1	
2	
3	
4	Vertical transmission of Zika virus in orally-infected Aedes aegypti produces
5	infectious adult progeny.
6	
7	
8	
9	
10	
11	Genevieve Comeau ¹ , Robert A. Zinna ¹ , Taylor Scott ¹ , Kacey Ernst ² , Kathleen Walker ¹ , Yves
12	Carrière ¹ , Michael A. Riehle ^{1*}
13	
14	¹ Department of Entomology, University of Arizona, Tucson, AZ 85721
15	² Epidemiology and Biostatistics Department, Mel and Enid Zuckerman College of Public Health,
16	University of Arizona, Tucson, AZ 85724
17	
18	*Corresponding author
19	mriehle@ag.arizona.edu (MR)

20

21 Abstract

22 Vertical transmission, or pathogen transfer from mother to offspring, can facilitate persistence of emerging arboviruses, such as Zika virus (ZIKV), in mosquito populations. 23 24 Understanding vertical transmission and the different environmental and temporal conditions that affect it is important to assess whether new outbreaks could occur without reintroduction of the 25 virus. To determine the rate of vertical transmission for ZIKV, Aedes aegypti females were fed 26 on ZIKV infected blood, maintained under three temperature conditions (27°C, 30°C, and 33°C), 27 and allowed to oviposit three times. Progeny were tested for virus presence at 3, 7, and 14 days 28 after adult emergence. The overall vertical transmission rate was 6.5% (3.9 - 9.9). Vertical 29 transmission was observed across all maternal temperature conditions and was detected in adult 30 progeny as young as 3 days and as late as 14 days post-emergence. In total, 3.4% (1.6 - 6.2) of 31 adult progeny produced saliva with detectable ZIKV, indicating their capacity to transmit ZIKV 32 to humans. To our knowledge, this is the first evidence that vertical transmission occurs from 33 orally-infected female Aedes aegypti to their adult progeny at a range of temperatures, and proof 34 35 that Zika virus can persist in the saliva of those progeny throughout their lifetimes. These results suggest that the virus may be maintained in Ae. aegypti populations without a vertebrate host, 36 allowing for human infections to occur without consistent re-introductions of ZIKV. 37

38

39 Author Summary

In 2015, Zika virus spread to over 50 countries. However, it is not known whether the
virus persisted in the outbreak areas or became locally extinct. One way mosquito-borne viruses,

like Zika, could become established is by transferring directly between mosquito generations 42 rather than circulating between mosquitoes and humans. This is known as vertical transmission, 43 and happens when the virus infects the developing eggs of infected maternal mosquitoes. As 44 with other mosquito-borne diseases, like dengue, in order to infect humans the virus must be 45 present in the saliva of infected mosquito progeny during blood feeding. We found vertical 46 transmission occurred throughout the infected mother's reproductive lifetime and across a range 47 of temperature conditions. Vertically infected progeny had Zika virus in their saliva as early as 48 three days after adult emergence, implying that they could infect a person even during their first 49 50 bloodmeal. Importantly, this work indicates that Zika virus could establish itself in the mosquito population even when human to mosquito transmission is not actively occurring. 51

52

53 Introduction

Zika virus (ZIKV) is a mosquito-borne flavivirus that emerged as a significant human 54 pathogen in French Polynesia and has since spread to over 50 countries. (1) While asymptomatic 55 in approximately 80% of cases, ZIKV infection can cause adverse pregnancy outcomes, such as 56 Zika congenital syndrome (2), and serious neural complications in children and adults including 57 Guillain-Barre and fatal encephalitis. (3) It is primarily transmitted to humans through the bite of 58 the yellow fever mosquito Aedes aegypti, although other mosquito species are also competent. 59 60 (4) Following the pandemic in 2015, 2.2 billion people live in areas that reported active ZIKV transmission. (5) A better understanding of how ZIKV becomes permanently established after 61 introduction to these new locales is needed to assess risk and prevent disease. 62

Arthropod-borne viruses, or arboviruses, can become established in a geographic region 63 through several mechanisms, including 1) regular viral reintroduction and circulation across 64 geographies, 2) established human or non-human reservoirs, and 3) virus maintenance in the 65 vector population. (6) Maintenance in the vector population keeps viruses prevalent when there 66 are few human or other hosts, such as between outbreaks (7). It also helps arboviruses, such as 67 68 West Nile, Ross River, and Sindbis, survive cold temperatures and low vector population numbers during harsh winter months. (8, 9) Vertical transmission, or direct pathogen transfer 69 from mother to offspring, is one path to arboviral maintenance in vector populations. Vertical 70 71 transmission of other Ae. aegypti-borne viruses such as dengue, chikungunya, yellow fever, and West Nile occurs in both the laboratory and field for Ae. aegypti. (10-13) Interestingly, vertical 72 transmission occurs at a higher rate in *Aedes* than other genera of mosquitos. (7) If Zika is also 73 vertically transmitted, it may increase the risk of becoming established in a given area and 74 causing future outbreaks without reintroduction. 75

Vertical transmission of ZIKV alone is not sufficient for another outbreak to occur. To 76 infect a human, virus must be present in the saliva of the vertically-infected progeny. Such 77 progeny would then bypass the extrinsic incubation period (EIP), which is the time between the 78 ingestion of a viremic blood meal by a female mosquito and the time when virus is present in the 79 saliva. Estimates of the EIP of ZIKV range from 4-10 days (14, 15) and this EIP could 80 potentially limit ZIKV spread due to the limited lifespan of Ae. aegypti in the field (16). 81 82 Furthermore, vertically infected mosquitoes do not need to obtain an initial ZIKV infected blood meal, leading to increased infection rates and younger infected mosquitoes. If the saliva of 83 vertically-infected mosquitoes is infected with ZIKV earlier than horizontally-infected 84

