC motifs of pUC19 

DNA under different number of sampled reads. 

strand method Number of sampled reads 

  1 2 5 10 20 30 40 

template 

DeepSignal 
0.866 

(+/-0.082) 

0.912 

(+/-0.062) 

0.951 

(+/-0.030) 

0.983 

(+/-0.018) 

0.997 

(+/-0.007) 

1.000 

(+/-0.003) 

1.000 

(+/-0.000) 

signalAlign 
0.738 

(+/-0.084) 

0.750 

(+/-0.078) 

0.793 

(+/-0.047) 

0.843 

(+/-0.042) 

0.887 

(+/-0.037) 

0.911 

(+/-0.031) 

0.922 

(+/-0.024) 

both 

DeepSignal 
0.838 

(+/-0.061) 

0.911 

(+/-0.046) 

0.966 

(+/-0.028) 

0.992 

(+/-0.012) 

0.999 

(+/-0.005) 

1.000 

(+/-0.002) 

1.000 

(+/-0.000) 

signalAlign 
0.686 

(+/-0.064) 

0.729 

(+/-0.060) 

0.810 

(+/-0.051) 

0.850 

(+/-0.044) 

0.882 

(+/-0.034) 

0.898 

(+/-0.029) 

0.906 

(+/-0.030) 

 
Table 6. Accuracies of DeepSignal and signalAlign for classifying 5mC in CCWGG motifs of pUC19 

DNA under different number of sampled reads. 

strand method Number of sampled reads 

  1 2 5 10 20 30 40 

template 

DeepSignal 
0.834 

(+/-0.125) 

0.863 

(+/-0.103) 

0.920 

(+/-0.060) 

0.969 

(+/-0.040) 

0.985 

(+/-0.024) 

0.995 

(+/-0.017) 

0.996 

(+/-0.014) 

signalAlign 
0.795 

(+/-0.134) 

0.832 

(+/-0.104) 

0.862 

(+/-0.085) 

0.920 

(+/-0.065) 

0.956 

(+/-0.038) 

0.972 

(+/-0.034) 

0.980 

(+/-0.028) 

both 

DeepSignal 
0.842 

(+/-0.093) 

0.888 

(+/-0.081) 

0.952 

(+/-0.054) 

0.981 

(+/-0.034) 

0.994 

(+/-0.017) 

0.995 

(+/-0.016) 

1.000 

(+/-0.005) 

signalAlign 
0.747 

(+/-0.102) 

0.797 

(+/-0.091) 

0.864 

(+/-0.073) 

0.916 

(+/-0.054) 

0.940 

(+/-0.047) 

0.955 

(+/-0.040) 

0.965 

(+/-0.038) 

 

Methods 

Nanopore sequencing data 
CpG methylation (5mC) data. The Nanopore reads of methylated and unmethylated CpGs 

of E. coli K12 ER2925 and human NA12878 previously used by Simpson et al. are downloaded 
from the European Nucleotide Archive under accession PRJEB13021. Only the R9 2D data 
with raw signals are used in our study.  

CCWGG methylation (5mC) and GATC methylation (6mA) Data. The Nanopore reads 
of methylated and unmethlylated pUC19 plasmid DNA (both 5mC and 6mA data) and the E. 
coli K12 MG1655 (5mC data) previously used by signalAlign [16] are downloaded from NCBI 
under accession SRP098631.  
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DeepSignal Model 
DeepSignal is made up of four modules (Figure 1). The first module extracts raw signals 

from Nanopore reads and prepares the input data for feature construction modules. We have 
designed two modules to extract different features. The signal feature module that constructs 
features from raw electrical signals around modified base using convolutional neural network 
(CNN) and the sequence feature module that constructs features from the sequence of signal 
information around modified base using bidirectional recurrent neural network (BRNN). 
Finally, a classification module of neural network takes features built from two modules and 
predicts the methylation states.  
 
Signal extraction from Nanopore reads 

To extract signals from Nanopore reads, we use the re-squiggle module of nanoraw [18] to 
map the raw electrical signal values to contiguous bases in the genome reference. The nanoraw 
corrects the indel errors in Nanopore base call and re-annotates raw signal to match the 
genomic bases. After the re-squiggle, we extract corresponding raw signals of each matched 
base in the genome reference. The genome references of E. coli and human used for alignment 
are E.coli K12 MG1655 and GRCh38.p5 respectively. The pUC19 plasmid reference sequence 
is downloaded from NCBI Nucleotide. 

