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Abstract

In this paper we develop and analyse a malaria model with season-
ality; periodic-mosquitoes per capita birth rate, mosquitoes death rate,
-infectivity of humans and mosquitoes, and -mosquitoes biting rate. All
these parameters are assumed to be time dependent leading to a nonau-
tonomous differential equations system. We provide a global analysis of
the model depending on some threshold R0. When R0 < 1, then the
disease-free equilibrium is globally asymptotically stable and the disease
died out from the host population. On the contrary, if R0 > 1, the
disease persists in the host population in the long term and the model
admits at least one positive periodic solution. The simulation results
are in accordance with the seasonal variation of the reported cases of a
malaria-epidemic region in Mpumalanga province in South Africa.

Keywords: Seasonal pattern; Periodic solution; Basic reproduction
ratio; Global stability; Uniform persistence

1 Introduction

Malaria is a potentially deadly disease caused by infection with Plasmodium
protozoa transmitted by an infective female Anopheles mosquito. Globally, an
estimated 216 million malaria cases was recorded in 2016 which is an increase of
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about 5 million cases over 2015 (WHO, 2017). In the same year, almost 445,000
individuals lost their lives to the life-threatening disease (WHO, 2017).

Despite more than a century of research, there is a dearth of information on
the mechanistic link between environmental variables, such as temperature and
malaria risk (Lafferty, 2009; Paaijmans et al., 2009; Alonso et al., 2011). Temper-
ature is fundamentally linked to malaria mosquito and parasite vital rates, and
understanding the role of temperature in malaria transmission is particularly im-
portant in light of climate change. Using mathematical model, several attempts
have been made to highlight some of the importance of climate variables on
malaria transmission. Mordecai et al. (2013) built nonlinear thermal-response
models to understanding the effects of current and future temperature regimes
on malaria transmission. The models, which include empirically derived non-
linear thermal responses, predicts optimal malaria transmission at 25◦C (6◦C
lower than previous models).

Dembele et al. (2009) proposed an ordinary differential equation (ODE)
compartmental model for the spread of malaria with susceptible-infectious-
recovered (SIRS) pattern for humans and a susceptible-infectious (SI) pattern
for mosquitoes with mosquitoes periodic birth rate and death rate. More re-
cently, Abiodun et al. (2017) developed and analysed a comprehensive mosquito-
human dynamical model. The model was validated by Abiodun et al. (2018)
over KwaZulu-Natal province – one of the epidemic provinces in South Africa.
Several other studies (Craig et al., 1999; Laneri et al., 2015; Roy et al., 2015;
Abiodun et al., 2016; Okuneye & Gumel, 2017; Abdelrazec & Gumel, 2017;
Eikenberry & Gumel, 2018; Beck-Johnson et al., 2017; Hoshen & Morse, 2004)
have explored the impacts of environmental variables on malaria transmis-
sion and mosquito abundance. However, little has been done with regard to
mosquito-human malaria transmission model with time dependent parameters
with periodic variations. For instance, let us mention the work of Dembele et al.
(2009) with periodic mosquito per capita death and birth rate; and the recent
work of Bakary et al. (2018) with periodic mosquito biting rate. However, many
other mosquito life-history traits (including larval development rate, larval sur-
vival, adult survival, biting rate, fecundity, and vector competence) are well
known to have seasonal variation (Mordecai et al., 2013; Eikenberry & Gumel,
2018). This present study aims to (i) proposed and analyze a human-mosquito
malaria transmission model including all these life-history traits with periodic
variation and (ii) validate the model proposed over a malaria-epidemic region
in Mpumalanga province in South Africa.

The model proposed in this paper divides the human population into four
classes: susceptible-exposed-infectious-recovered (SEIRS) and mosquitoes pop-
ulation into three classes: susceptible-exposed-infectious (SEI). The SEIRS pat-
tern for humans and SEI pattern for mosquito model have been also proposed
by Chitnis and collaborators (Chitnis et al., 2006, 2008). Human migration is
present throughout the world and plays a large role in the epidemiology of dis-
eases, including malaria. In many parts of the developing world, there is rapid
urbanization as many people leave rural areas and migrate to cities in search
of employment. We include this movement as a constant immigration rate into

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2018. ; https://doi.org/10.1101/377184doi: bioRxiv preprint 

https://doi.org/10.1101/377184
http://creativecommons.org/licenses/by-nc-nd/4.0/


the human susceptible class. We make a simplifying assumption that there is
no immigration of recovered humans and also include the direct infectious-to-
susceptible recovery as in the model of Ngwa & Shu (2000).

This work is organized as follows: In Section 2, we fully describe the malaria
seasonal model studied in this paper as Section 3 describes the main results.
Section 4.1 is devoted for deriving preliminary results and remarks that will be
used to study the long-term behavior of the problem. Section 4.2 is concerned
with the proof of the main result that, roughly speaking, states that when some
threshold (explicitly expressed using the parameters of the system) R0 < 1 the
disease die out from the host population; and when R0 > 1 the disease persists
in the host population in the long term and the model admits at least one
positive periodic solution. The numerical simulations and discussion are given
in Sections 5 with a concluding remark in Section 6.

2 The malaria seasonal model

The model sub-divides the total human population at time t, denoted by Nh(t),
into the following sub-populations of susceptible Sh(t), exposed (infected but
not infectious) Eh(t), infectious Ih(t) and recovered individuals with temporary
immunity Rh(t). So that Nh(t) = Sh(t) + Eh(t) + Ih(t) +Rh(t).

The total vector (mosquito) population at time t, denoted by Nv(t), is sub-
divided into susceptible Sv(t), exposed Ev(t) and infectious mosquitoes Iv(t).
Thus, Nv(t) = Sv(t) + Ev(t) + Iv(t).