85	mosquitoes, they would have more opportunities to transmit the virus. However, the capacity of
86	vertically-infected mosquitos to develop infectious saliva has not been evaluated.
87	Previous studies have implicated ZIKV as vertically transmitted, but evidence is limited
88	by study conditions and endpoints. One study demonstrated a low rate, (1/290) adults, of vertical
89	transmission in adult progeny. However, virus was introduced intrathoracically into the maternal
90	mosquitoes, which bypasses midgut invasion and escape barriers and could impact the rate of
91	infection. (17) A subsequent study demonstrated higher rates of vertical transmission in
92	immature mosquitos, 1/84 larvae, but this rate might not accurately reflect infection status
93	following adult eclosion and does not provide insights into whether ZIKV infected adults have
94	virus in their saliva. (18) Neither study examined how vertical transmission varies under
95	different environmental conditions, though factors such as temperature and humidity conditions
96	can strongly influence arboviral transmission dynamics. (19-22) Gonotrophic cycle, or number
97	of egg batches laid, and adult mosquito age also affect vertical transmission rates of arboviruses.
98	(7, 23) To date, no studies have investigated the rate of ZIKV vertical transmission at multiple
99	temperature conditions, gonotrophic cycles, or whether infection persists during the lifetime of
100	adult progeny.
101	The objective of this study, therefore, was to quantify the rate of ZIKV vertical

transmission to adult offspring of orally infected female *Ae. aegypti* mothers across multiple
maternal temperatures, gonotrophic cycles, and adult progeny ages. As many countries reported
active ZIKV transmission after the 2015 outbreak, the results of this study will help inform
public health policy, surveillance strategies, and potential interventions.

106

107 Methods

108 Mosquito Rearing

109	Mosquitoes originated from an established lab colony of UGAL strain Ae. aegypti. and were
110	reared in an ACL2 insectary at 27°C, 75% RH, and 16:8 light:dark photoperiod cycle. Larval
111	mosquitoes were reared at a density of 100-150 larvae per liter of water and fed ground cat chow.
112	Pupae were transferred to emergence cages with a density of 50 mosquitoes/cage. Adult
113	mosquitoes were provided 10% sucrose ad libitium via soaked cotton balls. Sucrose soaked
114	cotton balls were replaced with water soaked cotton balls 24 hours before bloodmeals to
115	encourage feeding.
116	
117	Cell Culture and Virus Propagation
118	Vero cells were cultured in DMEM supplemented with 10% FBS and incubated at 37° C and 5%
119	CO2. At 80% confluence, cells were either split 1:5 or infected with ZIKV. During infection old
120	culture media was removed, then 2 mL of fresh media was mixed with virus (ZIKV strain
121	PRVABC59, ATCC) and diluted to a multiplicity of infection of 10. After dilution, cells were
122	incubated for 1 hour at 37°C and 5% CO2, rocking the flask every 15 min. After 1 hour, the
123	infectious media was removed and fresh media added to the flask. After new media was added,
124	cells were incubated for 96 hours at 37°C and 5% CO2 until 90% cytopathic effect was attained.
125	Cell culture media was then pipetted into a 15 mL tube and centrifuged at 300 x g for 10 minutes
126	(24). Viral supernatant was transferred to a new 15 mL tube, mixed to 20% volume/volume with
127	fetal calf serum, and stored at -80°C until use.

128

129 Plaque Assay

130	Plaque assays were conducted based on protocols provided by VIRAPUR and those developed
131	by Agbulos et al (25) to determine the ZIKV stock viral titer prior to oral infections, with slight
132	modifications. ZIKV stock titers were also assessed using qPCR (see ZIKV qPCR methods
133	below). For plaque assays, Vero cells were plated in 6-well plates and incubated overnight.
134	Media was removed from the cells and viral stock diluted in serum-free DMEM from 10^{-2} to 10^{-6} .
135	The ZIKV dilutions were allowed to adsorb onto cells for 1 hour, rocking every 15 minutes to
136	distribute virus among the cells. Following adsorption, infectious media was removed and 3 mL
137	of DMEM mixed with 4% agarose was overlaid onto the cells. Overlaid Vero cells were
138	incubated for 5 days at 37°C and 5% CO2, then stained with 0.1 volume of 5mg/mL MTT and
139	incubated for a minimum of two hours before final imaging and quantification.
140	
141	ZIKV qPCR standard generation and viral qPCR quantification assay
142	A region of the envelope protein of ZIKV strain PRVABC59 (833 bp) was generated to
143	quantify viral load using specific primers (Forward: ATCTAGAAGAGCCGTGACGC; Reverse:
	quantity vital load using specific primers (1 61 ward. ATC TAGAMOROCCOTORCOC, Reverse.
144	CTGAAAAGTCAAGGCCTGTC) which were designed to flank the qPCR amplicon primers
144 145	
	CTGAAAAGTCAAGGCCTGTC) which were designed to flank the qPCR amplicon primers
145	CTGAAAAGTCAAGGCCTGTC) which were designed to flank the qPCR amplicon primers developed by Franz et al (26): Viral RNA was extracted from infected media using Trizol as
145 146	CTGAAAAGTCAAGGCCTGTC) which were designed to flank the qPCR amplicon primers developed by Franz et al (26): Viral RNA was extracted from infected media using Trizol as follows. 100 uL of viral supernatant was added to 500 uL of Trizol. Chloroform (50 ul) was
145 146 147	CTGAAAAGTCAAGGCCTGTC) which were designed to flank the qPCR amplicon primers developed by Franz et al (26): Viral RNA was extracted from infected media using Trizol as follows. 100 uL of viral supernatant was added to 500 uL of Trizol. Chloroform (50 ul) was added and the sample incubated for 10 minutes at room temperature, followed by centrifugation
145 146 147 148	CTGAAAAGTCAAGGCCTGTC) which were designed to flank the qPCR amplicon primers developed by Franz et al (26): Viral RNA was extracted from infected media using Trizol as follows. 100 uL of viral supernatant was added to 500 uL of Trizol. Chloroform (50 ul) was added and the sample incubated for 10 minutes at room temperature, followed by centrifugation at 4°C and 14,000g for 15 minutes. The aqueous phase (150 ul) was removed and incubated for
145 146 147 148 149	CTGAAAAGTCAAGGCCTGTC) which were designed to flank the qPCR amplicon primers developed by Franz et al (26): Viral RNA was extracted from infected media using Trizol as follows. 100 uL of viral supernatant was added to 500 uL of Trizol. Chloroform (50 ul) was added and the sample incubated for 10 minutes at room temperature, followed by centrifugation at 4°C and 14,000g for 15 minutes. The aqueous phase (150 ul) was removed and incubated for one min at room temperature with 50 ul of isopropanol, then centrifuged at 4°C and a 14000g for