For each candidate of methylated site (a C in CpG or CCWGG, an A in GATC), we extract 
raw signal of 17 bp nucleotide sequence centering around it. Then, for each base, we calculate 
the mean, standard deviation, and length of its signal values. Therefore, for each sample, we 
have four 17-length vectors as input for following sequence module: the 17-mer nucleotide, the 
mean signal value, the standard deviation of signal values and the length of signal values. 
Meanwhile, we select 120 raw signal values from the middle of the 17-mer’s signal values as 
input to signal feature module. 
 
Sequence feature module 

In sequence feature module, we train a bidirectional recurrent neural network (BRNN) to 
construct features from four 17-length signal information vectors. Each BRNN [1] include a 
forward RNN and backward RNN to catch both past and future context. A RNN scan the 
sequence of data and encodes the sequential information into hidden state vector h. We use the 
long short-term memory (LSTM) RNN in our BRNN. Let x1, x2,…, xt are a sequence of signal 
values (the 17-mer nucleotide, the mean signal value, the standard deviation of signal values 
and the length of signal values). A LSTM RNN will recursively calculate the hidden layer h as 
follows: 

𝑖" = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊+,𝑥" + 𝑊/,ℎ"12 + 𝑊3,⨀𝑐"12 + 𝑏,)     (1) 
𝑓" = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊+9𝑥" + 𝑊/9ℎ"12 + 𝑊39⨀𝑐"12 + 𝑏9)    (2) 
𝑐" = 𝑓" ⊙ 𝑐"12 + 𝑖" ⊙ tanh	(𝑊+3𝑥" + 𝑊/3⨀𝑐" + 𝑏3)    (3) 
𝑜" = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊+@𝑥" + 𝑊/@ℎ"12 + 𝑊3@⨀𝑐" + 𝑏@)     (4) 
ℎ" = 𝑜" ⊙ tanh	(𝑐")                   (5) 

where W and b are weights and biases in the model. x is the input vector; i is the activation 
vector of input gate; f is the activation vector of forget gate; c is the cell state vector; o is the 
activation vector of output gate; and h is the output vector of the LSTM hidden unit. Current 
output ℎ"	of LSTM hidden unit depends on the input 𝑥", previous state ℎ"12, and previous 
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information stored in cell. Then, the output of forward and backward LSTM RNN is combined: 
  𝑧" = ℎ",C⨁ℎ",E                            (6) 
Our sequence feature module has three forward and three backward layers. For each sample, 
the sequence feature module generates a representation vector z, which will be inputted to 
classification module. 
 
Signal feature module 

In signal feature module, we train a deep convolutional neural network (CNN) from 120 
raw signal values of methylated site and its close neighbor sites. Our deep CNN stacks four 
building blocks. Each block include convolution, batch normalization, activation and pooling 
operations. First, the input vector x is transformed by 1d convolution operation: 

 𝑥3 = 𝐶𝑜𝑛𝑣 𝑥 = 𝑤J ∗ 𝑥,LJM12
JNO

P
,NO        (7) 

here w is the weight vector of the convolution kernel. Then, we apply batch normalization, 
which can keep the mean and variance fixed without saturation. The batch normalization over a 
batch B is: 

𝑥QR = 𝐵𝑁U,V(𝑥3)            (8) 

𝑁U,V(𝑥3) =
U

WXY[+[]L]
∙ 𝑥3 + 𝛽 − Ua[+[]

WXY +[ Lb
      (9) 

where 𝛾, 𝛽, 𝜀  are the parameters to be learned. Batch normalization can improve the 
performance and stability of neural networks. 

After batch normalization, the activation operation we used is 𝑅𝑒𝐿𝑢, which sets negative 
value to zero: 

𝑥X = 𝑅𝑒𝑙𝑢 𝑥QR =
0, 𝑖𝑓	𝑥QR < 0
𝑥QR, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (10) 

Finally, a pooling operation is used to summarize the activations of adjacent k neurons by 
taking their maximum value: 

𝑥n = 𝑝,(𝑥X) = max	([𝑥X,			, , … 𝑥X,			,LM])       (11) 
we sequentially select k neurons without overlapping for pooling.  
 
