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Amyotrophic lateral sclerosis (ALS) is a rapidly progressive fatal neurodegenerative disease 
affecting 1 in 350 people. The aim of Project MinE is to elucidate the pathophysiology of ALS 

through whole-genome sequencing at least 15,000 ALS patients and 7,500 controls at 30X 
coverage. Here, we present the Project MinE data browser (databrowser.projectmine.com), a 

unique and intuitive one-stop, open-access server that provides detailed information on genetic 
variation analyzed in a new and still growing set of 4,366 ALS cases and 1,832 matched controls. 

Through its visual components and interactive design, the browser specifically aims to be a 
resource to those without a biostatistics background and allow clinicians and preclinical 

researchers to integrate Project MinE data into their own research. The browser allows users to 
query a transcript and immediately access  a unique combination of detailed (meta)data, 

annotations and association statistics that would otherwise require analytic expertise and visits to 
scattered resources. 
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Amyotrophic lateral sclerosis (ALS) is a rapidly progressive fatal neurodegenerative disease 

affecting 1 in 350 people. While research over the past years has revealed an increasing number 

of genetic variants contributing to ALS risk, the bulk of heritability in ALS remains to be 

elucidated. In addition to known rare variants, there is evidence for a central role of low-

frequency and rare genetic variation in ALS susceptibility 1. Well-powered genetic studies 

enabled through large-scale collaboration are crucial for identify these variants and improving 

our understanding of ALS pathophysiology 2,3.  

Project MinE, an international collaboration, was initiated precisely with the challenge 

of sample aggregation in mind. The Project MinE ALS sequencing Consortium has set out to 

collect whole-genome sequencing (WGS) of 15,000 ALS patients and 7,500 controls 4. 

Currently, the Project MinE initiative has sequenced 4,366 ALS patients and 1,832 age- and 

sex-matched controls. Project MinE is a largely crowd-funded initiative. As such, we are 

committed to sharing data and results with the scientific and healthcare communities, as well 

as the public more broadly. Data sharing within the genetics community facilitated large-scale 

genome-wide association studies and ignited initiatives such as the Gene Atlas, LDhub 

GWAShare Center, and MRbase, places where people can share, explore and analyze data with 

few restrictions 5,6. In this same spirit, we aim to share raw sequence data, provide results from 

our analyses, and facilitate interpretation through integration with existing datasets to serve 

researchers and the public across disciplines. 

We, therefore, created the Project MinE databrowser (databrowser.projectmine.com). 

We integrated multi-level association statistics, metadata, and public resources including 

gnomAD, GTEx and ClinVar in an intuitive and flexible framework 7–9. These data are freely 

available through the browser for any research initiative. We aim for the data to serve several 

purposes, including providing a backbone for new gene discovery, serving as a costless 
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replication dataset, and aiding clinical interpretation of individual ALS patient genomes or 

specific genetic variants. 

 
Results  
Dataset. The databrowser currently comprises 4,366 ALS cases and 1,832 age- and sex-

matched controls whole-genome sequenced and quality control processed as part of the broader 

Project MinE effort. 

 

Quality control and association analysis. The quality controlled dataset includes 6,198 

individuals and describes more than 105 million SNVs and indels. In this sample we have 

limited power to detect genome-wide significant association in a single variant framework and 

as a result we did not find any variants reaching genome-wide significance. In our rare-variant 

burden framework we find that the excess of disruptive and damaging variants at MAF < 1% 

in the canonical transcript of NEK1 in ALS patients compared to controls reaches exome-wide 

significance (p = 2.31 × 10-7, odds ratio = 3.55 [95% confidence interval = 2.02 – 6.26], Fig. 

2). We also noticed that some genes might contain a transcript specific burden, most notably 

in TARDBP (Supplementary Table 3 and Supplementary Fig. 12). 