153	Waltham, MA). The region of interest was subsequently amplified using PCR (GoTaq, Promega,
154	Madison, WI) and the product purified using the QIAquick Gel extraction kit (Qiagen, Hilden,
155	Germany). This product was ligated into the pGEM-T Easy Vector (Promega, Madison, WI), and
156	then transfected into competent E. coli (JM109). After transfected colonies were selected, the
157	plasmid was purified using the QIAprep Spin Miniprep kit (Qiagen, Hilden, Germany) and
158	sequenced to verify the ZIKV amplicon. By modifying the forward primer above to include a T7
159	flanking sequence, the validated plasmid was used as a template for PCR to generate cDNA. The
160	new PCR product was purified and used as a template to generate pure ssRNA with the
161	MEGAscript T7 RNA synthesis kit (Ambion, ThermoFisher, Waltham, MA) according to
162	manufacturer protocols. The ssRNA standard was quantified using a Nanodrop 2000
163	(ThermoFisher, Waltham MA), and the concentration of RNA was used to calculate the number
164	of ssRNA copies (N) in the standard. The quantified ssRNA was diluted to generate a standard
165	curve for absolute qPCR quantification with a concentration range of $2.13E+8$ copies $-2.13E+4$
166	copies that was incorporated into each plate.
167	The following primers and Taq-man probes for the detection of ZIKV with qPCR
168	methodology were used; Forward: CCGCTGCCCAACACAAG, Reverse:
169	CCACTAACGTTCTTTTGCAGACAT, Probe: FAM-CTYAGACCAGCTGAAR-BBQ (16).
170	ZIKV qPCR quantification was performed using the iTaq Universal Probes One-Step Kit (Bio-
171	Rad, 172-5140) according to manufacturer protocol with a 10 ul reaction volume. RNA extracted
172	from uninfected female A. aegypti was included in each plate as a negative control. Reactions
173	were run on an Eppendorf RealPlex2 Mastercycler for 10 min at 50°C, 3 min at 95°C., 95°C for
174	15, then 60°C for 30 sec. Samples were considered positive for ZIKV if amplification was

detected at or before a C_t , cycle threshold, value of 35. This number is highly conservative, as the CDC uses a C_t cut off value of 38. (27)

177

178 Preparation of Infectious Bloodmeal and Oral infection of Mosquitoes

PRVABC59 cell supernatant was diluted to the desired concentration and mixed with human 179 whole blood provided by the American Red Cross (IBC protocol #2010-014), taking care to 180 ensure that the virus solution added to the blood did not exceed 10% of the total volume to 181 minimize dilution of the blood's nutritional value. The final titer of the blood meal for both trials 182 was 6.40e07 viral copies/mL as verified by qPCR and 1.3e03 PFU/mL as determined by plaque 183 assay, which corresponds with the clinically observed range of ZIKV in human blood titers. (28) 184 Thirty 2-day old adult female mosquitoes were transferred to small containers and allowed to 185 feed on the ZIKV supplemented blood from a membrane feeding system. After feeding for 1 186 hour, mosquitoes were cold anaesthetized and female mosquitoes with visibly engorged 187 abdomens were separated, while non-blood-fed mosquitoes were discarded. A total of 180 blood-188 fed female mosquitoes, 20 mosquitoes/cage, were separated into three temperature treatments of 189 27°C, 30°C, and 33°C with 60 female mosquitoes (i.e. 3 cages) per treatment. At 0 days post 190 infection, each cage was provided with an oviposition substrate and female mosquitoes were 191 allowed to oviposit freely for 72 hours, representing the first gonotrophic cycle, after which the 192 193 egg sheet was removed. Maternal mosquitoes were provided additional uninfected blood meals at 5 and 10 days post infection (dpi) to facilitate additional reproductive cycles. Oviposition 194 substrates were provided after each blood meal, corresponding to the second and third 195 196 gonotrophic cycles.

