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Abstract 
 

Some forms of mild cognitive impairment (MCI) can be the clinical precursor of severe dementia like 
Alzheimer’s disease (AD), while other types of MCI tend to remain stable over-time and do not progress 
to AD pathology. To choose an effective and personalized treatment for AD, we need to identify which 
MCI patients are at risk of developing AD and which are not. 
Here, we present a novel deep learning architecture, based on dual learning and an ad hoc layer for 3D 
separable convolutions, which aims at identifying those people with MCI who have a high likelihood of 
developing AD.  
Our deep learning procedures combine structural magnetic resonance imaging (MRI), demographic, 
neuropsychological, and APOe4 genotyping data as input measures. The most novel characteristics of our 
machine learning model compared to previous ones are as follows: 1) multi-tasking, in the sense that our 
deep learning model jointly learns to simultaneously predict both MCI to AD conversion, and AD vs healthy 
classification which facilitates the relevant feature extraction for prognostication; 2)  the neural network 
classifier employs relatively few parameters compared to other deep learning architectures (we use 
~500,000 network parameters, orders of magnitude lower than other network designs) without 
compromising network complexity and hence significantly limits data-overfitting; 3) both structural MRI 
images and warp field characteristics, which quantify the amount of volumetric change compared to the 
common template, were used as separate input streams to extract as much information as possible from the 
MRI data. All the analyses were performed on a subset of the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database, for a total of n=785 participants (192 AD, 409 MCI, and184 healthy controls (HC)). 
We found that the most predictive combination of inputs included the structural MRI images and the 
demographic, neuropsychological, and APOe4 data, while the warp field metric added little predictive 
value. We achieved an area under the ROC curve (AUC) of 0.92 with a 10-fold cross-validated accuracy 
of 86%, a sensitivity of 87.5% and specificity of 85% in classifying MCI patients who developed AD in 
three years' time from those individuals showing stable MCI over the same time-period. To the best of our 
knowledge, this is the highest performance reported on a test set achieved in the literature using similar 
data. The same network provided an AUC of 1 and 100% accuracy, sensitivity and specificity when 
classifying NC from AD. We also demonstrated that our classification framework was robust to different 
co-registration templates and possibly irrelevant features / image sections. 
Our approach is flexible and can in principle integrate other imaging modalities, such as PET, and a more 
diverse group of clinical data.  

The convolutional framework is potentially applicable to any 3D image dataset and gives the flexibility 
to design a computer-aided diagnosis system targeting the prediction of any medical condition utilizing 
multi-modal imaging and tabular clinical data. 
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Introduction 
 

More than 30 million people have a clinical diagnosis of Alzheimer’s disease (AD) worldwide and this 
number is expected to triple by 2050 (Barnes and Yaffe, 2011), due to increased life expectancy and 
improvements in care (Ferri et al., 2005). AD is a form of dementia characterized by extracellular β-amyloid 
peptide plaque deposits and abnormal tau accumulation and phosphorylation which ultimately lead to 
neuronal and synaptic loss (Murphy et al. 2010). AD-related neurodegeneration follows specific patterns 
which arise from subcortical areas and spread to the cortical mantle (Braak and Braak et al. 1996). The 
classic clinical hallmark of the most common form of AD (i.e., the amnestic type) is represented by 
impairments in episodic memory, followed by visuo-spatial and orientation problems, and ultimately frank 
dementia. 
 Mild cognitive impairment (MCI) is a wide and heterogeneous spectrum of disorders which causes 
relatively less acute and noticeable memory deficit than AD. However, around 10%-15% of MCI patients 
convert to AD per year (Braak and Braak, 1995; Mitchell and Shiri-Feshki, 2008) within less than 5 years, 
although the conversion rate decreases later on. As the majority of MCI to AD conversions happen within 5 
years, it is crucial to early identify the MCI subjects at risk of developing AD as soon as possible. The MCI 
patients who do not convert to AD tend to either remain stable, develop other forms of dementia, or even 
revert to a healthy state, which suggest that MCI is a conundrum of disorders which are likely to be associated 
with the several etio-pathogenetic mechanisms. AD-related neuropathological markers have been also 
observed several years before the clinical manifestation of memory symptoms (Braak and Braak, 1996; 
Delacourte et al., 1999; Morris et al., 1996; Serrano-Pozo et al., 2011; Mosconi et al., 2007), which suggests 
that AD development could be predicted before clinical onset via in vivo biomarkers (e.g. PET and MR 
imaging as well as blood or cerebrospinal fluid (CSF) biomarkers) (Markesbery, 2010; Baldacci et al., 2018; 
Hampel et al. 2018; Teipel et al., 2018). In this context, MRI imaging has garnered interest in AD diagnosis, 
and perhaps more importantly in prognosticating the MCI to AD conversion. Relative to CSF and PET 
biomarkers, MRI measures have the advantage of not using ionising radiation, of being non-invasive, less 
expensive and more widely available in less specialized medical environments. MRI markers also enable the 
possibility to gather multimodal information (e.g. structural and functional) within the same session. 
 In this context, there has been a growing interest in developing MRI-based computational tools to 
discriminate AD patients from healthy individuals, and most importantly in distinguishing between stable 
MCI individuals and MCI patients who go on to develop AD. To this end, different clinical data and imaging 
modalities have been employed with variable rates of success, including PET studies (Choi et al. 2018; 
Mosconi et al. 2004, Mosconi et al. 2007, Shaffer et al. 2013, Young et al. 2013), MRI studies (Filipovych 
et al. 2011; Moradi et al. 2015; Mosconi et al. 2007; Tong et al. 2017, Young et al. 2013), cognitive testing 
studies (Casanova et al. 2011; Moradi et al. 2015), and CSF biomarker studies (Davatzikos et al. 2011; 
Hansson et al. 2006; Riemenschneider et al. 2002; Sonnen et al. 2010). Most of the above-mentioned studies 
employ a classification pipeline, which relies on two independent steps. First, a dimensionality reduction 
method, such as ICA (Shaffer et al. 2013), L1 regularization (Moradi et al. 2015; Tong et al. 2017) or 
morphometry (Davatzikos et al. 2011; Fan et al. 2007), is used to reduce the raw images or volumes to a 
relatively small number of (possibly) highly descriptive factors. Then, these factors are fed into a multivariate 
pattern classification algorithm. Notably, the dimensionality reduction and classification algorithms are two 
separate mathematical models which involve different assumptions, hence possibly resulting in loss of 
relevant information in the classification process (Nguyen and Torre, 2010). Examples of studies that have 
used this classification pipeline to predict MCI to AD conversion using structural MRI and cognitive 
measures at baseline are described in Moradi et al. 2015 and Tong et al. 2017. The authors firstly perform 
feature selection to extract informative MRI voxels via regularized logistic regression, and subsequently use 
the extracted voxels, as well as the cognitive measures, to produce support vector machine (SVM)-based 
predictions, achieving an area under the ROC curve (AUC) between 0.9 and 0.92. In the case of Hojjati et 
al., 2017, who use baseline resting state fMRI data and achieve an AUC of 0.95, features are engineered by 
constructing a brain connectivity matrix which is treated as a graph, and the extracted graph measures are 
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inputted into a SVM. Also, the most frequently used classifiers, such as SVM (Moradi et al., 2015; Hojjati 
et al., 2017, Tong et al., 2017) and Gaussian Processes (Young et al., 2013), require the use of kernels, or 
data transformations, chosen from a limited user-specified set, which map the data to a new space in the 
hope that it will be more easily separable. However, constructing or choosing an application-specific kernel 
to act as a reasonable similarity measure for the task at hand is not always possible. 