Classification Module 

The classification module takes the output vectors from sequence and signal feature and 
concatenate them as the input. The high-level reasoning in classification module is done by a 
fully connected neural network with two hidden layers; each followed by a dropout layer to 
prevent overfitting. The output layer uses a sigmoid activation function to predict the 
methylation probability 𝑦 	∈ [0,1] of the target site: 

𝑦 = 2
2Lvwx

             (12) 

 
Model training 

Model parameters are learnt on the training set by minimize the cross-entropy loss function L 
as follows: 

𝐿 = 𝑧 ∗ −𝑙𝑜𝑔 𝑦 + 1 − 𝑧 ∗ −𝑙𝑜𝑔(1 − 𝑦)      (13) 
where 𝑧 is the true label distribution of training data. We use a batch size of 512 and an initial 
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learning rate 0.001. The learning rate is adapted by Adam [4] and decayed by a factor of 0.96 
after each epoch. We keep the node with probability value of 0.5 at each dropout layer. The 
whole module in implemented in Python using tensorflow. 
 
Evaluation of DeepSignal 

Since the template sequence and the complement sequence of Nanopore 2D reads are quite 
different in read quality and signal patterns [15], we train two models using template strand and 
complement strand separately. 
 

Evaluation of DeepSignal using CpG methylation data. Same as Simpson et al., we use 
the E. coli data to train DeepSignal and test the model on human data. We select only reads with 
high mapping quality to reference genome (quality score greater than 20) to extract signal 
values [15]. However, even with high mapping quality reads, nanoraw still cannot align signals 
for some of reads. As a result, for human genome, we only have selected 3120754 CpG sites 
having signals in both template and complement strands. For E. coli genome, there are 
49378592 CpG sites that have signals in both template and complement strands.  

Evaluation of DeepSignal using GATC methylation data. We select the reads of which 
the 2D sequences cover more than 2600 bp of the pUC19 DNA reference. After the alignment 
using BWA, 12844 reads of gDNA and 18892 reads of pcrDNA are kept. Then, 40% of the 
reads in pUC19 data are used to train the DeepSignal model. Then, we randomly select 40 
methylated and 40 unmethylated reads from the remaining 60% for testing and repeat 100 times 
[16]. We use the same reads to train and test DeepSignal and siganlAlign. The performances of 
models are evaluated in reference level as described in [16].  

Evaluation of DeepSignal using CCWGG methylation data. For CCWGG methylation 
data of pUC19, we use the same procedure of above GATC methylation classification 
experiments.  

Performance Evaluation of DeepSignal. We evaluate DeepSignal at per-read level and at 
genome site level. For each targeted base in a read, DeepSignal outputs two probabilities P+ and 
P-, which represent the probabilities of methylated and unmethylated state, respectively. If P+ > 
P-, the methylation state of targeted base is predicted as methylated, otherwise is predicted as 
unmethylated. Based on the predicted results, we calculate accuracy, sensitivity, specificity and 
precision of DeepSignal at per-read level as following: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 {|L{}
{|L{}LC|LC}

                        (14) 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	 {|
{|LC}

                             (15) 

  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	 {}
{}LC|

                              (16) 

          𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 {|
{|LC|

                             (17) 

where TP is true positives, TN is true negatives, FP is false positives, FN is false negatives. To 
evaluate DeepSignal at genome level, we group the predictions of targeted bases in reads based 
on their aligned positions in reference genome. Then, we calculate the methylated probability 
P+’ and the unmethylated probability P-’ of each tested site in reference as following: 
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 𝑃L� = 	 𝑃L,,R
,N2 ,				𝑃1� = 	 𝑃1,,R

,N2                       (18) 
where n is the number of targeted bases in reads which are aligned to the site in reference 
genome, P+, i and P-,i are the methylated probability and the unmethylated probability of the 
targeted base in ith read. Then, we calculate the performance of DeepSignal at reference 
genome level using equations (14) - (17). We evaluate nanopolish and signalAlign using the 
same methods.   
 

Conclusion 

In this study, we develop DeepSignal, a deep learning method to detect DNA methylation 
states from Nanopore sequencing reads. Testing DeepSignal on Nanopore reads of pUC19, E. 
coli and human, we show it can achieve higher accuracy on detect both 6mA and 5mC sites 
comparing to previous HMM based methods. DeepSignal is able to detect 5mC in both CpGs 
and CCWGG motifs. Furthermore, DeepSignal achieve similar performance on different 
methylation bases and different methylation motifs, while other methods, like signalAlign, 
has higher performance on 5mC methylation site than on 6mA methylation site. 