197

198 Vertical Transmission to Progeny

Potentially vertically-infected progeny of orally-infected female mosquitoes were reared 199 according to the methods described above. After adult emergence, progeny mosquitoes were 200 maintained in small cages at 20 mosquitoes/cage. At 3dpi, 7 dpi, and 14 dpi, ten adult female 201 mosquitoes from each maternal temperature treatment and gonotrophic cycle cohort were cold 202 203 anesthetized to collect saliva and abdomen samples. Legs and wings were removed, then each female's proboscis was inserted into a 0.2 mm capillary tube and allowed to salivate into mineral 204 oil for five minutes, after which the saliva sample was aspirated into 200mL of DMEM mixed 205 206 with 2% FBS, 1% pen/strep for processing. Saliva was tested for viral presence as a measure of potential infectiousness to humans and stored in -80°C for RNA extraction. Abdomen samples 207 were collected in the same way as the I_1s . 208 Leg/wing and abdomen samples were homogenized in 1.6 mL tubes with 500 uL of Trizol 209

and Total RNA isolated with Trizol as described above. For saliva samples, 100 ul of

saliva/DMEM solution was placed in 200uL of Trizol to inactivate any virus, then processed as

above. Concentrations of the extracted RNA were verified using a Nanodrop 2000

213 (ThermoFisher, Waltham MA) and stored in -80°C until a viral titer could be determined by

qPCR as described above. To verify successful RNA extraction and cDNA synthesis, a qPCR

reaction was run with Ae. aegypti actin primers and SYBR Green one step kit according to

216 manufacturer protocol (ThermoFisher, Waltham MA).

217

218 *Statistical Analyses*

Evaluating the effects of the explanatory variables (i.e., maternal post-infection
temperature, gonotrophic cycle, and progeny age) simultaneously using logistic regression was

not possible because the sample size did not allow this type of stratification of the data and 221 resulted in unstable estimates of the regression coefficients. Accordingly, separate univariate 222 logistic regression models were used to evaluate the effect of 1) maternal post-infection 223 temperature, 2) gonotrophic cycle, 3) progeny age, and 4) experimental trial (n=2) on the odds of 224 progeny infection. Experimental trial was treated as a categorical variable, while maternal 225 226 temperature (27°C, 30°C, or 33°C), gonotrophic cycle (first, second, or third), and progeny age (3, 7, or 14 days post-eclosion) were treated as numerical variables. Three outcomes were modeled: 227 228 odds of progeny with detectable virus overall; odds of progeny with detectable virus in saliva; and odds of progeny with detectable virus in the abdomen. Exact binomial 95% confidence 229 intervals were calculated for the percentage of ZIKV-infected mosquitoes for each level of the 230 explanatory variables. Odds ratios reported for numerical predictors are unit odds ratios. For the 231 categorical predictor experimental trial, the first trial was held as the reference category and the 232 odds of the second trial relative to the first are reported. A Pearson chi-squared test with Yates 233 234 continuity correction was used to evaluate whether viral presence in the abdomen was associated with virus presence in the saliva of individual mosquitoes. The observed proportion of progeny 235 236 mosquitoes with both infected abdomens and saliva was compared to the expected proportion if 237 the two types of infection are independent, which was the product of the observed proportions of progeny mosquitoes with infected abdomens only and infected saliva only. 238

239

240 **Results**

241 Orally-infected Ae. aegypti females transmit ZIKV to their offspring

To assess the rate of vertical transmission, we examined the offspring of orally-infected

female Ae. aegypti for ZIKV presence in abdomens and saliva at multiple time points over a two

244	week period post-eclosion. Vertical transmission from orally-infected Ae. aegypti females to their
245	offspring occurred across all maternal temperature conditions, gonotrophic cycles, and adult
246	progeny ages tested. Overall, 6.5% (95% confidence interval = $3.9 - 9.9$) of adult progeny had
247	detectable levels of ZIKV. Experimental trial was not a significant explanatory variable in any
248	analysis, indicting independence of progeny outcome from experimental trial. (Table 1)

249

Explanatory Variable	Progeny Infection Outcome	X ²	p-value	Odds Ratio
Experimental Trial	Total	0.92	0.34	0.59
	Abdomen	1.41	0.24	0.39
	Saliva	0.11	0.74	0.79
Maternal Temperature	Total	1.59	0.21	0.87
	Abdomen	0	0.99	1
	Saliva	2.72	0.10	0.75
Gonotrophic Cycle	Total	3.84	0.05	1.95
	Abdomen	1.76	0.18	1.92
	Saliva	1.19	0.28	1.76
Progeny Age	Total	3.91	0.05	0.87
	Abdomen	4.07	0.04	0.77
	Saliva	0	0.99	1

250 Table 1: Logistic Regression Analysis of ZIKV Vertical Transmission

251

252 Table 1: Logistic Regression Analysis of ZIKV Vertical Transmission

253 Each unique combination of explanatory variable and progeny infection outcome represents a

254 *distinct univariate regression model. Odds ratios for numerical explanatory variables are*

255 reported as unit odds ratios, odds ratios for categorical predictors are relative to the reference

256 *category. Statistically significant models* ($p \le 0.05$) *are in bold.*

257

258 ZIKV vertical transmission occurs at all maternal temperature conditions

250	$T \qquad 1 \qquad 0 \qquad 1$		· ·	1,	· · · 1 11
259	I D assess the effect of	of maternal temperati	ire on vertica	I fransmission wa	- maintained orally-
233		n maternar temperati	ne on vertica	i dialisiilissioii w	s manuallica orany

- infected maternal mosquitoes at 27°C, 30°C, and 33°C. ZIKV was present in adult progeny from
- every maternal temperature. Vertical transmission occurred to 8.3% (n = 109, 95% CI = 3.8 -
- 262 15.1) of progeny from 27°C, 5.7% (n = 105, 95% CI = 2.1 12) from 30°C, and 3.8 % (n = 79,
- 263 95% CI = 0.8 10.7) from 33°C. (Figure 1A) ZIKV was found in progeny abdomens at every
- temperature; 4% (n = 100, 95% CI = 1-1 9.9) of progeny abdomens from 27°C, 3% (n = 99,
- 265 95% CI =0.6 8.6) from 30°C, and 3.8% (n = 79, 95% CI = 0.8 10.7) from 33°C. ZIKV was
- found in the saliva of 4.9% (n = 102, 95% CI = 1.6 11.1) of progeny from 27°C and 3.8% (n =
- 104, 95% CI = 1.5 9.6) from 30°C, but not in any of the 77 progeny from the 33 °C treatment.
- 268 (Figure 1B) There was no significant association between maternal temperature and the odds of
- 269 ZIKV infection in the progeny mosquitos. (Table 1)