Next, we aggregated all variants across the exome. We observed no difference in the 

exome-wide burden of synonymous variants between cases and controls, which provides no 

indication for systemic confounding of burden analyses using higher-order variant aggregation 

strategies. Therefore, we proceeded to test a genome-wide excess of rare non-synonymous 

variants among ALS patients. In contrast to similar analyses in schizophrenia 10 and educational 

attainment 11, we found no evidence for such excess in any variant set combining all allele 

frequency cut-offs and functional classification. Furthermore, we do not find any protein 

families, druggable categories significantly enriched for rare variants after collapsing allele-
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frequency cut-offs and variant classification. All association analysis results are available for 

download at the browser website. 

  

Databrowser. By entering a gene or transcript in the databrowser you will be shown a 

visualisation of the rare-variant burden tests, as well as several other components (Fig. 3). 

Transcript details. Here we describe the elementary transcript details for the gene of 

interest. This includes the Ensembl transcript ID, Ensembl Gene ID, number of exons and 

genomic coordinates as described in the GRCh37 build. 

Coverage information (Fig. 3a). To illustrate whether a particular gene/transcript or 

exon has been adequately covered to detect variation, we have included a graphical 

representation of average depth of coverage. This graph also includes the coverage information 

from the ExAC database to illustrate the difference in coverage between genome- and exome-

sequencing. Optionally, the coverage across introns can be visualized. 

Genic burden results (Fig. 3b). Burden testing, by definition, aggregates many variants. 

This approach can increase statistical power to find an association, but can obscure which 

variant(s) are driving a potential association. Therefore, we have included an interactive 

graphical representation of the gene indicating where variants are located and whether these 

variants are case or control-specific. Hovering over a specific variant will reveal the position, 

alleles, heterozygous and homozygous allele counts in ALS cases and controls, and functional 

annotation of the variant. We additionally provide the burden test statistics. To further facilitate 

interpretation, we describe the burden test properties and relevant references in a dropdown 

menu “Burdentest Info.” We have performed genic burden results for all transcripts. 

Geneset burden results (Fig. 3c). Here, we show burden test results for genesets such 

as protein families and druggable targets to which the selected gene belongs. This includes a 
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mini-Manhattan plot generated to indicate which genes might be driving an association signal 

in the geneset by plotting their individual genic burden results. 

Tissue-specific gene expression (Fig. 3d). This panel shows gene expression levels 

across all general tissues included in GTEx. 

Variant annotation table (Fig. 3e). Each variant has been extensively annotated and 

aggregated in a customizable table. By default, only allele frequency in cases and controls, 

comparison to gnomAD genomes and exomes, and amino acid change, impact and functional 

consequence are shown. All information can be downloaded in tabular form. 

Gene-specific literature. To provide background information on the gene’s function 

and disease association from literature, we have included an iframe linking to PubMed, UCSC, 

GeneCards, Ensembl, WikiGenes, GTEx and the GWAScatalog. This allows a user to rapidly 

extract information from various resources while staying on the same page. 

  

Group and individual level data sharing. The summary statistics for the latest GWAS, WGS 

single variant association and all WGS burden analyses can be downloaded directly. Access to 

individual-level data can be requested by providing a digital form with a brief research proposal 

(https://www.projectmine.com/research/data-sharing/). 

  

Duplicate and relatedness checks. We have created sumchecks for each individual in our 

dataset. Sumchecks are hashes which have been created, based on a small subset of SNPs, 

which allow for the identification of duplicates without sharing the genetic data itself. If 

researchers wish to check duplicates with our dataset, they can simply request the sumchecks, 

create hashes for their own data and compare the hashes. The code to generate the hashes and 

the list of SNPs used is available on the Project MinE Bitbucket. These hashes only identify 

duplicate samples, and in some instances relatedness information can be valuable, e.g., 
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extending pedigrees or meta-analyses. Therefore, we will perform the relatedness checks when 

a statement is uploaded that this information will be used for academic purposes only and will 

not be used to re-identify individuals without consent. These checks do not require a data-

access request nor approval. 