The use of two disjoint pipelines and the need to construct ad-hoc kernels can be surmounted by the use 
of a class of algorithms known as deep learning, which afford much greater representational flexibility than 
kernel-based methods and also automatically learn data transformations which maximize any given 
performance metric. Such methods have been applied to AD vs. healthy subject discrimination (Hosseini-
Asl et al., 2016; Liu et al., 2015; Liu et al., 2018; Payan and Montana, 2015) and progressive MCI (pMCI) 
vs stable MCI (sMCI) classification (Choi et al., 2018; Lu et al., 2018 (1); Lu et al., 2018 (2) ) As an example, 
Choi et al., 2018 and Lu et al., 2018 (1) use deep learning to achieve one of the highest pMCI/sMCI 
classification performances to-date despite the use of a single (albeit very informative) imaging modality 
based on ionizing radiation (PET) ( ~84% - 82% conversion rate accuracies for these studies respectively). 
A comparison between recent studies and methods is provided in Table 3). As is well known however, the 
superior representational capacity of deep learning methods relies on a high number of neural network 
parameters. Frequently, this gives rise to overfitting, i.e. a satisfactory training performance which however 
does not generalize well to unseen samples during testing or when applying the model. Although it has been 
demonstrated that deep learning approaches can yield impressive performance, the data-scarce nature of 
medical datasets is not commonly sufficient to build a useful network architecture. 

The aim of this paper is therefore to develop and employ a parameter-efficient neural network 
architecture, based on more recent convolutional neural network layers, namely 3D separable and grouped 
convolutions (which were developed specifically for computer vision tasks). Additionally, we use a 
combination of input streams (including structural MRI as well as clinical variables comprising 
demographic, neuropsychological, and APOe4 genotyping data) for the joint multi-task classification of 
pMCI/sMCI and AD/HC, i.e. joint or dual-learning. These newer network designs have been shown to yield 
superior performance on other types of visual discrimination problems (Chollet et al., 2016) while 
maintaining the overall network parameter count low, hence efficiently battling the overfitting problem. 
Additionally, developed a novel feature extractor sub-network and,  in order to employ these methods 
efficiently, we combined the Tensorflow (Abadi et al., 2016) and Keras (Chollet et al., 2015) libraries with 
our own 3D implementation of 3D separable convolutions which is available freely upon request.  
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Methods: 
1. Participants and data 

All data was obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and comprised 435 
men and 350 women aged between 55 and 91 years. The majority of subjects identified as white (>94%) and 
non-Hispanic (99.98%). All data we used is summarized in Table 1. Differences in median age across groups 
were tested using Friedman’s ANOVA and group x gender interactions were tested using Fisher’s exact test. 
None of these interactions resulted statistically significant (p> 0.05). For all participants, we employed the 
Magnetization Prepared Rapid Gradient-Echo (MPRAGE) T1-weighted image (structural MRI) as well as 
the following meta-data: demographic data (age, gender, ethnic and racial categories, education), 
neuropsychological cognitive assessment tests like dementia rating scales (CDRSB), the Alzheimer’s 
disease assessment scale (ADAS11, ADAS13), episodic memory evaluations in the Rey Auditory Verbal 
Learning Test (RAVLT), and APOe4 genotyping.  

 

2. Data Preprocessing 
Prior to classification, all T1 weighted (T1w) images were registered to a common space. Two different 

T1 templates were used in order to assess the robustness of our classification methodology to structural 
misalignment. First, we built a custom T1 template specific to this study. To this end, we employed all T1w 
images, which (after N4 bias field correction) where nonlinearly co-registered to each other and averaged 
iteratively (i.e. the group average was recreated at the end of each iteration). The procedure was based on 
symmetrical diffeomorphic mapping and employed five total iterations. The second template was the 
Montreal Neurological T1 Template (MNI152_T1_1mm). All single-subject T1w images were nonlinearly 
registered to both templates. 

All template creation and registration procedures were performed using the ANTs package (Avants et al., 
2010, Avants et al., 2011). In detail, the high-dimensional non-linear transformation (symmetric 
diffeomorphic normalization transformation) model was initialized through a generic linear transformation 
which consisted of center of mass alignment, rigid, similarity and fully affine transformations followed by 
(metric: neighbourhood cross correlation, sampling: regular, gradient step size: 0.12, four multi-resolution 
levels, smoothing sigmas: 3, 2, 1, 0 voxels in the reference image space, shrink factors: 6, 4, 2, 1 voxels. We 
also used histogram matching of images before registration and data winsorisation with quantiles: 0.001, 
0.999. The convergence criterion was set to be as follows: slope of the normalized energy profile over the 
last 10 iterations < 10-8). Co-registration of all scans required approximately 19200 hour of CPU time on a 
high- performance parallel computing cluster. After co-registration, all images were masked to include only 
brain tissue using using brainmasks generated in template space using BET, part of FSL (Jenkinson et al., 
2012). 

Table 1. The table summarizes the demographic, neuropsychological, cognitive assessment and APOe4 genotyping data used 
in this study to classify between progressive and stable MCI, and healthy and AD subjects. The data is presented in a mean±std 
format. The abbreviations used are APOe4 - Apolipoprotein E; CDRSB – Clinical Dementia Rating Sum of Boxes; ADAS – 
Alzheimer’s Disease Assessment Scale; RAVLT – Ray Auditory Verbal Learning Test. 