Susceptibles individuals are recruited at a constant rate Λh. We define the
force of infection from mosquitoes to humans by (β1(t)αθ(t)Iv/Nv) as the prod-
uct of the transmission rate per contact with infectious mosquitoes β1(t), the
mosquito contact rate α, the mosquito biting rates θ(t) and the probability that
the mosquito is infectious Iv/Nv. Then infected individuals move to the exposed
class at a rate (β1(t)αθ(t)IvSh/Nv). The natural death rate of human is µh. The
rate of progression from exposed class to infectious individuals class is σh while
infectious individuals recovered due to treatment at a rate γh. The infectious
humans after recovery without immunity become immediately susceptible again
at rate (1 − r), where r is the proportion of infectious humans who recovered
with temporary immunity. Recovered individual loses immunity at a rate kh.

Susceptible mosquitoes are generated at a per capita rate bv(t) at time t
and acquire malaria through contacts with infectious humans with the force of
infection (β2(t)αθ(t)Ih/Nh) as the product of the probability of disease trans-
mission from human to the mosquito β2(t), the mosquito contact rate α and the
probability that human is infectious Ih/Nh. Hence, newly infected mosquitoes
are moved into the exposed class at a rate (β2(t)αθ(t)IhSv/Nh) and progress
to the class of infectious mosquitoes at a rate σv. Mosquitoes are assumed to
suffer death due to natural causes at a rate µv(t) at time t.

The non-autonomous model has time-dependent ω-periodic coefficients which
account for the environmental variations in the infectivity of both human and
mosquitoes populations, the birth rate of the mosquitoes population, the biting
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rate of the mosquitoes population and the death rates of mosquitoes. Setting
ẏ := dy

dt , the resulting system of equation is shown below:

Ṡh = Λh − αβ1(t)θ(t)
Iv
Nv

Sh + khRh + (1− r)γhIh − µhSh;

Ėh = αβ1(t)θ(t)
Iv
Nv

Sh − (σh + µh)Eh;

İh = σhEh − (γh + ρh + µh)Ih;

Ṙh = rγhIh − (kh + µh)Rh;

Ṡv = bv(t)Nv − αβ2(t)θ(t)
Ih
Nh

Sv − µv(t)Sv;

Ėv = αβ2(t)θ(t)
Ih
Nh

Sv − (σv + µv(t))Ev;

İv = σvEv − µv(t)Iv;
Ṅh = Λh − µhNh − ρhIh;

Ṅv = (bv(t)− µv(t))Nv.

(2.1)

Table 1: Parameter description

Constant parameters

Λh human recruitment rate.
µh human per capita death rate.
α mosquitoes contact.
kh rate of loss of immunity.
γh human recovery rate.
r rate of recovered with temporary immunity.
σh progression rate from exposed class to infectious individuals.
σv progression rate from exposed class to infectious mosquitoes.
ρh human disease induce mortality rate.

ω-Periodic parameters

bv(t) mosquitoes per capita birth rate.
µv(t) mosquitoes per capita death rate.
β1(t) infectivity of humans.
β2(t) infectivity of mosquitoes.
θ(t) biting rate of mosquitoes.

To simplify the analysis of the malaria model (2.1), we work with fractional
quantity instead of actual populations by scaling the population of each by the
total species population. We let

sh = Sh/Nh, eh = Eh/Nh, ih = Ih/Nh, rh = Rh/Nh,

sv = Sv/Nv, ev = Ev/Nv, iv = Iv/Nv.
(2.2)
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Differentiating the scaling equations (2.2) and solving for the derivatives of
scaled variables, we obtain for example

deh
dt

=
1

Nh

[
dEh
dt
− eh

dNh
dt

]
and

dev
dt

=
1

Nv

[
dEv
dt
− ev

dNv
dt

]
and so on for the other variables.

This creates a new seven-dimensional system of equations with two dimen-
sions for the two total population variables, Nh and Nv, and five dimensions
for the fractional population variables, eh, ih, rh, ev, and iv. For convenience
we still use sh = Sh, eh = Eh, ih = Ih, sv = Sv, ev = Ev and iv = Iv. Since
the compartment (eh, ih, rh, ev, iv, Nh) does not include the Nv-compartment,
we have:



Ėh = αβ1(t)θ(t)Iv(1− Eh − Ih −Rh)− (σh +
Λh
Nh

)Eh + ρhEhIh;

İh = σhEh − (γh + ρh +
Λh
Nh

)Ih + ρhI
2
h;

Ṙh = rγhIh − (kh +
Λh
Nh

)Rh + ρhIhRh;

Ėv = αβ2(t)θ(t)Ih(1− Ev − Iv)− (σv + bv(t))Ev;

İv = σvEv − bv(t)Iv;
Ṅh = Λh − µhNh − ρhIhNh;

(2.3)

and

Eh(0) ≥ 0; Ih(0) ≥ 0; Rh(0) ≥ 0; Ev(0) ≥ 0; Iv(0) ≥ 0, Nh(0) > 0. (2.4)

The variables of the model are resumed in Table 1.
In what follow we shall discuss the asymptotic behavior of system (2.3)-(2.4)

and we will make use the following assumption.

Assumption 2.1 We assume that, Λh, µh, α, kh, γh, r, σh and σv are positives
constants with the exception of the disease-induced death rate ρh, which is non-
negative constant. The functions bv(.), µv(.), β1(.), β2(.) and θ(.) are ω-periodic
and belong to L∞+ (0, ω,R+).