Fig 1: Vertical Transmission by Maternal Temperature and Sample Type

- 271 (A) Percent of vertically infected progeny from each maternal temperature condition. (B)
- 272 Percent of progeny with ZIKV present in abdomens, indicating vertical infection, and saliva,

273 *indicating potential infectiousness, from each maternal temperature condition.*

274

275 ZIKV Vertical transmission occurs at every gonotrophic cycle

276 To determine whether vertical transmission increased as the time between maternal

- 277 infection and oviposition increased we assessed the rate of vertical transmission over consecutive
- 278 gonotrophic cycles. Vertical transmission occurred in every gonotrophic cycle. ZIKV was

detected in 4.0% (n = 174, 95% CI = 1.6 - 8.1) of progeny from the first gonotrophic cycle, 8.6%

280 (n = 105, 95% CI = 4 - 15.6) from the second, and 14.3% (n = 14, 95% CI 1.8 - 42.8) from the

281	third. (Figure 2A) ZIKV was present in the abdomens of 1.7% (n = 174, 95% CI = $0.4 - 5.0$)
282	progeny from the first gonotrophic cycle and 7.8% ($n = 90, 95\%$ CI = 3.2 – 15.4) progeny from
283	the second but was not detected in the abdomens of the fourteen progeny from the third
284	gonotrophic cycle. ZIKV was detected in the saliva of 3.0% (n = 166, 95% CI = $1.0 - 6.9$)
285	progeny from the first cycle, 1.9% (n = 104, 95% CI = $0.2 - 6.8$) of progeny from the second
286	cycle, and 16.7% (n = 12, 95% CI = 2.1-48.4) of progeny from the third cycle. (Figure 2B) The
287	relatively small sample size of the third gonotrophic cycle was due to lower survivorship and
288	fecundity of maternal mosquitoes after laying two previous batches of eggs. Gonotrophic cycle
289	significantly affected the odds of overall ZIKV infection in progeny ($p = 0.05$, Odds ratio = 2),
290	suggesting a greater number of developing ovarioles became infected with each subsequent
291	cycle. However, there was no discernable influence of gonotrophic cycle on the odds of viral
292	presence in abdomen tissue or saliva samples individually. (Table 1)

293

Fig 2: Vertical Transmission by Gonotrophic Cycle and Sample Type

295 (A) Percent of vertically infected progeny from each gonotrophic cycle. (B) Percent of progeny

with *ZIKV* present in abdomens, indicating vertical infection, and saliva, indicating potential

- 297 *infectiousness, from each gontrophic cycle.*
- 298 ZIKV infection persists for at least two weeks in infected progeny

Persistence of ZIKV in vertically infected progeny is essential for viral maintenance within mosquito populations and would result in greater opportunities for the virus to be passed to vertebrate hosts during bloodfeeding. We found ZIKV in progeny up to two weeks after adult eclosion. ZIKV was detected in 11.7 % (n = 103, 95% CI = 6.2 - 19.5) of three day old progeny,

1 1

10 - 0/ /

00 050/ 01

~ ~

303	2.8 % (n = 108, 95% CI = 0.6 - 7.9) of seven day old progeny, and $3.7 %$ (n = 82, 95% CI = 0.8 -
304	10.3) of fourteen day old progeny. (Figure 3A) ZIKV was detected in the abdomens of 8.2% (n =
305	98, 95% CI = $3.6 - 15.5$) of three day old progeny, 1.0% (n = 98, 95% CI = $0 - 5.6$) of seven day
306	old progeny, and 1.2% (n = 82, 95% CI = $0 - 6.6$) of fourteen day old progeny. ZIKV was
307	detected in the saliva of 4.4% (n = 91, 95% CI = $1.2 - 10.8$) of three day old progeny, 1.9% (n =
308	105, 95% CI = $0.2 - 6.7$) of seven day old progeny, and 3.4% (n = 87 , 95% CI = $0.8 - 9.7$) of
309	fourteen day old progeny. (Figure 3B) Progeny age was significantly associated with reduced
310	odds of virus presence in progeny mosquitoes overall ($p = 0.05$, Odds ratio = 0.87) and in
311	progeny abdomens ($p = 0.04$, Odds ratio = 0.77), but not with viral presence in saliva. (Table 1)

312

. . .

• • • • •

100 050/ 01

0 (7 0) (

313 Fig 3: Vertical Transmission by Progeny Age and Sample Type

314 *(A)* Percent of vertically infected progeny by age (days) at dissection. (B) Percent of progeny

315 with ZIKV present in abdomens, indicating vertical infection, and saliva, indicating potential

316 *infectiousness, by age (days) at dissection.*

317 *Vertically infected progeny have ZIKV in their saliva*

For transmission to the vertebrate host to occur, virus must be present in the mosquito's saliva. ZIKV positive saliva was detected in 3.4 % (1.6 - 6.2) of progeny, or half of all verticallyinfected progeny. Virus was found in saliva of adult progeny hatched from every gonotrophic cycle and at every progeny age tested. ZIKV positive saliva was detected in progeny from all maternal temperature conditions except 33°C, though the sample size was smaller for this temperature (n = 77). None of the explanatory variables were significantly associated with ZIKV presence in saliva. (Table 1) Additionally, though virus was detected in just the saliva or just the

abdomens of 3.07% of progeny mosquitoes, viral presence in progeny abdomens was not significantly associated with viral presence in saliva ($X^2 = 0.001$, p = 0.97), and only occurred in one progeny mosquito.