  

Technical details. The whole website, including data storage, runs on a dual core server with 

4Gb RAM and needs <50Gb of storage. As of July 2018, we have had over 6,200 sessions from 

over 1,400 users. 

 

Discussion 

Both research and clinical work increasingly rely on open-access databases to find newly-

associated variants and interpret genetic findings when counselling patients 12. Therefore, 

sharing de-identified data is instrumental to ensuring scientific and clinical progress, and 

patient-derived data should not be regarded as intellectual property nor as trade secret 13,14. 

Also, most genetic browsers are based on healthy individuals, or unselected individuals who 

might carry specific rare genetic variants which hampers adequate comparison to a sample of 

patients from another geographical region. With exactly this in mind, we developed a unique, 

publicly-available, disease-specific databrowser which serves as a transparent framework for 

sharing data and results in ALS genetics. The Project MinE Databrowser contains an 

unprecedented amount of WGS data from ALS patients, more than doubling the currently-

available exome based databases, and provides (meta)data in far greater detail. The intuitive 

design facilitates interpretation of robust statistical association analyses by presenting detailed 

metadata and through integration with population-based observations, biological/functional 

context and literature. As a result, we make our data and results accessible to a broad public of 

diverse backgrounds and for any research initiative. The databrowser provides an easy 
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framework for other consortia who are generating similar genetic data and results in ALS and 

other diseases. 

The data has already provided a backbone for new gene discovery and variant 

interpretation in ALS. For example, subsets of the current dataset have been incorporated in 

previous publications which identified C21orf2, NEK1 and KIF5A 1,15,16. The resource will 

continue to grow as the Project MinE consortium does, and will thus increasingly allow for 

more reliable identification of true positives 17,18. The growth in both sample size and ancestral 

diversity will increasingly reflect the ALS mutation spectrum and yield increasingly accurate 

estimations of effect sizes in the general population. The browser can also offer researchers 

quick, easy to access to a reliable dataset for significant improvement in statistical power 

without financial burden. 

One of the major goals of the databrowser is to allow cross-disciplinary interrogation 

and interpretation of the data with minimal effort. We enable this through the intuitive display 

of individual variant level data, statistical results and through the integration with databases 

including GTEx and gnomAD. The databrowser ensures transparency and continued 

reevaluation of established associations, vitally important for clinical laboratories to make 

appropriate variant classifications 18. Furthermore, we aim to facilitate the design of functional 

experiments by showing which variants, might be driving a genic burden signal and if these 

are located in specific exons and therefore specific protein domains. 

Project MinE is largely crowd-funded and the ALS-community is highly engaged in 

the scientific progress in our field. Consequently, we feel an obligation to give something back 

to the community and promote data sharing in general. We hope that our databrowser will 

inspire similar efforts in other fields. The Project MinE databrowser is a light-weight and open-

source R script that can easily be adapted to serve other consortia and thus share similarly 

important data. Further, we aim to improve data sharing by encouraging fellow researchers to 
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gain access to individual-level data by submitting an analysis proposal to the consortium. After 

access is granted, analyses can be performed on the compute facilities of SURFsara, a 

supercomputer based in Amsterdam, The Netherlands . Researchers will only need to pay a 

minimal fee to compensate costs for their core hours and data storage requirements. 

Project MinE continues to work forward to its ultimate goal of whole-genome 

sequencing 15,000 cases and 7,500 matched controls, as well as combining the data with 

publicly-available control data. Current efforts also focus on single SNV and aggregated SNV 

analyses of autosomal chromosomes. Future efforts will aim to include sex chromosomes, 

indels, structural variation (in particular, repeat expansions 19) and non-coding burden analyses. 

