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Abstract

Motivation:
Drug repurposing is the problem of finding new uses for known drugs, and may either involve finding a
new protein target or a new indication for a known mechanism. Several computational methods for drug
repurposing exist, and many of these methods rely on combinations of different sources of information,
extract hand-crafted features and use a computational model to predict targets or indications for a drug.
One of the distinguishing features between different drug repurposing systems is the selection of features.
Recently, a set of novel machine learning methods have become available that can efficiently learn
features from datasets, and these methods can be applied, among others, to text and structured data in
knowledge graphs.
Results: We developed a novel method that combines information in literature and structured databases,
and applies feature learning to generate vector space embeddings. We apply our method to the
identification of drug targets and indications for known drugs based on heterogeneous information about
drugs, target proteins, and diseases. We demonstrate that our method is able to combine complementary
information from both structured databases and from literature, and we show that our method can compete
with well-established methods for drug repurposing. Our approach is generic and can be applied to other
areas in which multi-modal information is used to build predictive models.
Availability: https://github.com/bio-ontology-research-group/multi-drug-embedding
Contact: robert.hoehndorf@kaust.edu.sa

1 Introduction
The process of finding a new drug that binds a specific protein or can be used
to treat a specific disease is usually time consuming and costly, taking many
years and often millions of dollar (Paul et al., 2010). In response, several
computational approaches have been developed to identify drug targets
and indications for known drugs (Chen et al., 2015; Pryor and Cabreiro,
2015). Many of these approaches utilize the large volumes of data that
have become available in the public domain about chemical compounds,
drug and protein structures, or target sequences.

Computational drug repurposing and drug discovery methods include
chemoinformatics-based methods, network-based methods, and methods
based on data- or text-mining. Chemoinformatics-based methods include
panel docking and ligand-based approaches (Katsila et al., 2016; Meng

et al., 2011) which often rely on knowledge or predictions about the
tertiary structure of the target protein. Network-based approaches for
drug repurposing utilize different data sources, including genomic and
chemical similarities and various other drugs and proteins interactions
profiles or descriptors (Yamanishi et al., 2008; Wang et al., 2014a),
integrate information related to drug mechanisms, and use machine
learning techniques or graph inference methods to predict novel drug
targets (Seal et al., 2015; Fu et al., 2016; Chen et al., 2012). Additionally,
omics data, in particular gene expression has been used for analyzing
or inferring new drugs indications (Subramanian et al., 2017). Some
approaches to drug repurposing rely on data- and text-mining and are
based on identification of patterns in databases or natural language text to
predict novel associations between drugs and targets or drugs and diseases
(Swanson, 1990; Andronis et al., 2011; Frijters et al., 2010; Agarwal and
Searls, 2008).
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The different computational approaches to drug repurposing differ
both in the algorithms they employ as well as in the data sources they
utilize. Finding innovative ways to use novel kinds of data or combine
different types of multi-modal information in a single model has the
potential to significantly improve predictive performance. For example,
the PREDICT method (Gottlieb et al., 2011) combined several different
types of data, including similarity between proteins based on their sequence
and based on their functions, as well as similarity between drugs based
on their side effects or their targets. Other approaches combine disease
genes associations, drugs targets, signaling pathways, and gene expression
profiles to discover new therapeutic roles for known drugs (Peyvandipour
et al., 2018).

Many types of data that are relevant for drug repurposing can be
integrated through Semantic Web technologies (Berners-Lee et al., 2001),
notably using the Resource Description Framework (RDF) (Manola et al.,
2004) and ontologies formalized in the Web Ontology Language (OWL)
(Grau et al., 2008). Initiatives that aim to integrate knowledge relevant for
drug discovery and drug repurposing include the Open PHACTS (Williams
et al., 2012) and Bio2RDF (Belleau et al., 2008) projects, and other relevant
RDF datasets are made available by the European Bioinformatics Institute
(EBI)(Jupp et al., 2014).