328

329 Discussion

Understanding the capacity of ZIKV to establish itself in vector mosquito populations, persist 330 through periods of low transmission, and initiate future outbreaks is vitally important to public 331 health. We found vertical transmission occurred from orally infected female Ae. aegypti to 6.5% 332 (95% CI = 3.9 - 9.9) of adult female progeny. This is consistent with vertical transmission rates 333 of other Aedes-borne flaviviruses, including DENV-3 (3%), chikungunya (20.2%), and yellow 334 fever (8.2%) (29, 11, 12) and is substantiated by evidence from the field. ZIKV positive males 335 have been identified in Mexico and Brazil, confirming its occurrence. (4,33) Whether this rate of 336 vertical transmission is sufficient to contribute to future outbreaks has been debated. The 337 estimated minimum rate of vertical transmission required to influence human cases of a similar 338 arbovirus, dengue, ranges from 4% to 20-30%. (30, 31) Some studies have contested that human 339 movement and asymptomatic cases contribute more significantly to human dengue prevalence 340 than vertical transmission. (31, 32) However, peaks in the vertical transmission of dengue have 341 been shown to precede disease outbreaks during periods of high mosquito density. (34) At a 342 minimum, vertical transmission should be considered as one of ZIKV's multiple modes of 343 344 transmission and incorporated into prevention strategies, surveillance plans, and models of transmission risk. 345

Vertical transmission of ZIKV throughout an infected mosquito's reproductive lifetime could
facilitate pathogen establishment. Considering all progeny tested, orally-infected *Ae. aegypti*

females were twice as likely to vertically transmit ZIKV to their progeny with each consecutive 348 gonotrophic cycle (p = 0.05, Odds ratio = 2), suggesting a greater number of ovarioles were 349 invaded by virus as the maternal mosquito aged. However, analyses considering abdomen and 350 salivary infection separately did not find a significant association between gonotrophic cycle and 351 progeny infection (Table 1), which could have arisen because of reduced statistical power due to 352 353 the low number of progeny infected overall. Mosquito survivorship in the field is significantly lower than under laboratory conditions, and even in the lab not many maternal mosquitoes lived 354 to complete a third gonotrophic cycle, as reflected by our small sample size. (16) Accordingly, 355 356 the shorter reproductive lifetime of mosquitoes in the field may attenuate the impact of higher transmission rates during later gonotrophic cycles. 357

Vertical transmission occurred across a wide range of maternal temperature conditions, 358 suggesting that it could be a robust mechanism for ZIKV maintenance in mosquitoes. During the 359 2015 pandemic, ZIKV spread to a variety of climates and this window of temperatures suitable 360 for vertical transmission could be one of opportunity for ZIKV establishment. (1) Geographic 361 regions with a competent vector population and average temperatures that overlap 27-33°C, 362 363 including much of the southern United States, are at risk of ZIKV vertical transmission. (35) 364 Interestingly, ZIKV vertical transmission was not significantly associated with higher temperatures, unlike horizontal transmission of a similar arbovirus; dengue. (22) 365 366 Persistence of ZIKV vertical infection up to two weeks after adult progeny eclosion extends 367 the possibility of pathogen persistence in previous outbreak areas and transmission to human 368 hosts. However, lifelong presence of ZIKV in the saliva of progeny mosquito, as opposed to saliva infection of older mosquitoes with horizontal transmission, may alter aspects of the virus-369 370 vector relationship. In horizontally infected mosquitoes, virus must be acquired from an infected

371	host, which may not occur during the first bloodfeeding. The virus must then disseminate
372	through the body, including the abdomen, to reach the salivary glands. (15) However, for
373	vertical transmission, ZIKV presence in the abdomens of infected progeny appeared independent
374	of presence of ZIKV in the saliva ($p = 0.97$). The relationship between mosquito age and
375	likelihood of viral infection also differs between horizontal and vertical transmission. Vertically
376	infected progeny were less likely to test positive for ZIKV as they aged, with a 13% reduction in
377	the odds of overall infection ($p = 0.05$, Odds ratio = 0.87) and a 23% reduction in the odds of
378	abdomen infection ($p = 0.04$, Odds ratio = 0.77). This relationship is reversed in horizontally
379	infected mosquitoes, as dengue transmission increases with mosquito lifespan. (22)
380	The presence of virus in the saliva of vertically infected progeny provides ZIKV with a
381	potential bridge between mosquitoes and humans. This bridge was present at all progeny ages
382	tested, with ZIKV detected in the saliva as early as three days and as late as 14 days after adult
383	emergence. Whether there is a difference in vector competence between vertically and
384	horizontally infected mosquitoes should be the subject of further research. Not only do
385	vertically-infected progeny have the capacity to start an outbreak, they likely have greater
386	opportunity to do so than horizontally-infected mosquitoes. Vertically infected mosquitoes
387	bypass two essential requirements necessary for horizontal transmission, obtaining the initial
388	infectious blood meal and surviving the extrinsic incubation period (EIP). The maternal
389	mosquitos in our study had a minimum EIP of 3 days (R. Zinna, unpub. data), and other studies
390	found the average ZIKV EIP to range from 4 to 10 days. (14,15) Without the need to find an
391	initial infectious bloodmeal and survive the multi-day waiting period imposed by the EIP,
392	vertically infected adult progeny are capable of transmitting the virus to humans at a younger age
393	and for a greater percentage of their adult lives.