 

 No. of 
subjects 

Age 
(years) 

Male/F
emale 

years in 
education 

APOe4 
expression 

level CDRSB ADAS11 ADAS13 
RAVLT 

0 1 2 immediate learning forgetting % forget 

AD 192 75.6±7 103/81 15±2.9 57 86 41 4.4±1.6 18.8±6 29±7.3 23±7 1.7±1.8 4.4±1.9 89.4±21.2 

HC 184 74.6±6 92/100 16.3±2.7 144 43 5 0.2±0.9 6±3.8 9.3±5.7 44±10.5 6±2.4 3.7±2.7 33.1±27.7 

pMCI 181 73.7±7 108/73 15.9±2.8 61 90 30 2±1 13.5±4.2 21.9±5.5 27.2±6.5 2.9±2.2 4.9±2.1 78.3±27 

sMCI 228 72.2±7 132/96 16±2.8 145 67 16 1.2±0.6 8.4±3.3 13.5±5.3 38.5±10 4.75±2.5 4.35±2.6 50±30 
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After co-registration to both templates we also extracted the local Jacobian Determinant (JD) of the 
nonlinear part of the deformational field taking each image into template space. The JD maps were used to 
complement the co-registered MRI scans as an additional input stream in our model (see below). All images 
were masked Additionally, in order to evaluate how much a priori knowledge about AD brain 
pathophsyiology could improve our classification and also how much irrelevant features hamper 
classification performance, we defined a set of regions of interest (ROI) masks which included only brain 
areas known to be heavily involved in AD-related atrophy, namely parietal, temporal and frontal lobes (i.e. 
we performed an inclusion test). This was based on the Hammers et al. 2003 atlas© Copyright Imperial College of 

Science, Technology and Medicine 2007 (www.brain-development.org). 
Numerical normalization for the co-registered MRI images was performed per sample, i.e. each 3D 

volume was standardized to 0 mean and unit standard deviation. The reasoning behind this is that brain 
atrophy could be recognized as an in-sample shift in intensity for a certain area compared to other regions. 
The normalization applied to the clinical features, i.e. the demographic, neuropsychological, and APOe4 
genotyping data, also follows the same feature scaling procedure, where the values of each separate clinical 
factor are normalized between [0, 1]. On the other hand, the extracted JD images were feature-scaled to have 
voxel values in the [0;1] range via subtracting the smallest value in the entire JD image set, and dividing by 
the difference between the largest and smallest values (also in the entire JD image set). This retains class-
wise differences in volumetric changes created when co-registering an image to a template while rescaling 
the data to a global maximum and minimum. 
 

3. Deep Learning Architecture 
 

3.1. Architecture Overview 
The network architecture is summarized in fig. 1 (b). In this paper, we developed a feature extractor sub-
network (referred to as the multi-modal feature extractor in fig. 1 b), inspired by the parameter-efficient 
separable and grouped convolutional layers presented in AlexNet (Krizhevsky et al., 2012) and Xception 
(Chollet, 2017, Velickovic et al., 2016). In detail, the layers of the feature extractor are shared between two 
tasks - MCI-to-AD conversion prediction and AD/HC classification, as we assume both problems share 
common underlying factors, i.e. the MCI subjects lie on the HC-AD continuum. This means similar data 
transformations are likely to be useful for prediction of different problems, and additionally this procedure 
increases the number of samples the extractor network is trained on hence reducing overfitting. Balancing 
between the tasks can be seen as imposing soft constraints on the network parameters, and if some of 
the factors that explain the variations in our data are shared between the two discrimination problems, 
overfitting is reduced further. The inputs for each task are its respective image modalities and clinical 
features. The feature extractor sub-network extracts 4-dimensional vectors for each of the two classification 
problems. These resulting latent representations are then processed by two separate fully connected layers 
(see fig. 1 a) with sigmoid activations and a binary cross-entropy loss applied at the output of each. The 
outputs of the fully connected layers are in the 0 to 1 range. The closer the activation is to 1, the more 
confident the model is that the input pattern corresponds to a diseased individual (i.e. AD or pMCI, 
depending on the classification task), and vice versa. 

 
3.2. Mathematical formulation of Model 

We will denote the input data and labels as pairs (X, Y) = {(xA
1, yA

1), . . . ,(xA
N , yA

N ), …, (xM
1, yM

1), …, 
(xA

N' , yA
N’ )}, where xA

i is the i-th observation from the Alzheimer’s and healthy subset, and xM
j is the j-th 

observation from the pMCI vs sMCI subset. Both classification problems have corresponding class labels 
yA

i and yM
j ∈ {0, 1}. We refer to the empirical distributions over the AD/HC and MCI subsets as p̃A(x, y) 

and p̃M(x, y) respectively. The model log likelihoods (i.e. the conditional probabilities of the target variables, 
y, given the input data x which we model with the neural network) for the two classification problems are 
given by: 
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   log pA(yA

i|xA
i; θ, φ) = fA(yA; xA, θ, φ) = -LA             log pM(yM

j|xM
j; θ,  ψ) = fM(yM; xM, θ,  ψ) = -UM      (1) 

 
The likelihood functions fA and fM are modelled as Bernoulli distributions, parametrized by neural network-
based transformations of the input data as described in fig. 1 (b). The goal is to learn the network parameters 
such that we can approximate the true conditional probabilities of the labels given the inputs via the 
likelihood functions given by eq. 1. We use θ to denote the parameters in the feature extractor sub-network, 
and φ and ψ to denote the weights in the final fully connected layers that output the class probabilities for 
the Alzheimer’s vs healthy and pMCI vs sMCI tasks respectively. Learning the network parameters can be 
represented as: 
 
   argmin (θ, φ, ψ) Ex, y~ p ̃M(x, y) [UM] + αEx, y~ p ̃A(x, y) [LA]    (2) 

 
As UM and LA represent negative log-likelihoods, the objective function given in eq. (2) can be viewed as  
minimizing the weighted sum between two binary cross-entropy terms between the observed and estimated 
(by our network) class probabilities. Intuitively, learning the network parameters is maximizing the 
probability of observing the labels in both datasets under the model, given the input cognitive, genetic and 
MRI biomarkers.  We also introduced the α hyperparameter to control the trade-off between the two tasks 
during learning, and use α = 0.25 in all experiments. Although the choice of α comes from our subjective 
view of the importance of one task over another and appears to lack rationale, we found that the AD/HC 
problem is much easier and the model quickly achieves high validation accuracy (see table 3) when α = 0.25.  

 
3.3. 3D Convolutions 

Convolutional layers in our study work by convolving an input tensor, x, with a kernel of weights W, then 

i wi k 

yk = f (Σuiwi + bk) 

inputs u outputs y Fig. 1 (a) The figure depicts the operation of a 
dense or fully connected layer. The outputs yk are 
formed as a non-linear transformation of the input 
vector u. The non-linear activation works on a 

weighted sum of the inputs, Σuiwi, and a bias 
term bk. These layers are employed to process 
the clinical inputs in the Multi-modal feature 
extractor and to produce the output labels of our 
model. 