3 Main results

In what follows, we introduce the basic reproduction ratio R0 for system (2.3)
according to general procedure presented in (Wang & Zhao, 2008; Liu et al.,
2010) and references therein. The positive equilibrium human and mosquito
population, in the absence of disease, for system (2.3) is M0 = (0, 0, 0, 0, 0, N∗h);
where N∗h = Λh/µh.
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The equation for exposed and infectious for both human and mosquitoes
populations of the linearized system of model (2.3) at M0 is

d

dt
(Eh, Ih, Ev, Iv)

T = (F (t)− V (t)).(Eh, Ih, Ev, Iv)
T ;

where

F (t) =


0 0 0 αβ1(t)θ(t)
0 0 0 0
0 αβ2(t)θ(t) 0 0
0 0 0 0

 ;

and

V (t) =


σh + µh 0 0 0
−σh γh + ρh + µh 0 0

0 0 σv + bv(t) 0
0 0 −σv bv(t)


(3.5)

Let ΦV (t) and ρ(ΦV (ω)) be the monodromy matrix of the linear ω-periodic
system dz

dt = V (t)z and the spectral radius of ΦV (ω), respectively. Assume
Y (t, s), t ≥ s, is the evolution operator of the linear ω-periodic system

dz

dt
= −V (t)z. (3.6)

That is, for each s ∈ R, the 4× 4 matrix Y (t, s) satisfies

d

dt
Y (t, s) = −V (t)Y (t, s), ∀t ≥ s, Y (s, s) = I,

where I is the 4 × 4 identity matrix. Thus, the monodromy matrix Φ−V (t) of
(3.6) is equal to Y (t, 0) for t ≥ 0.

Now, we deal with disease-free equilibrium invasion process (Van den Driess-
che & Watmough, 2008) and references therein. Let φ(s) the initial distribution
of infectious individuals. Then F (s)φ(s) is the rate of new infections produced
by the infected individuals who were introduced at time s. Given t ≥ s, then
Y (t, s)F (s)φ(s) gives the distribution of those infected individuals who were
newly infected at time s and remain in the infected compartments at time t. It
follows that

ψ(t) :=

∫ t

−∞
Y (t, s)F (s)φ(s)ds =

∫ ∞
0

Y (t, t− s)F (t− s)φ(t− s)ds

is the distribution of accumulative new infections at time t produced by all those
infected individuals φ(s) introduced at time previous to t.

Let Cω(R,R4) be the ordered Banach space of all ω-periodic functions from
R to R4 which is equipped with the maximum norm ||.|| and the positive cone
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C+
ω (R,R4) = {φ ∈ Cω(R,R4) : φ(t) ≥ 0}. Then we can define a linear operator
L : Cω(R,R4)→ Cω(R,R4) by

Lφ(t) =

∫ ∞
0

Y (t, t− s)F (t− s)φ(t− s)ds, ∀t ∈ R, φ ∈ Cω(R,R4). (3.7)

Following (Wang & Zhao, 2008), we call L the next generation operator, and
define the basic reproduction ratio as R0 = ρ(L), the spectral radius of L.

In the special case of β1(t) ≡ β1, β2(t) ≡ β2, bv(t) ≡ bv and θ(t) ≡ θ ∀t ≥ 0,
we obtain F (t) ≡ F and V (t) ≡ V . By Van den Driessche & Watmough (2008),
the basic reproduction ratio is:

R0 =

√
α2θ2β1β2σhσv

(σh + µh)(γh + ρh + µh)(σv + bv)bv
. (3.8)

As pointed in (Chitnis et al., 2006), The original definition of the reproduc-
tive number of the Ross-Macdonald model (Anderson & May, 1992) and the
Ngwa and Shu model (Ngwa & Shu, 2000), is equivalent to the square of this
R0. Anderson and Ngaw use the traditional definition of the reproductive num-
ber, which approximates the number of secondary infections in humans caused
by one infected human, while the R0 used here is consistent with the definition
given by the next generation operator approach (Van den Driessche & Wat-
mough, 2008) which approximates the number of secondary infections due to
one infected individual (be it human or mosquito). Moreover, the number of
new infections in humans that one human causes through his/her infectious pe-
riod is R2

0, not R0. Because this definition of R0 (3.8) is based on the next
generation operator approach, it counts the number of new infections from one
generation to the next. That is, the number of new infections in mosquitoes
counts as one generation.

For any ω-periodic function z(t), we define the avaerage of the function z by
setting

〈z〉 =
1

ω

∫ ω

0

z(t)dt.

We further define the average basic reproduction ratio (according to the periodic
parameters)

〈R0〉 =

√
α2〈θ〉2〈β1〉〈β2〉σhσv

(σh + µh)(γh + ρh + µh)(σv + 〈bv〉)〈bv〉
.

In general, R0 6= 〈R0〉. For example, in a tuberculosis model it was shown, in
(Liu et al., 2010), that R0 < 〈R0〉, and in Dengue fever model it was shown in
(Wang & Zhao, 2008) that R0 > 〈R0〉. We can also consult Friedman (2013)
for more details.

To deal with model (2.3), some notations will be given. Let us identify xh
together with (Eh, Ih, Rh, Nh)T and xv together with (Ev, Iv)

T and set x =
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(xTh , x
T
v )T . Define

Ω =

{
(xTh , x

T
v )T ∈ R6

∣∣∣∣∣Eh ≥ 0; Ih ≥ 0; Rh ≥ 0; Ev ≥ 0; Iv ≥ 0, Nh > 0,

Eh + Ih +Rh ≤ 1; Ev + Iv ≤ 1

}
,

X0 := {(xTh , xTv )T ∈ Ω : Eh + Ih + Ev + Iv > 0} and ∂X0 := Ω \X0.

Using the above notations the main result of this work is the following the-
orem.

Theorem 3.1 Let Assumption 2.1 be satisfied.

(i) The disease-free equilibrium M0 for System (2.3)-(2.4) is globally asymptot-
ically stable if R0 < 1 and unstable if R0 > 1.

(ii) If R0 > 1, then system (2.3)-(2.4) is uniformly persistence with respect to
the pair (X0, ∂X0), in the sense that there exists δ > 0, such that for any
x0 ∈ X0 we have,

lim inf
t→∞

d(x(t, x0), ∂X0) ≥ δ,

and system (2.3) admits at least one positive periodic solution; where
x(t, x0) is the unique solution of (2.3) with x(0, x0) = x0.