394 *Conclusion*

395	We found vertical transmission from orally infected females occurs as early as the first
396	reproductive cycle following the initial infectious bloodmeal, at a range of maternal
397	temperatures, and that ZIKV infection persists in the progeny for at least two weeks after adult
398	eclosion. ZIKV was detected in the saliva of vertically infected progeny, and the resulting
399	elimination of the extrinsic incubation period means these mosquitoes have a longer interval than
400	horizontally infected mosquitos to bite and infect a human. Consequently, ZIKV has the
401	potential to be maintained in mosquito populations even in the absence of transmission cycles to
402	the vertebrate host and thus can cause future outbreaks without the need for viral reintroduction.
403	These findings reinforce the need to conduct surveillance and viral testing in mosquito
404	populations where ZIKV transmission has occurred in the past.

405

406 Acknowledgements

The authors would like to extend a heartfelt thank you to Teresa Joy, for her assistance in the lab,
Michael Pham, for his cell-culture expertise, and Jenet Soto-Shoumaker, for maintaining the
large research colonies that made this work possible. We would also like to thank Kathryn
Fitzpatrick for her troubleshooting advice.

411

412 **References**

413 1. Zika Travel Information. Centers for Disease Control and Prevention. Centers for
414 Disease Control and Prevention. 2016. Available from:

415 https://wwwnc.cdc.gov/travel/page/zika-information

416	2. Dasgupta S, Reagan-Steiner S, Goodenough D, Russell K, Tanner M, Lewis L, et al.
417	Patterns in Zika Virus Testing and Infection, by Report of Symptoms and Pregnancy
418	Status — United States, January 3–March 5, 2016. MMWR Morb Mortal Wkly Rep.
419	2016 April 22;65:395–399. doi: <u>http://dx.doi.org/10.15585/mmwr.mm6515e1</u> .
420	3. Soares C, Brasil P, Carrera R, Sequeira P, de Filippis AB, Borges V, et al. Fatal
421	encephalitis associated with Zika virus infection in an adult. J Clin Virol. 2016 Oct.
422	83:63-5. doi: 10.1016/j.jcv.2016.08.297.
423	4. Elizondo-Quiroga D, Medina-Sánchez A, Sánchez-González J, Eckert K, Villalobos-
424	Sánchez E, Rigoberto Navarro-Zúñiga A, et al. Zika Virus in Salivary Glands of Five
425	Different Species of Wild-Caught Mosquitoes from Mexico. Scientific Reports. 2018.
426	8(1):809. doi: 10.1038/s41598-017-18682-3
427	5. Alaniz, A. J., Bacigalupo, A. & Cattan, P. E. Spatial quantification of the world
428	population potentially exposed to Zika virus. Int J Epidemiol 2017. 46;3: 966–975. doi:
429	10.1093/ije/dyw366
430	6. Weaver S, Reisen W. Present and future arboviral threats. Antiviral Research. 2010
431	Feb. 85;10:328-345. doi: 10.1016/j.antiviral.2009.10.008
432	7. Lequime S, Paul RE, Lambrechts L. Determinants of Arbovirus Vertical Transmission
433	in Mosquitoes. PLOS Pathogens. 2016 May 12;12(5):e1005548.
434	8. Nasci R, Savage H, White D, Miller J, Cropp B, Godsey M et al. West Nile virus in
435	overwintering Culex mosquitos, New York City, 2000. Emerg Infect Dis. 2001. 7;4: 742-
436	744. doi: <u>10.3201/eid0704.010426</u>

437	9. Dhileepan K, Azuolas J, Gibson C. Evidence of vertical transmission of Ross River
438	and Sindbis viruses (Togaviridae: Alphavirus) by mosquitoes (Diptera: Culicidae) in
439	southeastern Australia. J Med Entomol. 1996 Jan. 33;1:180-2. PMID: 8906927
440	10. Kow C, Koon L, and Yin P. Detection of Dengue Viruses in Field Caught Male Aedes
441	aegypti and Aedes albopictus (Diptera: Culicidae) in Singapore by Type-Specific PCR. J
442	Med Entomol. 2001. 38;4:475-479. doi:10.1603/0022-2585-38.4.475
443	11. Agarwal, A. Dash K, Singh, A, Sharma S, Gopalan N, Rao P, et al. Evidence of
444	Experimental Vertical Transmission of Emerging Novel ECSA Genotype of
445	Chikungunya Virus in Aedes aegypti. PLoS Neglected Tropical Diseases. 2014 Jul.
446	8;7:e2990. doi:10.1371/journal.pntd.0002990
447	12. Fontenille D, Diallo M, Mondo M, Ndiaye M, and Thonnon J. First evidence of
448	natural vertical transmission of yellow fever virus in Aedes aegypti, its epidemic vector.
449	Trans R Soc Trop Med Hyg. 1997 Sep 1. 91;5:533-535. doi:10.1016/S0035-
450	9203(97)90013-4
451	13. Baqar S, Hayes C, Murphy J, and Watts D. Vertical Transmission of West Nile Virus
452	by Culex and Aedes Species Mosquitoes. Am J Trop Med Hyg. 1993 May 1. 48;6:757-
453	762. doi: 10.4269/ajtmh.1993.48.757
454	14. Wong PSJ, Li M, Zhi I, Chong CS, Ng LC, Tan CH. Aedes (Stegomyia) albopictus
455	(Skuse): A Potential Vector of Zika Virus in Singapore. PLoS Negl Trop Dis. 2013 Aug
456	1. 7;8:e2348. doi: 10.1371/journal.pntd.0002348