Recently, several unsupervised machine learning methods have
become available that can learn feature representations of entities
represented in different types of data (LeCun et al., 2015). For unstructured
text, vector space models such as Word2Vec (Mikolov et al., 2013) or
GLOVE (Pennington et al., 2014) can learn representations of words that
preserve some the words’ semantics under certain vector operations and
can therefore be used to build predictive models. Similar methods have
been developed for information represented as graphs (Perozzi et al.,
2014), knowledge graphs (Nickel et al., 2016b), or formal knowledge
bases (Gutiérrez-Basulto and Schockaert, 2018), and these methods have
led to the development of machine learning models that can significantly
outperform classic predictive methods (Alshahrani et al., 2017).

Combining different types of data in a single predictive model has the
potential to increase the performance of computational drug repurposing
methods. Such a combination can either be done by applying different
method individually on different types of data and utilize their prediction
results in a new model, or by combining the different approaches within a
single model.

Here, we present an approach to systematically integrate multi-modal
information from knowledge graphs and literature in predictive machine
learning models. Specifically, our approach utilizes structured, semantic
information that can be represented in knowledge graphs and combines
this information with features extracted from unstructured text. We apply
the resulting combined features for drug repurposing. Using supervised
machine learning, we demonstrate that our approach and the resulting
model outperforms the use of individual features and leads to significant
improvements when applied to computational drug repurposing.

2 Methods

2.1 Data sources

We use a knowledge graph containing information about genes/proteins,
drugs, diseases, and functions generated to demonstrate the utility
of knowledge graph embedding methods in life sciences (Alshahrani
et al., 2017). The knowledge graph is illustrated in Supplementary
Figure 1. This graph consists of three ontologies, the Gene Ontology
(GO) (Ashburner et al., 2000), Disease Ontology (DO) (Schriml et al.,
2011), and the Human Phenotype Ontology (HPO) (Köhler et al.,
2014). It also includes three types of biological entity: diseases, genes

or proteins (we do not distinguish between them in our graph), and
chemicals or drugs, as well as their interactions or associations with
ontology classes. The graph further includes relations between entities
such as the interactions between genes/proteins obtained from STRING
(Szklarczyk et al., 2011) (file protein.actions.v10.txt.gz),
chemical–protein interactions from STITCH (Kuhn et al., 2012) (file
9606.actions.v4.0.tsv), and drugs and their indications from
SIDER (Kuhn et al., 2015) (file meddra_all_indications.tsv).
We built the graph using RDF and downloaded all evaluation data on 11
March 2018.

For text processing, we use the pre-annotated Medline corpus
provided by the PubTator project (Wei et al., 2013), downloaded
on 18 Dec 2017. This corpus contains 27,599,238 abstracts together
with annotations to chemicals, genes/proteins, and diseases. We use
the annotations provided by PubTator for chemicals, genes/proteins,
and diseases. PubTator has annotations to 17,505,118 chemicals
mentions covering 129,085 distinct drugs using either CHEBI or MESH
identifiers. We could map 9,545 of these to STITCH identifier using
the file 9606.protein.aliases.v10.txt provided by STITCH.
PubTator further contains 81,655,248 disease mentions covering 8,143
distinct diseases in MESH. We use the DO and map these to 2,581 distinct
DO classes. Furthermore, PubTator contains 17,260,141 gene/protein
mentions covering 137,353 distinct genes in different species, 35,466 of
which refers to human genes.

2.2 Generation of corpus and text normalization

We use an edge-labeled iterated random walk of fixed length and without
restart to generate a corpus from the knowledge graph (Alshahrani et al.,
2017). For each vertex in the graph, we generate a sentence based on a
short random walk. Each walk is a sequence of tokens, i.e., nodes and
edges. We have two parameters for corpus generation: walk length and
number of walks. Walk length is the size of each walk sequence and the
number of walks is the total number of walks generated for each vertex.
For all experiments, we use a walk length of 20 and perform 50 random
walks for each node.

2.3 Learning Embeddings

We use Word2Vec (Mikolov et al., 2013) to generate embeddings for
entities in our knowledge graph and for words found in text. Word2vec is a
vector space model mapping words to vectors based on the co-occurrence
of a word with other words within a context window across a corpus of text.
In our graph, this semantics is captured by the random walks representing
the co-occurrence of different entities and relations. We use the skip-gram
model (Mikolov et al., 2013) in Word2Vec on the corpus generated by
random walks on the knowledge graph. As parameters for both corpora,
we use negative sampling using 5words drawn from the noise distribution,
a window size of 10, and an embedding size of 128.