Additionally, Project MinE is collecting methylation data on all samples using the Infinium 

Human Methylation 450K and EPIC BeadChip. These data and analyses will also be shared 

expeditiously through our databrowser prior to publication. As the project proceeds and data 

generation continues apace, we intend for the browser to pave the way for more accurate 

diagnosis and prognosis, aid in the identification of novel disease-associated genes, and 

elucidate potential novel therapeutic targets. 
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Methods 

Sample selection and WGS. The first batch of samples (1,935 cases and controls collected in 

the Netherlands) were sequenced on the Illumina HiSeq 2000 platform 4. All remaining samples 

(4,644 cases and controls) were sequenced on the Illumina HiSeq X platform. All samples were 

sequenced to ~35X coverage with 100bp reads for the HiSeq 2000 and ~25X coverage with 

150bp reads for the HiSeq X. Both sequencing sets used PCR-free library preparation. Samples 

were also genotyped on the Illumina 2.5M array. Sequencing data was then aligned to GRCh37 

using the iSAAC Aligner, and variants called using the iSAAC variant caller; both the aligner 

and caller are standard to Illumina’s aligning and calling pipeline. 

  

Data merging and initial site filtering. Per individual, WGS data was stored in both BAM 

and Illumina gVCF format. These gVCFs contain single-nucleotide variants (SNVs), short 

insertions and deletions (indels), and large structural variants (SVs). To begin quality control, 

we merged all sample into a single file using the Illumina ‘agg’ tool v0.3.4 

(https://github.com/Illumina/agg). ‘Agg’ first generates metadata across all samples, typically 

batched into groups (e.g., n = 50) to minimize CPU time, and then proceeds to extract genotypes 

for all samples across all sites containing at least one non-reference allele in the full case-

control dataset. This process results in a VCF of all samples and all variants with minor allele 

count ≥ 1. 

  The resulting merged VCF contained all possible sites, regardless of whether or not 

they passed the Isaac pipeline set of variant filters. We therefore applied basic site filtering to 

the initial merged VCF. Specifically, we set sites with a genotype quality (GQ) < 10 to missing 

using bcftools and single-nucleotide variants (SNVs) and indels with quality (QUAL) scores < 

20 and < 30, respectively, were removed. We then removed variants with missingness > 10% 

(typically induced by setting genotypes with GQ < 10 to missing). To ensure unique marker 
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identifiers at all sites, particularly for those multiallelic sites that were devolved by processing 

the data through ‘agg,’ we labeled all variants using the following nomenclature: 

chromosome:position:reference_allele:alternate_allele. 

  

Sample-level quality control. We fixed genotype ploidy on the sex by first inferring biological 

sex from the available SNP array data, and then using the ‘fix-ploidy’ option in bcftools. 

We then performed sample-level quality control (QC). We calculated the transition-

transversion ratio in each sample using SnpSift 4.3p (Supplementary Fig. 1). In WGS data, 

the expected transition-transversion ratio is ~2.0; a number much lower than this (i.e. 

approaching 0.5, in accordance with the expected number of transitions and transversions if 

genotypes were called randomly, Supplementary Fig. 1) indicates an enrichment for false-

positive genotype calls. We removed two samples with a Ti/Tv ratio > 6 standard deviations 

(sd) from the full distribution of samples. 

Per sample, we also calculated (a) the total number of SNVs, (b) total number of indels, 

and (c) total number of singletons (Supplementary Fig. 1). We removed samples with a total 

number of SNPs > 6 sd from the mean. The shift in sequencing platforms from HiSeq 2000 to 

HiSeq X (which occurred in parallel with a change in the calling pipeline, to improve indel 

detection) caused an obvious shift in observed indels per sample. Samples were thus filtered 

by platform (HiSeq 2000 or HiSeq X) and removed samples with number of indels > 6 sd from 

the mean of their respective group. Finally, we identified samples with an excess number of 

singletons (calculated by cohort, to avoid overly-stringent filtering due to population 

stratification); samples with a total number of singletons > 6 sd from the sample distribution 

were removed. 