This result says that when R0 < 1 the disease die out from the host popu-
lation; and when R0 > 1 the disease persists in the human host population in
the long term.

4 Preliminary and proof of Theorem 3.1

The aim of this section is to derive preliminary remarks on (2.3)-(2.4). These
results include the existence of the unique maximal non-autonomous semiflow
associated with this system and technical Lemmas that will be used to prove
Theorem 3.1.

4.1 Preliminary results

As in (Hirsch & Smith, 2006), the following vector order in Rn will be used. For
u, v ∈ Rn, we write

u ≤ v ⇔ ui ≤ vi,
u < v ⇔ ui ≤ vi, u 6= v,

u� v ⇔ ui < vi,

where i = 1, . . . , n.

Definition 4.1 Consider two maps τ : [0,∞) × Ω → (0,∞] and U : Dτ → Ω,
where Dτ =

{
(t, s,v) ∈ [0,∞)2 × Ω : s ≤ t ≤ s+ τ(s,v)

}
. We say that U is a

maximal non-autonomous semiflow on Ω if U satisfies the following properties:
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(i) τ(r,U(r, s)v) + r = τ(s,v) + s,∀s ≥ 0,∀v ∈ Ω,∀r ∈ [s, s+ τ(s,v)).
(ii) U(s, s)v = v,∀s ≥ 0,∀v ∈ Ω.
(iii) U(t, r)U(r, s)v = U(t, s)v,∀s ≥ 0,∀v ∈ Ω,∀t, r ∈ [s, s + τ(s,v)) with

t ≥ r.
(iv) If τ(s,v) < +∞, then limt→(s+τ(s,v))− ||U(t, s)v||Ω = +∞.

We first derive that the Cauchy problem (2.3)-(2.4) generates a unique globally
defined and positive non-autonomous semiflow.

Theorem 4.2 Let Assumption 2.1 be satisfied. Then there exits a map τ :
[0,∞)×Ω→ (0,∞] and a maximal non-autonomous semiflow U : Dτ → Ω, such
that for each x0 := x(0) ∈ Ω and each s ≥ 0, U(., s)x0 ∈ C ([s, s+ τ(s, x0)),Ω) is
a unique maximal solution of (2.3)-(2.4). The map U(t, s)x0 := (xh(t)T , xv(t)

T )T

satisfied the following properties: The subsets X0 and ∂X0 are both positively
invariant under the non-autonomous semiflow U ; in other words,

U(t, s)X0 ⊂ X0 and U(t, s)∂X0 ⊂ ∂X0, ∀(t, s) ∈ Dτ .

Proof. The proof of this result is rather standard. Standard methodology apply
to provide the existence and uniqueness of the semiflow of system (2.3)-(2.4)
(Wanner & Hairer, 1991; Hartman, 1964; Katok & Hasselblatt, 1997; Morris et
al., 1973).

Let us check the positive invariance of Ω with respect to the semiflow U(t).
To do so, let x0 = (Eh(0), Ih(0), Rh(0), Ev(0), Iv(0), Nh(0))T ∈ Ω, we shall prove
that U(t, s)x0 = (Eh(t), Ih(t), Rh(t), Ev(t), Iv(t), Nh(t))T ∈ Ω for all (t, s) ∈ Dτ .
Recalling Assumption 2.1 we easily find that Nh(t) > 0 for all t ≥ 0.

For the other variables, we consider first the case where Ih(0) > 0. Using
the continuity of the semiflow we find t0 > 0 such that Ih(t) > 0 for t ∈
[0, t0]. If there is t1 ∈ [0, t0] such that Eh(t1) + Ih(t1) + Rh(t1) = 1, then
Ėh(t1)+İh(t1)+Ṙh(t1) < 0. Therefore Eh(t)+Ih(t)+Rh(t) ≤ 1 for all t ∈ [0, t0].
Similarly, Ev(t) + Iv(t) ≤ 1 for all t ∈ [0, t0]. If Ev(t1) = 0 for t1 ∈ [0, t0], then
Ev-equation of system (2.3) gives Ėv(t1) = αβ2(t1)θ(t1)Ih(t1)(1 − Iv(t1)) ≥ 0.
Thus Ev(t) ≥ 0 for all t ∈ [0, t0]. The same arguments give successively that
Rh(t) ≥ 0, Iv(t) ≥ 0 and Eh(t) ≥ 0, for 0 < t ≤ t0.

We next show that Ih(t) remains positive for all t ≥ t0. Proceeding by contra-
diction we suppose that Ih(t) > 0 for 0 ≤ t < t0 and Ih(t0) = 0. Then İh(t0) ≤ 0.
On the other hand, by Ih-equation of System (2.3), İh(t0) = σhEh(t0) > 0,
which is a contradiction. This complete the proof of the first part of theorem
in the case Ih(0) > 0. It remains to consider the case Ih(0) = 0. In this case,
recalling Eh(0) + Rh(0) ≤ 1 so that either Eh(0) > 0 or Rh(0) > 0. Without
loss of generality, we suppose Eh(0) > 0 and denote by xδ(t) the solution (δ-
solution) of System (2.3) with Eδh(0) = Eh(0) − δ, Iδh(0) = δ, Rδh(0) = Rh(0),
Eδv(0) = Ev(0), Iδv (0) = Iv(0); Nh(0)δ = Nh(0); where 0 < δ < Eh(0). By what
we have already proved, the δ-solution xδ(t) remains on Ω for all t > 0. Taking
δ → 0, the first part of the theorem follows.