2.4 Training of supervised prediction models

We evaluated the performance of each embedding method by using the
embedding vectors to predict drug–target or drug–disease associations
in a supervised manner. As prediction models, we use artificial neural
networks, random forests, and logistic regression. For training the neural
networks model, we used an architecture with a single hidden layer
consisting of twice the size of the input features vector. We use a Rectified
Linear Unit (ReLU) (Nair and Hinton, 2010) as an activation function
for the hidden layer and a sigmoid function as the activation function for
the output layer; we use cross entropy as loss function in training, and
Rmsprop (Hinton et al., 2012) to optimize the neural networks parameters
during training. For training the neural networks, we used the Keras library
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in Python (Chollet et al., 2015). For training the random forest classifier,
we specified the number of trees to be 50, with the minimum number
of training samples in leaf nodes to be one, and Gini impurity index to
measure the quality of the split. For the logistic regression classifier, we
used the default settings of scikit-learn in Python (Pedregosa et al., 2011).

2.5 Multi-modal drug repurposing

We compare the performance of our method using a validation strategy in
which we randomly remove a set of associations and measure how well
our method can reproduce these. For each interaction type (drug–target or
drug–disease associations), we remove all interactions from our knowledge
graph before generating embeddings. We then use 80% of the associations
to train a classifier and we test and evaluate our method on the remaining
20%. We identify the 20% randomly among all interactions. Furthermore,
we randomly select an equal number of weak negative interactions, i.e.,
pairs of a drug and gene/protein (when predicting targets) or disease (when
predicting interactions) that are not known to be associated, and we use
these as negatives during training of our classifiers.

For the rank-based evaluation (ROCAUC or recall at certain ranks),
we create an embedding matrix for each drug in which we fix the first
part of the matrix to represent a particular drug embedding and the second
part represents the gene/protein or disease embedding. We then apply the
learned model on the matrix and rank the genes/proteins or diseases based
on the confidence scores provided by the classifiers.

The true positive rate (TPR) and false positive rate (FPR) at each
rank are used to identify the proportion of correctly and falsely predicted
interactions. We quantify the performance of the predictions through the
area under the receiver operating characteristic (ROC) curve (Fawcett,
2006). A ROC curve is a plot of the TPR as a function of the FPR. The
TPR at a particular rank is defined as a rate of correctly predicted drug–
target interactions or drug–disease associations, and the FPR is the rate of
predicted interactions that are not drug–target or drug–disease interactions.
As we do not have true negative drug–target interactions, we use “weak”
negatives and treat all unassociated pairs of drug and gene/protein or
disease as negatives. The recall at ranks ten and 100 is calculated as the
ratio of predicted true positives in the top ten or 100 over the total number
of positives.

3 Results

3.1 Integrating literature and structured knowledge

Information about drugs and their targets is present in several locations and
formats, including in structured databases and in scientific literature. We
base our approach on an integrated dataset consisting of structured data
from multiple databases and literature. We use the Resource Description
Framework (RDF) (Beckett, 2004) to express and integrate structured
information we consider useful for predicting drug–target and drug–
indications associations. In RDF, knowledge is expressed in a graph-based
format in which entities are represented by an Internationalized Resource
Identifier (IRI) and relations between entities as a property that connects
two nodes.

We integrate several datasets related to drug actions and diseases in
a knowledge graph using RDF as representation language. Specifically,
we combine information about drugs and their targets (Kuhn et al.,
2012) and indications (Kuhn et al., 2015), gene–disease associations
(Piñero et al., 2017), and disease phenotypes (Hoehndorf et al., 2015),
as well as gene functions and interactions between gene products
(Szklarczyk et al., 2011). For example, we link the disease Primary
pulmonary hypertension (DOID:14557) to the phenotype Arrhythmia
(HP:0011675) (using a has phenotype relation), we link the
gene CAV1 to disease Primary pulmonary hypertension (DOID:14557)

(using a has disease association relation), and we link
the drug Tadalafil (CID00110635) to phenotype Abdominal pain
(HP:0002027) (using a has sideeffect relation):

@prefix doid: <http://purl.obolibrary.org/obo/DOID_> .