Next, we calculated sample-level missingness and removed samples with > 5% 

missingness (Supplementary Fig. 2). We calculated average sample depth and again observed 
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noticeable differences between those samples sequenced on the HiSeq 2000 and the HiSeq X, 

where average depth of coverage was somewhat higher (35X, on average) for samples 

sequenced on HiSeq 2000 compared to the samples sequenced on the HiSeq X (25X, on 

average). We removed no samples at this step. We then subsetted the sequence data down to 

those markers that overlapped with the 2.5M array genotyping data. Across the intersect of 

markers, we calculated the sample concordance between the sequence and array data, and 

removed all samples with concordance < 96% (Supplementary Fig. 2). 

Using X chromosome variants, we tested to see if biological sex (inferred from the X 

chromosome data) was concordant with the sex as annotated in the available phenotype 

information (Supplementary Fig. 3). We excluded 62 (of 6,579) samples with mismatching 

information. 

We performed the remaining sample QC on a high-quality set of ~100,000 autosomal 

variants with: minor allele frequency (MAF) > 10%; genotype missingness < 0.1%; residing 

outside four complex regions (the major histocompatibility complex (MHC) on chromosome 

6; the lactase locus (LCT), on chromosome 2; and inversions on chromosomes 8 and 17); 

excluding A/T and C/G variants. We used this set of markers to calculate inbreeding in two 

ways: first, by calculating inbreeding coefficients using Plink 1.9 (--het, Supplementary Fig. 

3); and secondly, by calculating the ratio of heterozygous to homozygous non-reference 

genotypes per sample. In the first instance, we removed samples > 6 sd from the full sample 

distribution (Supplementary Fig. 3). In the second instance, we filtered samples for inbreeding 

coefficients on a cohort-by-cohort basis and excluded individuals > 6 sd from the cohort 

distribution (Supplementary Fig. 4). 

We estimated kinship coefficients (i.e., relatedness) using the KING method, as 

implemented in the SNPRelate package in R. As samples were ascertained from a number of 

countries, we used the KING method, as it calculates kinship in the presence of potential 
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population stratification (a potential confounder in other identity-by-descent approaches, such 

as that implemented in Plink). In some instances, research groups had intentionally ascertained 

related samples. We identified all pairs of related individuals (kinship > 0.0625). Of these, 

several pairs included one sample appearing to be related to several other samples in the data 

(likely due to sample contamination; Supplementary Fig. 3). Samples related to > 100 other 

samples in the data were dropped; true related pairs were left in the data. For burden testing, 

we excluded these related samples (kinship coefficient > 0.0625). For single variant association 

analysis, we used a linear mixed model in GCTA, including a genetic relationship matrix and 

the first 20 principal components (PCs), alleviating the need to exclude related samples. 

Lastly, we used principal component analysis (PCA) implemented in EIGENSTRAT 

to visualize potential structure in the data, induced by population stratification or other 

variables (Supplementary Fig. 4). Projection onto the HapMap 3 populations indicated that 

the samples were primarily of European ancestry, though some were of African or East Asian 

ancestry, while other samples appeared to be admixed. PCA across the dataset alone revealed 

structure induced not only by population but also by sequencing platform/calling algorithm 

(e.g., principal component 2, Supplementary Fig. 5H). However, because of a balanced case-

control ratio in both batches, we observed a very small effect of platform/calling algorithm 

when including it as a covariate in association testing. A summary of all sample QC, including 

thresholds and removed samples, is provided in Supplementary Table 2. 

  

Variant-level quality control. To clean variants, we first inferred a set of QC thresholds from 

the set of SNVs falling on chromosomes 1-22 and then extrapolated these thresholds to filter 

all variants, including indels and variants on the sex and mitochondrial chromosomes. 

We calculated Hardy-Weinberg equilibrium (HWE) in controls only, on a cohort-specific basis 

(to avoid potential population confounding) and removed all variants with HWE p < 1 × 10-6. 
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We calculated differential missingness between cases and controls and removed any variants 

with p < 1 × 10-6. 