Fig. 1 (b) . The figure presents an overview of our multi-tasking neural network methodology. We have designed a sub-network (the 
multi-modal feature extractor) to extract 4-d feature representations from the inputs of both tasks/datasets. This sub-network (with the 
same θ network parameters) is applied on the data from both the pMCI/sMCI and AD vs healthy discrimination problems, as we assume 
the underlying factors of the conditions are similar, hence similar data transformations are likely to be useful. We then employ two fully 
connected layers, parametrized by φ and ψ, with sigmoid outputs. The sigmoid outputs approximate the conditional distribution of the 
labels for the two problems given the inputs (pA(y|x) for the AD vs healthy task and pM(y|x) for the pMCI vs sMCI task). We learn the 
network parameters such that our model outputs correspond to the true labels in the dataset by minimizing the binary cross-entropy 
between the observed and estimated targets. The multi-modal feature extractor is represented by a dashed-line rectangle in fig. 1 (b) 
and fig. 3. 

Alzheimer’s vs 
 Healthy 
• MRI 
• Clinical data 

pMCI vs sMCI 
• MRI 
• Clinical data Multi-modal 

feature 
 

pM(y|x) 

pA(y|x) 

FC @1 unit 

FC @1 unit 

pMCI/sMCI 
output label 

AD/HC 
output label 
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adding a bias term b, and finally passing the result through a non-linearity. To extract a rich set of 
representations we repeat this process with K different kernels (also known as channels or filters) convolving 
the same tensor x, each resulting in a new feature map hk. Hence, we can write: 
 
     hk = ƒ(Wk * x + bk)       (3) 

The feature map subscript is k = [1,…, K]. The function ƒ can be selected from a range of differentiable non-
linear transformations, such as the sigmoid f(u) = (1 + exp(−u))−1 and the exponential linear unit, or ELU, 
(Clevert et al. 2015): f(u) = u if u >= 0 and f(u) = exp(u) - 1 if u<0. We rely on the ELU transformation in 
our hidden layer activations and a sigmoid output for label predictions. The set of K feature maps extracted 
from the input x defines a single layer ℓ = [1, …, L] in our convolutional neural network. Thus, the kth  feature 
map at layer ℓ is denoted as hkℓ . To construct a hierarchy of features we can use the outputs of layer ℓ-1 as 
inputs to layer ℓ: 
 

     hkℓ = ƒ(Wkℓ * hℓ-1  + bkℓ)      (4) 

where h0 is x. Note that in eq. (2), hℓ-1 = [h0ℓ-1, …, hKℓ-1 ] is a 4-D tensor - a collection of the K 3D feature 

maps extracted at layer ℓ-1. Consequently, Wkℓ is also a 4-D tensor kernel of size N1xN2xN3xK. This filter 
is multiplied element-wise during convolution with a N1xN2xN3 patch in each of the K feature maps and 
then the result is summed to produce a single scalar element after adding a bias term and passing through a 
non-linear function. The convolutional procedure can be seen as sliding this kernel with strides in all three 
dimensions to produce hkℓ. It is important to note that the number of parameters needed to extract Kℓ feature 
maps in layer ℓ from the Kℓ-1 feature maps in layer ℓ-1 is given by: 
 
      (N1*N2*N3*Kℓ-1 + 1)*Kℓ          (5) 
 
where N1xN2xN3 is the filter size used (see section 3.8 for actual values used in this paper). 

 
3.4. Fully connected (Dense) Layers 

Fully connected layers are designed to work on vectorized inputs u. The operation of the dense layer is 
depicted on fig. 1 (a) Each input ui has an associated weight wi. In order to produce an output yk, we form 

the weighted sum of all inputs Σuiwi, then add a bias term bk, and pass the result through a differentiable 
non- linear function like the sigmoid or the exponential linear unit. We can repeat this procedure K times 
with different weight parameters to produce an output vector y, which can be used as an input to another 
fully connected layer. In our work we employ these dense connections to process the tabular clinical features 
and to produce the final output predictions (or probability scores) of our model. 
 

3.5. Batch normalization, dropout, L2 regularization 
Several standard strategies are used in our network to battle overfitting. The first one is batch normalization 
(Ioffe and Szegedy 2015) which normalizes a layer’s outputs by subtracting their mean and dividing by 
the standard deviation. This whitening procedure enforces a fixed distribution of activations which has 
been shown to stabilize and facilitate the process of training. The technique accelerates the rate of training 
of deep neural nets and can act as a regularize. A second strategy is dropout by (Srivastava et al. 2014) 
which works by randomly dropping units and their connections during training. An intuitive explanation of 
its efficacy is that each unit must learn to extract useful features on its own with different sets of randomly 
chosen inputs. As a result, each hidden unit is more robust to random fluctuations and learns a generally 
useful transformation. Finally, L2 regularization penalizes weights of high absolute value, hence directly 
limiting the variety of functions our model can represent, i.e. its capacity. 
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3.6. Separable Convolutions 
The separable convolutions we employ are similar to standard convolutional layers but reformulate the 
procedure in two steps by performing depthwise and then pointwise operations. Firstly, each input channel 
is spatially convolved separately, then the resulting outputs are mixed via pointwise convolutions with a 
kernel size of 1 x 1 x 1. The depthwise procedure simply reformulates the convolutional operation from eq. 
(2) to: 

hkℓ = ƒ (Wkℓ * hkℓ-1  + bkℓ) (6) 

Conceptually, the difference is that the feature map at layer ℓ, hkℓ, only depends on a single feature map from 
the previous layer ℓ-1 for the depthwise procedure. On the other hand, standard convolutions take as an input 

all Kℓ-1 feature maps to produce a single output. Since in the depthwise case hkℓ is produced from a single 

map from the previous layer, the parameter count in Wkℓ is reduced. A depthwise convolution reduces the 
number of parameters employed to (N1*N2*N3+1)*Kℓ, which is Kℓ-1 times more parameter-efficient as seen 
when compared to eq. (5). The pointwise operation mixes all the channels together and requires Kℓ*Kℓ-1 
parameters. Hence, the overall number of weights in separable convolutions is given by: 

 
(N1*N2*N3+1)*Kℓ +  Kℓ*Kℓ-1 (7) 

 
Considering the kernel sizes and number of filters in our network architecture, substituting a single 
convolutional layer results in ~20 times less parameters for the separable module. In order to achieve the 
above operations, we implemented an ad-hoc 3D separable convolution module as a custom Keras layer 
based on a TensorFlow backend. 
 