@prefix hp: <http://purl.obolibrary.org/obo/HP_> .

@prefix b2v: <http://bio2vec.net/relation/> .

@prefix entrez: <http://www.ncbi.nlm.nih.gov/gene/> .

@prefix stitch: <http://bio2vec.net/CID> .

doid:14557 b2v:has_disease_phenotype hp:0011675 .

entrez:857 b2v:has_disease_association doid:14557 .

stitch:00110635 b2v:has_sideeffect hp:0002027 .

stitch:00110635 b2v:has_indication doid:65 .

We further add biological background knowledge expressed in
ontologies, specifically the Human Phenotype Ontology (HPO) (Köhler
et al., 2014), Gene Ontology (GO) (Ashburner et al., 2000) and Disease
Ontology (DO) (Schriml et al., 2011), directly to this RDF graph so that
the superclasses of phenotypes can be accessed and used during machine
learning. Supplementary Figure 1 shows the graph we build and the
relations between the different biological entities it includes.

To learn representations of features contained in this knowledge graph,
we apply a random walk algorithm over RDF and OWL (Alshahrani et al.,
2017) and generate a corpus consisting of iterated random walks through
this graph, starting from each node. We consider each random walk as a
“sentence” that expresses a chain of statements following a random path
through the knowledge graph.

As next step, we integrate the information in our knowledge graph
with information contained in biomedical literature. For this purpose, we
normalize biomedical literature abstracts to our knowledge graph using
named entity recognition and entity normalization approaches (Rebholz-
Schuhmann et al., 2012) that were developed for the entities in our graph.
Specifically, we normalize drug, gene, and disease mentions to our graph
using the literature annotations of PubMed abstracts provided by the
PubTator (Wei et al., 2013) database as well as mappings provided between
different vocabularies of drugs and diseases (see Methods). PubTator
aggregates different entity normalization approaches such as GNorm (Wei
et al., 2015) or DNorm (Leaman et al., 2013), which can also be used
directly with new text.

As a next step, we process the annotated corpus of PubMed abstracts
by replacing each mention of an entity (i.e., gene, chemical compounds,
or disease) that is also included in our knowledge graph with the IRI used
to represent the entity in the knowledge graph. Specifically, we ensure
that the mentions in text that can be normalized to our knowledge graph
are “token-identical” to the entities we represent in our knowledge graph
(and the corpus resulting from our random walks through the graph). This
replacement ensures that our text corpus and knowledge graph overlap on
the level of tokens, and we can use this overlap in our machine learning
models. Figure 1 illustrates the normalization step between the text corpus
and knowledge graph.

As an end result of these processing steps we have generated two
corpora: one consisting of random walks starting from nodes in our
knowledge graph, and another consisting of literature abstracts in which
the mentions of entities that also appear in our graph have been replaced
by the entities’ IRI in the graph. These two corpora form the foundation
of our feature learning step.

3.2 Learning and combining features

Biological literature and the information in our knowledge graph will
contain different information, and our aim is to establish a way to
combine information in both data sources within a single predictive model.
To achieve this goal, we first apply an unsupervised machine learning

.CC-BY-NC-ND 4.0 International licensethe author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) isthis version posted August 6, 2018. ; https://doi.org/10.1101/385617doi: bioRxiv preprint 

https://doi.org/10.1101/385617
http://creativecommons.org/licenses/by-nc-nd/4.0/


i
i

“main” — 2018/8/6 — 13:28 — page 4 — #4 i
i

i
i

i
i

4 Alshahrani et al.

Original PubMed title and abstract 

24615250|t|Influence of SREBP-2 and SCAP gene polymorphismson
lipid-lowering response to atorvastatin in a cohort of Chilean subjects
with Amerindian background.

24615250|a|BACKGROUND AND OBJECTIVES: This study 
evaluated the influence 
of the polymorphisms G1784C (rs4822063) and A2386G 
(rs12487736) of SREBP-2 and SCAP genes, respectively, 
on the response to atorvastatin treatment in a cohort 
of Chilean subjects with Amerindian background.  
METHODS: A total of 142 hypercholesterolemic
individuals underwent atorvastatin therapy (10 mg/day/1 month).