To end the proof of the theorem, let

x0 = (Eh(0), Ih(0), Rh(0), Ev(0), Iv(0), Nh(0))T ∈ X0
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be given and let us denote for each (t, s) ∈ Dτ ,

U(t, s)x0 = (Eh(t), Ih(t), Rh(t), Ev(t), Iv(t), Nh(t))T ,

the orbit of system (2.3) passing through x0. Let us set yh(t) = Eh(t) + Ih(t)
and yv(t) = Ev(t) + Iv(t). It follows from system (2.3) that ẏh(t) ≥ −fh(t)yh(t)
and ẏv(t) ≥ −fv(t)yv(t); with fh(t) = αβ1(t)θ(t)Iv + Λh/Nh + ρh + γh and
fv(t) = αβ2(t)θ(t)Ih + bv(t). That is

yh(t) ≥ yh(0)e−
∫ t
0
fh(η)dη and yv(t) ≥ yv(0)e−

∫ t
0
fv(η)dη.

This end the proof of the fact that U(t, s)X0 ⊂ X0.
Now, let x0 ∈ ∂X0. We have ẏh(t) + ẏv(t) ≤ fh+v(t)(yh(t) + yv(t)), where

fh+v(t) = αβ1(t)θ(t) + αβ2(t)θ(t) + ρh(Ih + Eh). Then,

(yh(t) + yv(t)) ≤ (yh(0) + yv(0))e−
∫ t
0
fh+v(η)dη.

Since yh(0) +yv(0) = 0, we find that yh(t) +yv(t) = 0. Therefore, U(t, s)∂X0 ⊂
∂X0.

Recalling (3.5), we now deal with the spectral properties of the linearized
system of model (2.3) at the disease-free equilibrium M0.

In the periodic case, we let Wλ(t, s), t ≥ s, s ∈ R, be the evolution operator
of the linear ω-periodic system

dz

dt
=

(
1

λ
F (t)− V (t)

)
z, t ∈ R

with parameter λ ∈ (0,∞). Clearly, ΦF−V (t) = W1(t, 0), ∀t ≥ 0. Note that
1
λF (t) − V (t) is cooperative. Thus, the Perron-Frobenius theorem (see Smith
& Waltman (1995), Theorem A.3) implies that ρ(Wλ(ω, 0) is an eigenvalue of
Wλ(ω, 0) with nonnegative eigenvector. We can easily find that the matrix
Wλ(s + ω, s) is similar to the matrix Wλ(ω, 0), and hence σ(Wλ(s + ω, s)) =
σ(Wλ(ω, 0)) for any s ∈ R, where σ(D) denotes the spectrum of the matrix D.
It is easy to verify that system (2.3) satisfies assumptions (A1)-(A7) in Wang
& Zhao (2008). Thus, recalling (3.7), we have the following two results.

Lemma 4.3 (Wang & Zhao (2008), Theorem 2.1). The following statements
are valid:

1. If ρ(Wλ(ω, 0) = 1 has a positive solution λ0, then λ0 is an eigenvalue of
operator L, and hence R0 > 0.

2. If R0 > 0, then λ = R0 > 0 is the unique solution of ρ(Wλ(ω, 0) = 1.

3. R0 = 0 if and only if ρ(Wλ(ω, 0) < 1 for all λ > 0.

Lemma 4.4 (Wang & Zhao (2008), Theorem 2.2). The following statements
are valid:
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1. R0 = 1 if and only if ρ(ΦF−V (ω)) = 1.

2. R0 > 1 if and only if ρ(ΦF−V (ω)) > 1.

3. R0 < 1 if and only if ρ(ΦF−V (ω)) < 1.

Let P : Ω→ Ω be the Poincaré map associated with system (2.3), that is Px0 =
x(ω, x0) where x(ω, x0) is the unique solution of system (2.3) with x(0, x0) = x0.
We easily find that Pnx0 = x(nω, x0), for all n ≥ 0.

The following lemma will be useful later to derive the malaria persistence in
the host population when the basic reproduction ratio R0 > 1.

Lemma 4.5 If R0 > 1, then there exists ε > 0, such that for any x0 :=
(E0

h, I
0
h, R

0
h, E

0
v , I

0
v , N

0
h) ∈ X0 with ||x0 −M0|| ≤ ε, we have

lim sup
n→∞

||Pnx0 −M0|| ≥ ε.

Proof. Since R0 > 1, Lemma 4.4 implies that ρ(ΦF−V (ω) > 1. We can choose
η > 0 small enough such that ρ(ΦF−V−A3η

(ω) > 1, where

Aη(t) := ηF (t).

The perturbed system

dN̂h
dt

= Λh − (µh + ηρh)N̂h; (4.9)

admits a unique solution

N̂h(t, η) = e−(µh+η)t

(
N̂h(0, η) +

Λh
µh + ηρh

(e(µh+η)t − 1)

)
trough the arbitrary initial value N̂h(0, η), and has a unique periodic attractive
solution in R+

N̂⊥h (t, η) =
Λh

µh + ηρh
.

It follows that
∣∣∣N̂⊥h (t, η)− N̂h(t, η)

∣∣∣ → 0 as t → ∞. Thus N̂⊥h (t, η) is globally

attractive on R+. It is obvious that N̂⊥h (t, η) is continuous with respect to η. By
the continuity of the solutions with respect to the initial values, we find ε > 0
such that for all x0 ∈ X0 with ||x0−M0|| ≤ ε, there holds ||x(t, x0)−x(t,M0)|| <
η, ∀t ∈ [0, ω]. We further claim that

lim sup
n→∞

||x(nω, x0)−M0|| ≥ ε. (4.10)

Assume by contradiction that (4.10) does not hold. Then without loss of
generality, we assume that ||x(nω, x0) −M0|| < ε, for all n ≥ 0 and for some
x0 ∈ X0. It follows that

||x(t, Pnx0)− x(t,M0)|| < η, ∀n ≥ 0,∀t ∈ [0, ω].
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For any t ≥ 0, let t = nω + s and n is the largest integer less than or equal to
t/ω. Therefore, we have

||x(t, x0)−M0|| = ||x(s, Pnx0)− x(s,M0)|| < η, ∀t ≥ 0.