Next, we binned the variants by a number of metrics: depth of coverage, minor allele 

frequency, missingness, quality (QUAL) score, and passing rate (Supplementary Fig 7-8). 

The last metric, passing rate, indicates the proportion of samples for which the variant was 

annotated as ‘PASS’ing variant filters in the original, per-sample gVCF data. For example, a 

passing rate of 70% indicates that a variant is annotated as ‘passing’ the Isaac thresholds in 

70% of all samples. 

Once we had stratified the variants by these metrics, we calculated (for each bin) the 

transition/transversion (Ti/Tv) ratio and the ratio of heterozygous to homozygous non-

reference genotypes (het/hom-non-ref) and then plotted the bins according to these metrics 

(Supplementary Fig. 7-8). From these visualizations of the data, we could infer the following 

QC thresholds and remove: variants with total depth < 10,000 reads (i.e., ~1.53X per sample) 

or > 226,000 reads (i.e., ~34.8X per sample), variants with missingness > 5%, and variants with 

a passing rate < 70%. We did not filter variants on minor allele frequency or QUAL score. 

Scripts used for performing data merging and sample- and variant-level quality control 

are available through the Project MinE BitBucket 

(https://bitbucket.org/ProjectMinE/databrowser). Scripts include calls to PLINK, bcftools, 

SnpSift, EIGENSTRAT, and SNPRelate, as well as the relevant command-line options used 

for the QC steps described here. 

  

Association analyses. The main association analysis consists of several rare-variant burden 

analyses for an association with ALS risk. For quality control we have performed single variant 

association analysis using a mixed linear model, including a genetic relationship matrix and 

the first 20 PCs, as implemented in GCTA 20. We set genome-wide significance in single variant 
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association analyses at p < 5 × 10-9 21, to account for the increased number of independent SNVs 

tested in sequence data. 

We performed rare-variant burden tests using firth logistic regression in R, adjusting 

for the first 10 PCs, sex and platform 22,23. Variants for the rare-variant burden tests have been 

aggregated on multiple levels; gene, protein superfamilies, pathways, druggable categories and 

exome-wide. Genic regions were defined as all transcripts in the GRCh37.p13 version of 

Ensembl Biomart 24. Higher level aggregation for burden analysis was performed by creating 

genesets. These genesets are based on: (a) protein superfamilies 25; (b) drugable categories as 

defined by the drug-gene interaction database 26; and (c) pathways downloaded from GSEA, 

using curated genesets v6.1 from KEGG, BioCarta or Reactome 27,28. 

We tested genes or genesets when we could identify ≥ 5 individuals with ≥ 1 variant. 

We used three definitions for ‘rare’: minor allele frequency cutoffs 1% and 0.5%. and variants 

not observed in ExAC 7. We classified variants based on their functional annotation (disruptive, 

damaging, missense-non-damaging, and synonymous , and described previously 10). Briefly, 

frame-shift, splice site, exon loss, stop gained, stoploss, startloss and transcription ablation 

variants were regarded as disruptive variants. We defined damaging variants as missense 

variants (resulting in an amino-acid change) predicted as damaging by all of seven methods: 

SIFT, Polyphen-2, LRT, Mutation Taster, Mutations Assessor, and PROVEAN 10. Missense-

non-damaging variants are missense variants that are not classified as damaging. Synonymous 

variants do not result in an amino-acid change. From these annotations, we created three variant 

sets for burden testing: (1) disruptive variants, (2) disruptive + damaging variants, (3) 

disruptive + damaging + missense-non-damaging variants. The synonymous category 

functions as a null category to check for biases when testing for association. We set the 

threshold for exome-wide significance in genic rare-variant burden analyses at p < 1.7 × 10-6. 