PubMed normalized with BKG 
Influence of <http://www.ncbi.nlm.nih.gov/gene/6721> and  
<http://www.ncbi.nlm.nih.gov/gene/22937> gene polymorphisms on lipid-
lowering response to <http://bio2vec.net/chem/CID00002250> 
in a cohort of Chilean subjects with Amerindian background.
BACKGROUND AND OBJECTIVES: This study evaluated the influence  
of the polymorphisms G1784C (rs4822063) and A2386G (rs12487736) of 
<http://www.ncbi.nlm.nih.gov/gene/6721> and <http://www.ncbi.nlm. 
nih.gov/gene/22937> genes, respectively, on the response to
<http://bio2vec.net/chem/CID00002250> treatment in a cohort of Chilean
subjects with Amerindian background. 
METHODS: A total of 142 <http://purl.obolibrary.org/obo/DOID_13810>
individuals underwent <http://bio2vec.net/chem/CID00002250>  
therapy (10 mg/day/1 month).

Fig. 1. Illustration of how we normalize literature abstracts to our knowledge graph to
ensure that both overlap on the level of tokens.

approach to generate embeddings for entities in our knowledge graph as
well as for the words in our text corpus. An embedding encodes within a
vector space the context in which an entity appears; since we represent
information about entities in the knowledge graph through sentences
generated from random walks, we apply the Word2Vec skip-gram model
(Mikolov et al., 2013) to generate embeddings for all terms that occur
within the two corpora we generated.

We use two different approaches to combine the embeddings from
the knowledge graph and text corpus: first, we generate embeddings
independently on both corpora, and concatenate the resulting embedding
vectors; and second, we concatenate the two corpora and generate
embeddings from the combined corpus. As a result, we obtain embeddings
for drugs, genes, diseases, and for all other entities from the knowledge
graph; we further obtain embeddings for all words that are used in our
literature corpus, in particular for the entities which are mentioned in
literature and which we normalized to our knowledge graph. However,
not all entities in our knowledge graph also have a representation in
literature, and not all entities (drugs, diseases, and genes) mentioned in
literature are included in our knowledge graph. Supplementary Figure
2 shows the overlap between the two datasets. The embedding vectors
generated for the entities from the two different corpora (either individually
or jointly) form our entities’ feature representations, and the features either
represent information from structured databases, from literature, or both.
Supplementary Figure 3 and 4 show a visualization of the embeddings
(from the knowledge graph, literature, and combined) using t-SNE (van der
Maaten and Hinton, 2008), and coloring disease embeddings based on their
top-level DO class, and drug embeddings based on their top-level class in
the Anatomical Therapeutic Chemical (ATC) Classification System.

3.3 Evaluation on prediction of drug targets and indications

Our method combines heterogeneous information from text and a
knowledge graph in vector space embeddings, and we evaluate the
performance of our method by predicting drug targets and drug indications.
For this purpose, we use four different evaluation methods: first, we use
the embeddings generated from the knowledge graph alone; second, we
use the embeddings generated from our literature corpus alone; third, we
concatenate the embeddings from the knowledge graph and text corpus;
and finally, we combine the text corpus and knowledge graph corpus and
learn joint embeddings.

We use as evaluation sets the drug targets from the STITCH database
(Kuhn et al., 2012) and drug indications from the SIDER database
(Kuhn et al., 2015). Furthermore, to clearly distinguish and evaluate the
contributions of the different data sources, we initially limit our evaluation
set to the drugs, targets, and diseases that have a representation both in
our knowledge graph and in our literature corpus. For predicting drug

targets, we use as evaluation set 820 drugs and rank 17,380 genes that
are both in our knowledge graph and found in the literature corpus. For
predicting drug indications, we use 754 drugs with one or more known
indications and rank 2,552 diseases (overlapping between literature and
our knowledge graph) for each of the drugs to determine for which disease
it may be indicated (see Supplementary Tables 1 and 2 for details).