Recalling that x(t, x0) = (Eh(t), Ih(t), Rh(t), Ev(t), Iv(t), Nh(t))T , and since
x(t,M0) ∈ ∂X0 for all t ≥ 0 (see Theorem 4.2); it then follows that Eh(t) < η,
Ih(t) < η, Rh(t) < η, Ev(t) < η, Iv(t) < η for all t ≥ 0. Since the periodic solu-
tion Ê⊥h (t, η) of system (4.9) is globally attractive on R+ and N̂⊥h (t, η) < N∗h , we
have Nh(t) < N∗h , for sufficiently large t. From the Eh, Ih, Ev and Iv equations
of system (2.3), we obtain, for sufficiently large t,

d

dt
(Eh, Ih, Ev, Iv)

T ≥ (F (t)− V (t)−A3η(t)) (Eh, Ih, Ev, Iv)
T . (4.11)

We then consider the following system

d

dt
(Êh, Îh, Êv, Îv)

T = (F (t)− V (t)−A3η(t)) (Êh, Îh, Êv, Îv)
T . (4.12)

By Zhang & Zhao (2007), Lemma 2.1, it follows that there exists a positive
ω-periodic function z̄(t) such that ẑ(t) = eξtz̄(t) is a solution of system (4.12),
with ξ = 1

ω ln ρ(ΦF−V−A3η
(ω)). Since ρ(ΦF−V−A3η

(ω)) > 1, ξ is a positive
constant. Let t = nω and n be nonnegative integer and get

ẑ(nω) = eξnω z̄(nω)→ (∞,∞,∞,∞)T

as n → ∞, since ωξ > 0 and z̄(t) > 0. For any nonnegative initial condition
(Eh(0), Ih(0), Ev(0), Iv(0)) of system (4.11), there exists a sufficiently small n0 >
0 such that (Eh(0), Ih(0), Ev(0), Iv(0))T > n0z̄(0). By the comparison principle
(Theorem B.1, Smith & Waltman (1995)) we have (Eh(t), Ih(t), Ev(t), Iv(t))

T >
n0ẑ(t), for all t > 0. Thus, we obtain (Eh(nω), Ih(nω), Ev(nω), Iv(nω))T →
(∞,∞,∞,∞)T as n → ∞, a contradiction with the first part of Theorem 4.2.

4.2 Proof of Theorem 3.1

Proof of Theorem 3.1 (i). From Lemma 4.4, it follows that the disease-
free equilibrium for System (2.3)-(2.4) is asymptotically stable if R0 < 1 and
unstable ifR0 > 1. In the sequel, we check the global stability of the disease-free
equilibrium when R0 < 1.

Since Nh(t) < N∗h for all t sufficiently large (see the proof of Lemma 4.5);
we then have for sufficiently large t,

Ėh ≤ αβ1(t)θ(t)Iv − (σh + µh)Eh + ρhEh;

İh ≤ σhEh − (γh + ρh + µh)Ih + ρhIh;

Ṙh ≤ rγhIh − (kh + µh)Rh + ρhRh;

Ėv ≤ αβ2(t)θ(t)Ih − (σv + bv(t))Ev;

İv ≤ σvEv − bv(t)Iv;
Ṅh ≤ Λh − µhNh.
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Therefore, for all t sufficiently large, we obtain that

d

dt
(Eh, Ih, Ev, Iv)

T ≤ [F (t)− V (t) + ρh.diag(1, 1, 0, 0, )](Eh, Ih, Ev, Iv)
T .

We introduce the solution zδ of

dzδ

dt
= [F (t)− V (t) + ρh.diag(1, 1, 0, 0) + δI]zδ,

zδ(0) = (Eh(0) + δ, Ih(0) + δ, Ev(0) + δ, Iv(0) + δ)T ,

(4.13)

for any δ > 0. Then zδ(t) > (Eh(t), Ih(t), Ev(t), Iv(t))
T for small t. We claim

that this inequality holds for all t > 0. To check this assertion we apply the
comparison principle (Theorem B.1, Smith & Waltman (1995)).

Indeed, otherwise there is a smallest t̄ such that at least one of the strict
inequalities is violated at t = t̄. Suppose zδ1(t̄) = Eh(t̄). Then dzδ1(t̄)/dt ≤
dEh(t̄)/dt. We also have zδ4(t̄) ≥ Iv(t̄). Hence

dzδ1(t̄)

dt
≤ dEh(t̄)

dt
≤ αβ1(t̄)θ(t̄)zδ4(t̄)− (σh + µh)zδ1(t̄) + ρhz

δ
1(t̄),

which contradict the zδ1-equation of system (4.13). By a similar argument one
derives a contradiction in cases zδ2(t̄) = Ih(t̄), zδ3(t̄) = Ev(t̄) and zδ4(t̄) = Iv(t̄).

Taking δ → 0 we conclude that

Eh(t) ≤ z1(t), Ih(t) ≤ z2(t), Ev(t) ≤ z3(t), Iv(t) ≤ z4(t), ∀t > 0, (4.14)

where z(t) = (z1, z2, z3, z4)T is the solution of

dz

dt
= [F (t)− V (t) + ρh.diag(1, 1, 0, 0)]z,

z(0) = (Eh(0), Ih(0), Ev(0), Iv(0))T .
(4.15)

Applying Lemma 4.4, we know that R0 < 1 if and only if ρ(ΦF−V (ω)) < 1.
By Zhang & Zhao (2007), Lemma2.1, it follows that there exists a positive ω-
periodic function z̄(t) such that z(t) = eτtz̄(t) is a solution of system (4.15), with
τ = 1

ω ln ρ(ΦW (ω)), with W = F − V + ρh.diag(1, 1, 0, 0). Since ρ(ΦW (ω) <
ρ(ΦF−V (ω)) < 1, τ is a negative constant. Therefore, we have z(t) → 0 as
t→ +∞. This implies that the zero solution of system (4.15) is globally stable.
Thus, equation (4.14) gives that (Eh(t), Ih(t), Ev(t), Iv(t))

T → (0, 0, 0, 0)T as
t→ +∞. It is easy to find that Nh(t)→ N∗h as t→ +∞. Then we can choose

η > 0 small enough such that Ṙh ≤ η − (kh + µh)Rh for all sufficiently large t.
From where Rh(t) → 0 as t → +∞. This end the proof of the first part of the
theorem.