3.7. Grouped Convolutions 
The grouped layer can be viewed as a compromise between standard convolutions and the separable case. 
This procedure splits the previous layer’s feature maps in two groups (G1 and G2) and treats them as separate 

FC block 
@32 units 

FC block 
@10 units 

inputs 

output 

FC clinical 

Previous layer’s feature maps 

G1 

G2 

conv block 24 
filters @3x4x3 

conv block 24 
filters @3x4x3 

output 1 

conv block 8 
filters @3x4x3 

output 2 

conv block 8 
filters @3x4x3 

Grouped 

inputs inputs 

SepConv block 96 
filters @3x4x3 

Merge 

output 

x3 

Mixer 

conv block 24 
filters @11x13x11 

conv block 48 
filters @ 5x6x5 

inputs 

output 

Encoder 

Fig. 2. Implementation of the Encoder, Grouped, Mixer and FC clinical operational 
blocks which comprise the Multi-modal feature extractor neural network design. 
Each of the blocks is designed with a specific task in mind. The Encoder 
comprises the initial processing stage of the MRI images. The Mixer employs 
separable convolutions to achieve sufficient network depth while minimizing the 
number of parameters. We use the Grouped block to reduce the number of feature 
maps in the network layers in an efficient manner. Finally, the tabular clinical data 
is processed via standard dense connections in FC Clinical. 
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when applying further transformations (fig. 2). As a result, only half of the channels are used to produce a 
single output feature map. The grouped layer requires twice less parameters than the standard convolutional 
approach, assuming the same overall number of output feature maps is generated. 

3.8. Multi-modal feature extractor 
Since several different sequences of layers are frequently reused, they are combined in operational blocks. 
Each block follows a similar pattern. For instance, convolutional blocks, used to processes the 3D MRI 
tensors, comprise a convolutional kernel with linear activations, batch normalization and an exponential 
linear unit (ELU) transformation with dropout. In order to reduce the resulting spatial dimensions, max 
pooling is used, where only the highest value in an image patch is retained, with a window of 3 pixels and a 
stride of 2. Each operation is applied on the outputs of the previous one. On the other hand, the clinical 
features undergo a series of transformations by dense blocks. Since these blocks act on vectorized inputs, a 
linear dense layer is employed instead but the same regularization precautions and activations as above are 
applied. In a similar fashion we constructed 3D depthwise separable convolutional blocks for efficient use 
of model parameters. These operational blocks are then combined to form higher level blocks that implement 
specific tasks. Fig. 2 depicts how the convolutional, dense and depthwise separable blocks are used for this 
purpose. Fig. 3 shows how these higher-level blocks can be combined to extract low dimensional features 
from our input data, such that we can then model the conditional probabilities of the target labels for the 
AD/HC and pMCI/sMCI classification problems.  
 For example, the Encoder block is used as a first embedding stage for both the structural MRI and 
Jacobian Determinant inputs. Then the Mixer takes these embeddings and applies a series of three 
consecutive separable convolutions in order to achieve efficient network depth which has been empirically 
shown to yield superior performance (Chollet 2017). Since the output from the Mixer block has a relatively 
high number of feature maps, we use a Grouped block instead of standard convolutions as a final stage of 
MRI data embedding. The clinical features are compressed in the FC clinical block and concatenated with 
the Grouped block’s outputs and finally transformed to a 4-dimensional vector. We refer to the neural 
network which compresses all the input biomarkers to 4-D vectors as the Multi-modal feature extractor. 

The Encoder comprises a series of two convolutional blocks with 24 and 48 kernels of sizes (11 x 13 x 

Encoder 

Encoder 

FC Clinical 

Mixer Grouped FC @4 units 4-D 
vector 

clinical  
features 

Merge 

Multi-modal feature extractor 

MRI 

Fig. 3. The figure presents the architecture of the Multi-modal feature extractor sub-network. It is designed to take multiple 3D in order to 
combine the co-registered structural MRI and the Jacobian Determinant volumes. The Encoder, Mixer and Grouped blocks are designed 
such that the high-dimensional image inputs are efficiently embedded in a lower-dimensional vector which summarizes all useful visual 
information. This vector is then be merged with the compressed clinical data (via FC Clinical) to output a final 4-D embedding of all input 
biomarkers. The operational blocks are color-coded for the ease of the reader both in fig. 2 and fig. 3. The resulting 4-D representations 
are passed through a dense connection with a sigmoid output (see fig. 1 a) to model the target variables for each of the two classification 
problems. 

inputs feature extraction low dimensional 
feature representation 

Jacobian 
Determinant 
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11) and (5 x 6 x 5) and strides of 4 and 1 in all dimensions respectively. The Mixer employs three 
consecutive separable convolutions with 96 kernels with depthwise spatial of size (3 x 3 x 3) and a stride 
of 1. The Grouped block splits the 96 feature maps from the separable block in two groups of 48 and applies 
two parallel streams of transformations. Each stream comprises two convolutional blocks with 24 and 8 
filters of size (3 x 4 x 3) and a stride of (1 x 1 x 1). The clinical features are filtered by two consecutive dense 
blocks of 32 and 10 units in the FC clinical block. After concatenating the output with the flattened 
embeddings from the Mixer and applying a dense block with 4 units we have our final input data 
representation. The feature extractor sub-network has about 550 thousand parameters which is comparatively 
low even compared to architectures applied on 2D images. 

 
4. Implementation 

All experiments were conducted using python version 2.7.12. The neural network was built with the Keras 
deep learning library using TensorFlow as backend. TensorFlow, which is developed and supported by 
Google, is an open-source package for numerical computation with high popularity in the deep learning 
community. The library allows for easy deployment on multiple graphic processing units (GPUs) (CPU-
based experimentation would be prohibitive because of time constraints). The Keras wrapper provides an 
application programming interface (API) for quicker development and has all the functionality to implement 
the network with the exception of 3D separable convolutions which we built as a custom layer in 
TensorFlow. In this paper we employed a Linux machine and two Nvidia Pascal TITAN X graphics cards 
with 12GB RAM each. The model was parallelized across GPUs such that the feature extractor network 
works on the AD vs HC and MCI-to-AD conversion problems simultaneously to speed up training. Iterating 
over the whole training set once, i.e. a single epoch, takes about 30 sec and prediction for a single MCI 
patient requires milliseconds. Since prediction would not require model parallelization or a lengthy training 
process, a pre-trained network is practical to be applied on a lower-end GPU (or possibly a CPU) relatively 
cheaply in a realistic scenario. Across all experiments certain network settings remain unchanged. These 
include the dropout rate - set at 0.1 for all layers and blocks; the L2 regularization penalty coefficient set at 
5*10-5 for all parameters in convolutional and fully connected layers; and the convolutional kernel weight 
initialization which follows the procedure described by He et al. 2015. The objective function loss is 
minimized using the Adam optimizer by Kingma and Ba, 2014 with an exponentially decaying learning rate: 

 

lr = 0.001*0.3 epoch / 10 (8) 
 

All other parameters are kept at their default value provided in the original Adam paper (Kingma and Ba, 
2014). The network hyperparameters were picked because they led to no overfitting on the validation set 
during performance evaluation. A batch size of 6 samples for both the AD and MCI conversion problems is 
randomly sampled from the dataset until it is exhausted. 