To predict associations between drugs and their targets or drugs and
the diseases they may treat, we use supervised machine learning and
train a model based on 80% randomly chosen drug–target or drug–disease
associations and test whether the model is able to predict the remaining
20%. We use three different machine learning approaches for the model
construction: logistic regression, a random forest classifier, and artificial
neural networks. Before training the model, we remove all has-target
(when predicting drug targets) or has-indication (when predicting
drug indications) edges in the graph before generating the corpus for
predicting drug targets and indications, respectively. Each model has as
input two embedding vectors that represent a drug and another embedding
vector representing either a gene/protein (when predicting targets) or
disease (when predicting indications). The models are trained as binary
classifiers and output whether the drug targets the gene/protein or treats
the disease. Figure 2 provides an overview over our overall workflow.

We evaluate the performance of each model on the 20% of associations
we withhold from training. All three of our classification models can
provide confidence values for a prediction, and we rank predicted
associations based on their confidence value. We then calculate the
area under the receiver operating characteristic (ROC) curve (ROCAUC)
(Fawcett, 2006) as well as the number of correct associations we retrieve
within the first ten and first 100 ranks. Table 1 summarizes our results for
predicting associations between drugs and targets, and Table 2 summarizes
the results for predicting indications.

We find that both our artificial neural network and the random
forest classifier are able to accurately predict both drug targets and drug
indications, while the logistic regression classifier results in relatively
worse performance. An obvious explanation is that logistic regression
mainly assigns weights to individual features and does not have the
ability to compare or match elements of the two input embedding vectors,
while both the random forest classifier and an artificial neural network
are able to provide a classification based on comparing elements of
the input embedding vectors. Furthermore, we find that, in general,
using embeddings generated from literature results in higher predictive
performance across all classifiers compared to embeddings generated from
the knowledge graph alone. Combining the embeddings, either through
concatenation of the embeddings or through concatenation of the two
corpora sometimes but not always improves or changes the predictive
performance.

While our results indicate that both literature-derived and knowledge
graph embeddings can be used to predict interactions, the main
contribution of our multi-modal approach is the increased coverage
through combining database content and literature (see Supplementary
Figure 2). To demonstrate this application of our method, we extend our
evaluation set to contain all the drugs, genes, and diseases that are found
in either our knowledge graph, the literature abstract, or the union of the
entities in the knowledge graph and literature trained on the combined
corpus. Figure 3 shows the ROC curves and the ROCAUC for predicting
drug targets and drug indications using our neural network classifier, based
on a combination of the literature corpus and the random walk corpus.

Our knowledge graph contains a very large number of chemicals,
many of which are not drug-like, and while the performance in
predicting drug targets is somewhat higher when using the knowledge
graph embeddings, the overall performance is still dominated by
the literature-derived embedding vectors. However, when predicting
indications for known drugs, both our graph and literature overlap
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Fig. 2. High-level overview over our workflow.

more substantially while nevertheless containing complementary
information. We observe a significant improvement in predicting drug
indications when combining the information from literature and the
knowledge graph. We make all predictions of drug–target associations
as well as the predictions for drug indications freely available
athttps://github.com/bio-ontology-research-group/
multi-drug-embedding.

Model Embedding
Method

ROCAUC Recall @100 Recall @10

ANN

Knowledge graph 0.887 0.35 0.09
PubMed abstracts 0.880 0.45 0.11
Concatenated
embeddings

0.905 0.50 0.14

Concatenated
corpus

0.896 0.45 0.13

RF

Knowledge graph 0.860 0.36 0.08
PubMed abstracts 0.852 0.49 0.18
Concatenated
embeddings

0.867 0.45 0.13

Concatenated
corpus

0.879 0.51 0.18

LR

Knowledge graph 0.837 0.10 0.01
PubMed abstracts 0.822 0.20 0.04
Concatenated
embeddings

0.854 0.21 0.06

Concatenated
corpus

0.837 0.22 0.05

Table 1. Performance results for predicting drug–target associations, based
on our four embeddings approaches and using three classification models
(Artificial Neural Networks (ANN), Random Forest (RF) and Logistic
regression (LR)).