Due to still relative high cost of Nanopore sequencing, it is important to identify 
methylation sites with low coverage of reads. We demonstrate that DeepSignal can detect 
5mC and 6mA methylation site at genome level with above 90% accuracy under 5X coverage 
using controlled methylation data. DeepSignal requires much lower coverage than those 
required by HMM and statistics based methods. 
 
Acknowledgement 
 
We are grateful to Miten Jain for providing their methylation data. 

References 

[1] Schübeler, Dirk. "Function and information content of DNA methylation." Nature 517.7534 
(2015): 321. 
[2] Bergman, Yehudit, and Howard Cedar. "DNA methylation dynamics in health and disease." 
Nature structural & molecular biology 20.3 (2013): 274. 
[3] Smith, Zachary D., and Alexander Meissner. "DNA methylation: roles in mammalian 
development." Nature Reviews Genetics 14.3 (2013): 204. 
[4] Lund, Gertrud, et al. "DNA methylation polymorphisms precede any histological sign of 
atherosclerosis in mice lacking apolipoprotein E." Journal of Biological Chemistry 279.28 
(2004): 29147-29154. 
[5] Gonzalo, Susana. "Epigenetic alterations in aging." Journal of applied physiology 109.2 
(2010): 586-597. 
[6] Yue, Yanan, Jianzhao Liu, and Chuan He. "RNA N6-methyladenosine methylation in 
post-transcriptional gene expression regulation." Genes & development 29.13 (2015): 
1343-1355. 
[7] Xiao, Chuan-Le, et al. "N6-Methyladenine DNA Modification in the Human Genome." 
Molecular Cell 71 (2018): 306-318 e7. 
[8] Yao, Bing et al., Active N6-Methyladenine Demethylation by DMAD Regulates Gene 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 6, 2018. ; https://doi.org/10.1101/385849doi: bioRxiv preprint 

https://doi.org/10.1101/385849


Expression by Coordinating with Poly-comb Protein in Neurons, Molecular Cell (2018) 
[9] Flusberg, Benjamin A., et al. "Direct detection of DNA methylation during 
single-molecule, real-time sequencing." Nature methods 7.6 (2010): 461. 
[10] Davis, Brigid M., Michael C. Chao, and Matthew K. Waldor. "Entering the era of 
bacterial epigenomics with single molecule real time DNA sequencing." Current opinion in 
microbiology 16.2 (2013): 192-198. 
[11] Zhu, Shijia, et al. "Mapping and characterizing N6-methyladenine in eukaryotic genomes 
using single-molecule real-time sequencing." Genome research (2018). 
[12] Schatz, Michael C. "Nanopore sequencing meets epigenetics." Nature methods 14.4 
(2017): 347. 
[13] Laszlo, Andrew H., et al. "Detection and mapping of 5-methylcytosine and 
5-hydroxymethylcytosine with nanopore MspA." Proceedings of the National Academy of 
Sciences 110.47 (2013): 18904-18909. 
[14] Schreiber, Jacob, et al. "Error rates for nanopore discrimination among cytosine, 
methylcytosine, and hydroxymethylcytosine along individual DNA strands." Proceedings of 
the National Academy of Sciences (2013): 201310615. 
[15] Simpson, Jared T., et al. "Detecting DNA cytosine methylation using nanopore 
sequencing." nature methods 14.4 (2017): 407-410. 
[16] Rand, Arthur C., et al. "Mapping DNA methylation with high-throughput nanopore 
sequencing." Nature methods 14.4 (2017): 411. 
[17] McIntyre, Alexa BR, et al. "Nanopore detection of bacterial DNA base modifications." 
bioRxiv (2017): 127100. 
[18] Stoiber, Marcus H., et al. "De novo identification of DNA modifications enabled by 
genome-guided nanopore signal processing." bioRxiv (2016): 094672. 
[19] Mann, Henry B., and Donald R. Whitney. "On a test of whether one of two random 
variables is stochastically larger than the other." The annals of mathematical statistics (1947): 
50-60. 
[20] Liu, Qian, et al. "NanoMod: a computational tool to detect DNA modifications using 
Nanopore long-read sequencing data." bioRxiv (2018): 277178. 
[21] Massey Jr, Frank J. "The Kolmogorov-Smirnov test for goodness of fit." Journal of the 
American statistical Association 46.253 (1951): 68-78. 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 6, 2018. ; https://doi.org/10.1101/385849doi: bioRxiv preprint 

https://doi.org/10.1101/385849