 
5. Performance Evaluation 

For the evaluation of the classifier, we repeated the sampling strategy to divide the samples in training, 
validation and test set splits. Since we have 32 samples more in the MCI dataset (including both pMCI and 
sMCI) as compared to the AD/HC dataset, we used these 32 MCI subjects for testing purposes by randomly 
sampling 16 subjects from the pMCI and sMCI groups. The validation set comprised roughly 10% of the 
remaining dataset (36 subjects from MCI and AD/HC respectively) and was also generated by randomly 
picking in a balanced manner both from the progressive and stable MCI groups and from the healthy and 
AD patients as we were performing joint learning. Finally, the remaining 340 subjects from both the AD/HC 
and MCI subsets respectively (i.e. a total of 680 subjects) comprised the training set. 

The model is trained for 40 epochs and the best performing model on the validation set is saved and 
evaluated on the test set. This procedure is then repeated 10 times with different sampling seeds so as to have 
different samples in the train/validation/test splits and minimize the effect of random variation. The 
evaluation metrics used are accuracy (ACC), sensitivity (SEN), specificity (SPE). We also perform receiver 
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operating characteristics (ROC) analysis and compute the AUC. The optimal operating point of the ROC 
curve was found via Youden’s J statistic. All accuracy, sensitivity and specificity results are reported at the 
optimal operating point of the ROC curve. For the AD vs HC task, we report the validation results as we 
only defined a test set for the pMCI/sMCI classification problem. The reason is because we are interested 
pMCI vs sMCI classification and treat the AD/HC task as a helpful auxiliary problem. In addition, we 
preferred to save as much data for training as possible. 

 

6. Results: 
Firstly, we consider the classification performance of our network on four different input biomarker 
combinations. Then we assess the robustness of the neural network model to MRI structural 
misalignment by comparing performance metrics obtained when using the custom template as opposed to 
the MNI152_T1_1mm template. The four input combinations are: 1) clinical features and MRI images; 2) 
clinical features JD images; 3) clinical features and T1w images; and 4) clinical features, JD and T1w 
images for a total of 7 experiments: 4 experiment in custom template space and 3 in MNI space (the input 
combination including the brain-atlas masked MRI was not performed in MNI space). Finally, we assess the 
performance of our model on the AD vs healthy task with the same input stream variants. 
 

6.1.  Multi-modal classification 
Results are summarized in fig. 6 and fig. 7 and tables 2 and 3. Fig. 4 shows the retained brain regions after 
brain-atlas masking. 
 The best performance metrics are achieved by including structural MRI along with all clinical data 
(includes demographic, neuropsychological, and APOe4 genotyping features). The median AUC for the 
input combination comprising structural MRI images and clinical features is 0.92 whereas when we remove 
brain areas not classically associated with AD, the median AUC obtained is 0.93. Comparing these two 
values across folds using a Mann-Whitney U test indicated that removing brain structures unrelated to the 
development of AD does not hinder (P=0.4) discrimination in pMCI and sMCI. The median AUC when 
using JD images and clinical data was at 0.88 (Mann-Whitney test yielded p-value <0.041 and 0.046 when 
compared to the input combinations comprising structural MRI and clinical data, and atlas-masked structural 
MRI and clinical data results respectively). Finally, the input combination comprising all types of input 

Fig. 4. Examples of the image inputs we employ in the classification framework for three different image slices. The upper row shows structural MRI 
images co-registered to a custom common space. The middle row displays only the brain regions we retain in the atlas-masked tests (parietal, temporal 
and frontal lobes). The third row shows the Jacobian Determinant images - they indicate the volumetric change a voxel in an unnormalised MRI 
image must undergo so as to conform to the common template. 
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streams - T1w images, the JD data and clinical features resulted in an AUC of 0.91. Comparing this with the 
input variants comprising the structural MRI and clinical features, atlas-masked MRI and clinical features, 
or JD images and clinical features yielded p-values of 0.36, 0.38 and 0.07 respectively (Mann-Whitney-U 
test). These results suggest that adding structural MRI to the clinical features yields statistically significant 
higher performance as opposed to using only JD data as an image input stream. In addition, removing brain 
areas from structural MRI not classically associated with Alzheimer’s disease did not show statistically 
different classification results compared to the experiments which retained all information. This suggests 
our model was not negatively impacted by the inclusion of irrelevant or only partially relevant features. 

Fig. 6. Box plots for AUC, accuracy, sensitivity and specificity for pMCI vs sMCI classification based on multi-stream integration 
of clinical features and MRI images (co-registered to our custom template) over 10 separate test folds. The black line in each box 
represents the median value. The boxes encompass values between the 25th and 75th percentile whereas the tails - the top and 
bottom quartiles. Outliers are marked with a circle. The performance metrics correspond to the optimal operating point of each 
classifier. 

Fig. 5. ROC curves of pMCI vs sMCI classification for four 
input combinations: MRI images and clinical features; JD 
images and clinical features; Atlas-masked MRI (or just 
masked MRI) images and clinical features and finally a MRI; 
and Jacobian Determinant images and clinical features. The 
MRI data was co-registered to our custom template prior to 
performing classification. 
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 The highest median classification accuracy we achieved was 86%, which resulted from the experiments 
with the structural MRI and clinical data. The atlas-masked MRI and clinical data variant yielded the second 
most predictive power with 84% classification accuracy, whereas the JD images and the clinical features 
gave 83% accuracy. Finally, employing all input features also resulted in an accuracy of 83%. Across the 
classification results from our four different input combinations the median sensitivity varies between 85%-
87.5%, and the median specificity between 78% and 94% across the test folds.  
 Tables 2 and 3 summarize the performance metrics obtained from applying our deep learning 
methodology not only on the pMCI vs sMCI problem but also on AD vs healthy classification. Owing to the 
simpler nature of AD vs HC discrimination, regardless of the input streams and the co-registration template, 
results are close to 100% on all performance metrics. 
 

6.2.  Network robustness on non-custom template 
We measured the classification performance of our deep learning network on MRI data co-registered to the 
Montreal Neurological Institute (MNI152) template instead of the custom normalization space. The purpose 
of these experiments is to assess the robustness of the methodology to possible structural misalignment in 
the brain areas across images as the MNI space is more "distant" from the images under study. 

Results are summarized in fig. 8 and tables 2 and 3. In order to identify performance differences 
between using our custom and the MNI152 templates, we performed Mann Whitney U tests across folds on 
the obtained AUCs corresponding to the different input combination pairs (custom template vs MNI 
template). The obtained p-values are 0.28, 0.42 and 0.24 for the structural MRI and clinical features, Jacobian 
Determinants and clinical features, and the combined inputs respectively. Consequently, no statistically 
significant difference can be found between the performance of our classifier while operating in the two 
normalization spaces. 