Model Embedding
Method

ROCAUC Recall @100 Recall @10

ANN

Knowledge graph 0.884 0.46 0.10
PubMed abstracts 0.928 0.63 0.26
Concatenated
embeddings

0.917 0.58 0.22

Concatenated
corpus

0.929 0.63 0.22

RF

Knowledge graph 0.895 0.44 0.13
PubMed abstracts 0.912 0.61 0.24
Concatenated
embeddings

0.908 0.54 0.17

Concatenated
corpus

0.918 0.60 0.22

LR

Knowledge graph 0.842 0.30 0.06
PubMed abstracts 0.846 0.40 :0.11
Concatenated
embeddings

0.862 0.39 0.09

Concatenated
corpus

0.858 0.39 0.12

Table 2. Performance results for prediction of drug indications, based on our
four embeddings approaches and using three classification models (Artificial
Neural Networks (ANN), Random Forest (RF) and Logistic regression (LR)).

4 Discussion
There are many scenarios in biological and biomedical research in which
predictive models need to be built that can utilize information that is
represented in different formats. Our key contribution is a method to
integrate data represented in structured databases, in particular knowledge
graphs represented in RDF and OWL, and integrate this information with
information in literature. While we primarily focus on the prediction
of drug–target interactions and drug indications based on information
in text and databases, our approach is generic and can serve as a
paradigm for learning from multi-modal, heterogeneous data in biology
and biomedicine.

Our method uses feature learning to project different types of data into
a vector space, and combine data of different modes either within a single
vector space (when mapping data of different modes to the same space, or
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Fig. 3. ROC curve of our neural network for predicting drug targets in the union of
associations present in the knowledge graph and PubMed abstracts (top); ROC curve of
our neural network for predicting drug indications found in the union of knowledge graph
and PubMed abstracts.

to vector spaces of identical dimensions) or we combine the vector spaces
themselves. We rely on the recent success of deep learning methods (Ravì
et al., 2017; Angermueller et al., 2016) which improved our ability to learn
relevant features from a data set and project them into a vector space. In
particular, our approach relies on natural language models, in particular
Word2Vec (Mikolov et al., 2013), and recent approaches to project
information in knowledge graphs into vector spaces (Nickel et al., 2016b;
Alshahrani et al., 2017; Smaili et al., 2018). These approaches are now
increasingly applied in biological and biomedical research (Alshahrani
and Hoehndorf, 2018) yet often restricted to single types of representation
(such as images, genomic sequences, text, or knowledge graphs).

Our approach naturally builds on the significant efforts that have been
invested in the development of named entity recognition and normalization
methods for many different biological entities (Rebholz-Schuhmann et al.,
2012) as well as the effort to formally represent and integrate biological
data using Semantic Web technologies (Jupp et al., 2014; Callahan et al.,
2013). Several biological data providers now provide their data natively
using RDF (Jupp et al., 2014; UniProt Consortium, 2018). Furthermore,
many methods and tools have been developed to normalize mentions of
biological entities in text to biological databases, for example for mentions
of genes and proteins, (Leaman and Gonzalez, 2008; Wei et al., 2015),
chemicals (Leaman et al., 2015) as well as diseases (Leaman et al.,
2013), and repositories have been developed to aggregate and integrate
the annotations to literature abstracts or fulltext articles (Wei et al., 2013;
Kim and Wang, 2012). While these methods, tools, and repositories are
not commonly designed to normalize mentions of biological entities to
a knowledge graph, we demonstrate here how a normalization of text to

a knowledge graph can be achieved, and subsequently use the combined
information in our multi-modal machine learning approach. Consequently,
our method has the potential to increase the value of freely available
Linked Data resources and connect them directly to the methods and tools
developed for natural language processing and text mining in biology and
biomedicine.

In the future, it would be beneficial to develop better entity
normalization methods that can directly normalize entity mentions in
text to a knowledge graph. We also intend to evaluate the success of
our approach on full-text articles so that more information, in particular
regarding methods and experimental protocols, can be utilized by our
approach. Methodologically, we also intend to apply other knowledge
graph embedding methods, in particular translational embeddings (Bordes
et al., 2013; Nickel et al., 2016a; Dai and Yeung, 2006), that have
previously been combined successfully with textual information (Wang
et al., 2014b), and evaluate their performance for prediction of biological
relations.
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