Proof of Theorem 3.1 (ii). By Theorem 4.2, the discrete system {Pn}n∈N
admits a global attractor in Ω. For any x0 := (E0

h, I
0
h, R

0
h, E

0
v , I

0
v , N

0
h) ∈ X0, Let
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x(t, x0) = (Eh(t), Ih(t), Rh(t), Ev(t), Iv(t), Nh(t))T be the orbit of (2.3) passing
through x0.

We have show that, both Ω, X0 and ∂X0 are positively invariant with respect
to the non-autonomous semiflow U (Theorem 4.2). Clearly, ∂X0 is relatively
closed in Ω, and there is exactly one fixed point M0 = (0, 0, 0, 0, 0, N∗h) of P in
∂X0.

Note that the linear system

dNh
dt

= Λh − µhNh − ρhIhNh, Nh(0) > 0;

admits a global asymptotic equilibrium N∗h . Lemma 4.5 implies that {M0} is
an isolated invariant set in Ω and W s({M0}) ∩X0 = ∅. We can also note that
every orbit in ∂X0 approches to M0 and M0 is acyclic in ∂X0. By Zhao (2003),
Theorem 1.3.1, it follows that P is uniformly persistence with respect to the
pair (X0, ∂X0). That is, there exists a δ > 0 such that any solution x(t, x0) of
system (2.3) with initial value x0 ∈ X0 satisfies lim inft→∞ d(x(t, x0), ∂X0) ≥ δ.

Furthermore, Zhao (2003), Theorem 1.3.6, implies that the discrete system

{Pn}n∈N has a fixed point x†0 = (E†h(0), I†h(0), R†h(0), E†v(0), I†v(0), N†h(0))T ∈
X0. Then, by (Eh, Ih, Rh, Ev, Iv)-equation of system (2.3) and the irreducibility
of the cooperative matrix

A†(t) =


−(σh + Λh

N†h
) 0 0 0 αβ1(t)θ(t)g†h

σh −(γh + ρh + Λh
N†h

) 0 0 0

0 rγh −(kh + Λh
N†h

) 0 0

0 αβ2(t)θ(t)g†v 0 −(σv + bv(t)) 0
0 0 0 σv −bv(t)

 ,

it follows that (E†h(t), I†h(t), R†h(t), E†v(t), I
†
v(t))T � 0 for all t ≥ 0. Where

g†h = (1− E†h − I
†
h −R

†
h) and g†v = (1− E†v − I†v)

Therefore, (E†h(t), I†h(t), R†h(t), E†v(t), I
†
v(t), N†h(t), N†v (t)) is a positive ω-periodic

solution of system (2.3). This end the proof of the second part of Theorem 3.1.

5 Numerical results and discussion

Thermal-response curves. A collection of data to derive functions relating
vector and parasite parameters to temperature was updated by Mordecai et al.
(2013). As all rate parameters in the temperature-dependent are expected to
be unimodal with respect to temperature, Mordecai et al. (2013) fit quadratic
and Brière functions to each life-history parameter, as well as a linear function
for comparison (Table 2). The Brière function is a left-skewed unimodal curve
with three parameters, which represent the minimum temperature, maximum
temperature and a rate constant (Briere et al., 199). The unimodal functions are
defined as Brière [c(T0−T (t))(Tm−T (t))1/2] and quadratic [qT 2(t)+rT (t)+s],
where T (t) is temperature in degrees Celsius at time t. Constants c, T0, Tm,
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q, r and s are fitting parameters. In this paper, mosquitoes per capita birth
rate (bv), per capita death rate (µv), infectivity (β2) and biting rate (θ) are
estimated from thermal performance curves and summarized in Table 2.

Nkomazi (South Africa) climate data. For all simulations, we incorpo-
rate the daily climate data (temperature) of Nkomazi from 1997 to 2005 into our
model to estimate time dependent parameters of model (2.1), namely bv, µv, β2

and θ (Figure 1). The temperature data were extracted from the National Cen-
ters for Environmental Prediction (NCEP) Climate Forecast System Reanalysis
(CFSR). The 6-hourly climate dataset was converted to daily with 0.5◦×0.5◦ res-
olution for the purpose of this study. Conversely, the malaria data sourced from
the provincial Integrated Malaria Information System (IMIS) of the malaria con-
trol program in the Mpumalanga Provincial Department of Health, was obtained
from the South African Weather Service (SAWS) through its collaborative re-
search with the University of Pretoria Institute for Sustainable Malaria Control
(UP ISMC). The locally recorded cases with minimal imported cases were ex-
tracted from Nkomazi – a local municipality in Mpumalanga province (one of
the epidemic provinces in South Africa). In the province, malaria distribution
is mainly in Nkomazi, Bushbuckridge, Mbombela, Umjindi and Thaba Chewu
local municipalities, with suitable climate conditions for malaria transmission
(Sila et al., 2013; Adeola et al., 2016). Of all the municipalities, Nkomazi has
been identified as the most epidemic region in the province (Sila et al., 2013;
Adeola et al., 2016).

The risk of outbreak in Nkomazi is underestimated when using the
average basic reproduction number. Using parameters given by Tables 2
and 3, then by numerical computation, we get the curve of the basic reproduc-
tion number R0 (applying Lemma 4.3 item (ii)) and the curve of the average
basic reproduction number 〈R0〉 with respect to the mosquitoes contact rate α
in Figure 2A. We can see that the average basic reproduction number 〈R0〉 is
always lower than the basic reproduction number R0 with α ranging from 0 to
1. Therefore, using 〈R0〉 rather than R0 underestimates the outbreak of the
disease in Nkomazi. Indeed, taking α = 0.2, numerical computation leads to
〈R0〉 = 0.8 < 1, suggesting that there is no epidemic into the host population,
and R0 = 1.4 > 1, suggesting that there is an epidemic into the host population
(Figure 2B–C).