We acknowledge that this threshold does not fully account for the multiple testing burden 
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introduced by the different variant sets, allele-frequency cut-offs, and various burden testing 

approaches. 

  

Data integration and annotation. After quality control, we performed functional annotation 

of all variants using snpEff V4.3T and SnpSift using the GRCh37.75 database (including 

Nextprot and Motif), dbSNFP v2.9, dbSNP b150 GRCh37p13 and ClinVar GRCh37 v2.09,29–

33. We obtained population frequency estimates from gnomAD 7. To visualize the variant-level 

coverage from Project MinE and external sources, we included coverage information from 

Project MinE samples, gnomAD database (123,136 exome sequences plus 15,496 genome 

sequences). We further integrated tissue-specific gene expression profiles for 53 tissues from 

the GTEx resource (https://gtexportal.org/home/datasets) 34. Finally, the available literature on 

each gene is presented through an iframe linking to either PubMed, UCSC, GeneCards, 

Ensembl, WikiGenes, GTEx or the GWAScatalog. 

  

Existing ALS datasets. The browser also includes freely-available summary-level data for the 

2016 ALS GWAS 1 for download . Additionally, downloadable SKAT and SKAT-O burden 

testing results from 610 ALS cases and 460 controls with Chinese ancestry (Gratten et al, 2017) 

are available. 

  

Language. The data browser can be accessed at http://databrowser.projectmine.com/. The 

interface is based on the statistical programming language R (v3.4.1, https://www.r-

project.org/) together with the interactive web application framework Shiny (v1.0.5, 

https://shiny.rstudio.com/). Interactive visualisations have been created using base R and the 

Plotly library (v4.7.1,https://plot.ly/r/). The code is open-source and can be downloaded from 

https://bitbucket.org/ProjectMinE/databrowser. 
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Informed consent. All participants gave written informed consent and the relevant 

institutional review boards approved this study. The informed consent clearly indicates that 

there is no duty to hunt for clinically actionable results and that participants will not be re-

contacted for genotyping results. 
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Figure 1 | Schematic representation of the databrowser. Whole genomes generated by Project MinE 
are openly available for research and the public. The databrowser does not have a login requirement. 
It integrates multiple public resources and provides a wide range of robust statistical analyses.  
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Figure 2 | Manhattan and QQ-plot. Results are shown for genic (canonical transcripts only) firth logistic 
regression including variants with a MAF<1% and categorized as disruptive and damaging. λGC = 0.907, 
λ1000 = 0.964. 
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Figure 3 | Databrowser. After entering the gene name (HGNC, Ensembl gene (ENSG) or transcript 
(ENST) identifier) in the search box on the homepage, you will be directed to the gene-specific page. A 
Averaged depth of coverage in the Project MinE dataset, compared to public data and indicating quality 
of coverage in the region. B Firth logistic regression-based genic burden tests. Triangles indicate variant 
locations. Red triangles reach nominal significance in the single variants association test. Hovering over 
the triangles to obtain more information about that variant. C Firth logistic regression-based geneset 
burden test. Tests are based on pathways, gene families or druggable gene categories. To elucidate 
the gene or genes genes driving a signal in the geneset, a Manhattan plot indicates the genic burden 
results for each of the genes included in the geneset. Hovering over individual genes will reveal more 
information about that gene. D Gene expression profiles extracted from GTEx. E Variant table. By 
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default, a subset of variant information is shown; columns of interest can be selected from the dropdown 
menu. Minor allele frequency is based on all unrelated and QC passing samples in the Project MinE 
dataset (6,198 genomes). Frequency information is also stratified by phenotypic status and compared 
to public exome and whole genome data. For comparison, we have indicated the allele frequency on a 
log scale with orange bars; the longer the bar, the higher the allele frequency. Variant filtering can be 
customized using the search boxes below the header of each column. All data, including case/control 
frequencies, are available for download in a tab-delimited file. For a more detailed view of the 
databrowser, see Supplementary Fig. 11.  
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