Fig. 7. Box plots for AUC, accuracy, sensitivity and specificity obtained on the pMCI vs sMCI classification task from structural MRI, Jacobian 
Determinant and atlas-masked structural MRI inputs (all using clinical features) over 10 separate test folds. The MRI data is co-registered to 
the MNI(152) template. The black line in each box represents the median value. The boxes encompass values between the 25th and 75th percentile 
whereas the tails - the top and bottom quartiles. Outliers are marked with a circle. The performance metrics correspond to the optimal operating 
point of each classifier. 
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6.3. Classification variance 
Although we achieve high median performance on all metrics and on both registration templates, dispersion can 
be further reduced. We have plotted the standard deviation of the mean training and validation losses across the 
10 test folds of the model which achieved the highest classification accuracy on fig. 8 (structure MRI and clinical 
features co-registered to our custom template). 
 One factor which contributes to the higher validation variance compared to the training loss curve is the 
number of samples. Since both the validation and test sets comprise an order of magnitude less subjects than the 
training set, we also expect them to have higher variance. Secondly, although the CNN weights were optimized 
using a variant of stochastic gradient descent, the hyper parameters, such as the dropout rate, the L2 regularization 
hyper parameter, the initial learning rate and learning rate decay were set to pre-defined values which gave good 
performance on only one of the validation folds. This was done as performing hyper parameter search was deemed 
prohibitive given the number of experiments we performed. Consequently, as the dataset is relatively small, we 
observed some level of overfitting or bias, depending on the specific data split employed, which indicates room 
for improvement on our current results. High performance metric variance is most prevalent in the sensitivity and 
specificity box plots since they are calculated only using either the true positives or true negatives, i.e. half the 
test set. Accordingly, some studies (Moradi et al. 2015, Hojjati et al. 2017, Tong et al. 2017) repeat their cross-
validation loops many times (such as 100 or a 1000 times) in order to further reduce their performance variance, 
which was also presumed to be prohibitive for computational reasons. 
 

7.  Discussion: 
Deep learning, or deep neural networks, works by extracting a hierarchy of features from the input data via 

flexible non-linear transformations. These new data representations are learnt such that they maximize an arbitrary 
performance metric, for example classification accuracy. Hence, instead of relying on expert prior knowledge, or 
other dimensionality reduction algorithms which might result in a non-optimal set of features, deep neural 
networks use the gradient in the performance metric to directly guide the feature extraction mechanism. This can 
result in significant improvements in classification results. Additionally, given that the feature representations are 
built in a multi- layered fashion (where higher level features are derived from lower level ones), articulate and 
information-rich images and volumes can be dealt with and incorporated easily into the classification process.  

Fig. 8. A plot of the training and validation losses for 
our CNN architecture which utilises structural MRI and 
clinical features. The standard deviation of the 
validation loss encompasses the red area in the image, 
whereas whereas the deviation of the training loss is 
depicted in blue. 
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 In this paper, we developed a new method with the primary goal of early identification of MCI patients with 
high risk of converting to Alzheimer’s disease up to three years prior to diagnosis, and the subsidiary task of 
Alzheimer’s patient vs. healthy control discrimination. Our approach uses a parameter-efficient deep 
convolutional neural network framework, inspired by grouped and separable convolutions, to extract descriptive 
factors from structural MRI images acquired at baseline. In this respect our work differs from previous deep 
learning-based methods of early AD detection in that it takes into consideration data paucity in medical datasets 
and introduces design precautions by reducing the number of network parameters. This in turn increases the 
generalization capabilities (i.e. reduces overfitting) of our model to unseen test samples, thus enabling us to 
achieve state-of-the-art MCI-to-AD classification performance. The structural MRI images are complemented by 
standard cognitive test results (CDRSB, ADAS, RAVLT), demographic information (age, gender, ethnic and 
racial categories, education) and APOe4 expression levels also acquired at baseline to arrive at a final score which 
is used to predict conversion. We chose these biomarkers in order to create a classification methodology which is 
as minimally invasive as possible. Hence, for example, we do not include PET imaging because of radiation 
exposure and CSF data owing to the potentially painful lumbar puncture which can also lead to clinical 
complications. Additionally, we exploited AD/HC data to limit the effects of overfitting. This was achieved by 
multi-task learning where the same network layers are used to extract representations from the input biomarkers 
for both the MCI-to-AD conversion task and the AD/HC classification problem. While previous methods employ 
pre-training (Payan et al. 2015; Hosseini-Asl et al. 2016; Liu et al. 2018; Liu et al. 2015) to reap similar 

Table 2. A comparison table between the median performance metrics on the pMCI vs sMCI classification task using our 
neural network model. 

Table 3. A comparison table between the median performance metrics on the AD vs healthy classification task using our neural 
network model. 

 pMCI vs sMCI 

Input Modalities 
Custom template MNI152 template 

AUC ACC SEN SPE AUC ACC SEN SPE 

MRI and clinical 0.92 86% 87.5% 84% 0.91 85% 82% 87% 

Atlas-masked MRI 
and clinical 0.93 84% 87.5% 94% - - - - 

JD and clinical 0.88 83% 84% 78% 0.88 82% 82% 81% 

MRI and JD and 
clinical 0.91 83% 87.5% 81% 0.90 83% 77% 88% 

 

 AD vs HC 

Input Modalities 
Custom template MNI152 template 

AUC ACC SEN SPE AUC ACC SEN SPE 

MRI and clinical 1 99.5% 100% 99% 1 99.5% 100% 99% 

Atlas-masked MRI 
and clinical 1 99.5% 100% 99% - - - - 

JD and clinical 1 99% 99.5% 99% 0.99 97% 95% 99% 

masked and JD and 
clinical 1 99.5% 100% 99% 1 99% 99% 99% 
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benefits, this requires training the model twice, whereas dual-learning is a single-stage procedure. Our 
experimental procedures assess the performance of our method using two different co-registration templates (a 
custom one and the MNI152) as well as various input combinations of structural MRI, the local JD of the 
deformational field applied during MRI co-registration, as well as the clinical data. The best result we obtained 
was a mean AUC of 0.93 averaged across 10 different testing folds with a mean MCI-to-AD conversion prediction 
accuracy of 86%, sensitivity of 87.5% and specificity of 85% (see table 3). It is also important to note that, to the 
best of our knowledge, the only study which presents better classification results on the pMCI vs sMCI problem 
(Hojjati et al. 2017) does not explicitly mention the use of separate test, validation and training sets, possibly 
leading to double-dipping. They report their results on a validation set instead of a dedicated test set.  
 The main novelties of our method were 1) the use of parameter-efficient layers, such as grouped and separable 
convolutions (implemented as custom Keras layers for 3D inputs) to reduce the number of network parameters, 
hence limiting overfitting; 2) the substitution of network pre-training, which was typical in earlier deep-learning 
based AD classification studies (Payan et al. 2015, Hosseini-Asl et al. 2016), with multi-task learning which 
utilizes AD/HC data to arrive at a single-stage training approach and 3) the utilization of the JD as a 
complementary imaging input stream to maximize the extracted information from the structural MRI. 
Convolutional neural networks abstract away the manual handcrafting of useful features from medical images, 
such as the use of pre-defined brain regions of interest (Da et al. 2013). Intuitively, neural network- based methods 
should perform better as the feature extraction process is directly driven by the performance optimization 
procedure, however, it comes at the cost of a relatively high number of network parameters compared to the 
number of samples. Since there are no formal estimates of the number of training samples required for a given 
convolutional architecture to achieve good generalization, we are driven by the metaheuristic approach of 
minimizing the number of network weights and maximizing the effective number of training examples so as to 