Illustration of disease extinction and persistence stated by Theorem
3.1. From Theorem 3.1, R0 is a threshold parameter to determine whether or
not malaria persists in the population. We choose the total number of human
and mosquitoes at initial time (t = 0) to be Nh(0) = 1000 and Nv(0) = 2000
respectively. Two sets of initial values are considered and given in Table 3.
The number of mosquitoes per human host could be various, we take here
m∗ = 2 (Harada, 1998; Ishikawa et al., 2003; Ruan et al., 2008); therefore,
the recruitment rate of human host is Λh = Nv(0)µh/m

∗ ≈ 0.046 per day. Tak-
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Figure 1: Time performance curves of mosquitoes traits using daily temperature
of Nkomazi (South Africa) and thermal performance curves summarized in Table
2.

(A) (B) (C)

Figure 2: A Comparison between the basic reproduction number (R0) and and
the average basic reproduction number (〈R0〉) for range of the mosquitoes con-
tact rate (α). B-C The long term dynamics of infectious human and infectious
mosquitoes with ρh = 0.01, γh = 0.01, α = 0.2, r = 0.9 and Λh = 0.05. We use
the temperature data of Nkomazi (South Africa) and find that 〈R0〉 = 0.8 < 1;
R0 = 1.4 > 1. Other parameters are given by Tab. 3 and Tab. 2. We illustrate
the behavior of the model using time dependent parameters bv, µv, β2, θ (solid
line) and average constant parameters 〈bv〉, 〈µv〉, 〈β2〉, 〈θ〉 (dot line).
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Figure 3: The long term behaviours (for two initial values) of four classes of
population illustrated that the disease free state M0 is globally stable. Here,
we use Λh ≈ 0.046 per day, ρh = 0.01, γh = 0.01, r = 0.9 and α = 0.1 per day,
R0 = 0.7 < 1 and 〈R0〉 = 0.4 < 1. Other parameters and initial values are
given by Tab. 3 and Tab. 2. We illustrate the behavior of the model using time
dependent parameters bv, µv, β2, θ (solid line) and average constant parameters
〈bv〉, 〈µv〉, 〈β2〉, 〈θ〉 (dotted line).

Figure 4: The long term behaviors of four classes of population illustrated that
the disease is endemic. Here, we use Λh ≈ 0.046 per day, ρh = 0.01, γh = 0.01,
r = 0.9 and α = 0.4 per day, R0 = 2.8 > 1 and 〈R0〉 = 1.6 > 1. Other
parameters and initial values are given by Tab. 3 and Tab. 2. We illustrate
the behavior of the model using time dependent parameters bv, µv, β2, θ (solid
line) and average constant parameters 〈bv〉, 〈µv〉, 〈β2〉, 〈θ〉 (dotted line).
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ing ρh = 0.01, γh = 0.01, r = 0.9 and α = 0.1 per day, Figure 3 supports the
theoretical fact that the disease-free equilibrium M0 is globally asymptotically
stable when R0 = 0.7 < 1. If the mosquitoes contact rate per human host is
increased to α = 0.4 per day, numerical simulations complete the theoretical
analysis that there exists a global attractive positive periodic solution when
R0 = 2.8 > 1 (Figure 4).

A case study. In this section, we estimate parameters of model (2.1)-(2.4)
which are assumed to be variable (namely the human recuitement, disease induce
mortality and recovery rate, Λ, ρh, γh and r; and the mosquitoes contact rate per
human α) and study the transmission trend of malaria in Nkomazi, South Africa.
Simulation results are given to show that our model with periodic parameters
matches the seasonal fluctuation data reasonably well.

The daily numbers of human malaria cases from the study region correspond
to the term Ih(t) of model (2.1). Since we assume five model parameters to be
variable, π := (Λ, ρh, γh, r, α), we then find the value π∗ = (Λ∗, ρ∗h, γ

∗
h, r
∗, α∗)

which minimize the difference (∆[π]) between model prediction (Ih) and the
malaria cases of Nkomazi (Icases) from day dS to day

dF : ∆[π] :=
(∑dF

t=dS
|Ih(t)− Icases(t)|2

)1/2

. The value π∗ is identified with the

MATLAB nonlinear programming solver FMINCON. Taking October 1, 1997
and December 31, 2005 as the start and end time of simulation respectively,
Nkomazi malaria cases and the model fit well with α∗ ≈ 0.15, Λ∗ ≈ 0.595, γ∗h ≈
0.01, ρ∗h ≈ 0.007 and r∗ ≈ 0.99 (Figure 5). The simulation result based on our
model exhibits the seasonal fluctuation and matches the data reasonably well.
We estimate the basic reproduction ratio and the average basic reproduction
ratio R0 = 1.16 and 〈R0〉 = 0.65 respectively. Furthermore, the value of 〈R0〉 <
1 suggests that the epidemic is not endemic in Nkomazi leading to a wrong
interpretation as illustrated by Figure 5.

6 Conclusion

We have developed a compartmental model to describe malaria seasonal inci-
dence rate by incorporating periodic coefficients. We define the basic reproduc-
tion ratio R0 and prove that the unique disease-free equilibrium M0 is globally
asymptotically stable if R0 < 1; while the disease is uniformly persistent and
there exists at least one positive periodic solution if R0 > 1. Numerical simu-
lations show that there is only one positive periodic solution which is globally
asymptotically stable in the case where R0 > 1. We observe a significant dif-
ference on the behaviour of the model without treating seasonality and with
seasonality. We further provide some illustrations of the model without treat-
ing seasonality using the average numbers of the periodic parameters of the
model. The performance of the model was also investigated with both Nkomazi
climate and malaria data.
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