Author Data AUC ACC SEN SPE Conversion time Validation and 
Testing method 

Spasov et al. 
(this paper) 

structural MRI + cognitive 
measures + APOe4 + 

demographics 
0.93 86% 87.5% 85% 0-36 months 10-fold cross-

validation 

Hojjati et al. rs-fMRI 0.95 91.4% 83.24% 90.1% 0-36 months 
9-fold cross-validation 
(report on validation 

set) 

Moradi et al. structural MRI + cognitive 
measures 0.9 82% 87% 74% 0-36 months 10-fold cross-validation 

(report on test set) 

Liu et al. (Cox) 
structural MRI + FDG-PET 

+ cognitive measures + 
APOe4 + demographics 

0.92 84.6% 86.5% 82.4% 0-36 months holdout 

Korolev et al. 
structural MRI + clinical 
data + plasma-proteomic 

data + medications 
0.87 80% 83% 76% 0-36 months 

10-fold cross-
validation (report on 

test set) 

Beheshti et al. structural MRI 75.08 75% 77% 73% 0-36 months 10-fold cross-
validation 

Choi et al., 2018 
flurodeoxyglucose and 

florbetapir PET 0.89 84.2% 81% 87% 0-36 months holdout 

Tong et al., 2017 structural MRI + cognitive 
measures 0.92 84% 88.7% 76.5% 0-36 months 10-fold cross-

validation (report on 
test set) 

D. Lu et al. 2018 
(1) FDG-PET - 82.5% 81.4% 83% 0-36 months  10-fold cross-

validation 
 Table 3. A comparative table of methodologies on the pMCI vs sMCI classification task using the ADNI dataset. We provide a 

performance comparison table mainly for recent studies achieving classification rates close to the state-of-the-art. 
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boost performance on an independent test set and consequently during clinical application. As a result, our 3D 
model comprises ~500,000 parameters, which is orders of magnitude lower than conventional 3D CNNs and even 
lower than even recent 2D CNNs. This was not done by sacrificing network depth or structural complexity but 
rather by inserting efficient convolutional layers. In order to facilitate the learning procedure, we hypothesized 
that employing an auxiliary task and minimizing the joint training objective of the MCI-to-AD conversion and 
AD/HC classification tasks would be an effective alternative to pre-training. In this context, AD/NC 
discrimination is seen as a simpler version of MCI conversion prediction, and in order to speed up training 
convergence we worked under the assumption that similar descriptive factors would be useful for both problems. 

We also performed experiments to assess the robustness of our method to two different co-registration 
templates (MNI_152_1mm and a custom, study specific template), aiming to a) identify the most predictive 
combination of input data and assess how our model handles irrelevant features, and b) identify whether the image 
co-registration method had a statistically significant impact on the classification accuracies we obtain. Firstly, we 
found that the classification performance of our network over 10 different test folds was not statistically different 
between the two co-registration procedures for corresponding input combinations, with Mann-Whitney U test p-
values in the 0.24-0.42 range. Secondly, we found that the most predictive input combination comprised structural 
MRI and clinical data. All input variants other than the JD combined with clinical data performed at a similar and 
statistically indistinguishable level, achieving prediction accuracies in the range 83%-86%, sensitivity at 87.5% 
and specificity in the range of 81%-94%. Finally, as the input variants including the brain atlas-masked MRI and 
non-masked MRI performed at the same level, we concluded that the inclusion of irrelevant or partially relevant 
features does not hinder the performance of our model. 

Considering existing computer vision research, deep learning methodologies for computer-aided 
diagnostics would also be applicable on non-co-registered or even non-pre-processed images, however, this 
approach could lead to image artefacts contributing to the discriminatory performance of the algorithm, which 
could learn to relate center-specific (rather than disease-specific) features with disease outcomes. As with all 
multicentric studies, careful and unified data collection and processing is crucial to minimize this confound. 

Comparing our classification metrics with recent studies indicate that only Hojjati et al. 2017 et al. who use 
rs-fMRI outperform our results (although, as mentioned above, only reporting on a validation set comprising 4 
subjects via 9-fold cross-validation). Unfortunately, at the time of writing ADNI provides limited rs-fMRI data 
(18 pMCI and 62 sMCI subjects) so it would be difficult to predict how their results would scale to larger 
populations. Additionally, using structural MRI only can significantly reduce in-patient scanner time as opposed 
to including a functional scan. To the best of our knowledge, the study by Liu et al. 2017 is the first to produce 
comparable performance (at least in some metrics) to our model, at 84.6% classification accuracy vs 86% for our 
work. The difference is, however, that Liu et al. 2017 utilize FDG-PET as an extra modality which is known to 
be extremely informative in AD, as well as structural MRI and all the biomarkers we have employed. Moradi et 
al. 2015 and Tong et al. 2017 both use a very similar methodology to each other and the same data (structural 
MRI and cognitive assessment tests) as in this paper. Their sensitivity metrics are comparable to our model at ~ 
87%-88% but manifest lower specificity at 74% and 76% respectively, while our deep learning method achieves 
85%. A possible explanation would be the inclusion of APOe4 and demographic data as well as the efficacy of 
the neural network. Also, as is discussed in Moradi et al. 2015 the labelling of subjects varies across studies, 
thus hampering direct comparisons. 

In summary, we developed a deep learning-based method for the early prediction of MCI-to-AD converts 
by combining structural MRI, neuropsychological assessment data and APOe4 expression levels obtained from 
the ADNI database at baseline. We achieved a very high predictive performance with an average AUC of 0.93, 
prediction accuracy of 86%, sensitivity of 87.5% and specificity of 85%. Our study proposes the use of more 
efficient neural network architectures comprising fewer parameters to limit the effects of overfitting. The 
convolutional framework is generic and applicable to any 3D image dataset and gives the flexibility to design a 
computer-aided diagnosis system targeting the prediction of any medical condition utilizing multi-modal imaging 
and tabular clinical data. 
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