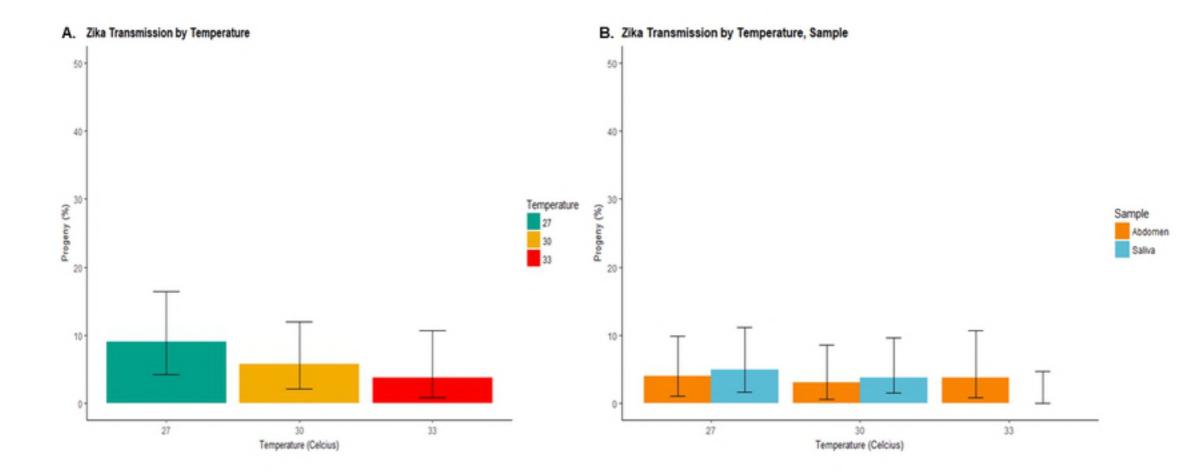
457	15. Roundy C, Azar S, Rossi S, Huang J, Leal G, et al. Variation in Aedes aegypti
458	Mosquito Competence for Zika Virus Transmission. Emerg Infec Dis. 2017 April.
459	23;4:625-632. doi: 10.3201/eid2304.161484
460	16. Brady O, Johansson M, Guerra C, Bhatt S, Golding N, et al. Modelling adult Aedes
461	aegypti and Aedes albopictus survival at different temperatures in laboratory and field
462	settings. Parasites and Vectors. 2013 Dec 12. 6:351. doi:10.1186/1756-3305-6-351
463	17. Thangimani S, Huang J, Hart C, Guzman H, and Tesh R. Vertical Transmission of
464	Zika Virus in Aedes aegypti Mosquitoes. Am J Trop Med Hyg. 2016 Nov 2. 95;5:1169-
465	1173. doi:10.4269/ajtmh.16-0448
466	18. Ciota A, Bialosuknia S, Ehrbar D, Kramer L. Vertical Transmission of Zika Virus by
467	Aedes aegypti and Ae. albopictus Mosquitoes. Emerg Infec Dis. 2017 May. 23;5:880-
468	882. doi: 10.3201/eid2305.162041
469	19. Tran A, L'Ambert G, Lacour G, Benoit R, Demarchi M. A Rainfall- and
470	Temperature-Driven Abundance Model for Aedes albopictus Populations. International
471	Journal of Environmental Research and Public Health. 2013 April 26. 10;5:1698-1719.
472	doi: 10.3390/ijerph10051698
473	20. Focks D, Haile D, Daniels E, Mount G. Dynamic life table model for Aedes aegypti
474	(Diptera: Culicidae): analysis of the literature and model development. J Med Entomol.
475	1993 Nov. 30;6:1003-1017. PMID: 8271242
476	21. Costa E, Santos E, Correia J, Albuquerque C. Impact of small variations in
477	temperature and humidity on the reproductive activity and survival of Aedes aegypti

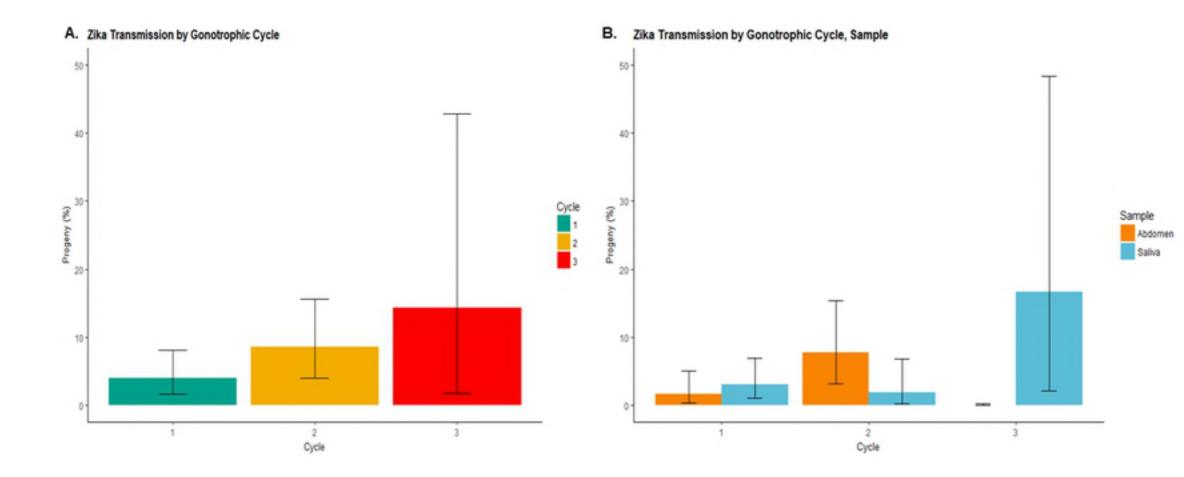
478 (Diptera.	Culicidae)	. Revista	Brasileira	de Entomolog	ia. 2010. (54:3:488-493.	doi:
7/0 (Diptora,	Cultorado	. Ite vista	Diasticita	uc Lintomolog	1a. 2010. c	J_{-1}, J_{-1}, J_{-	uor.

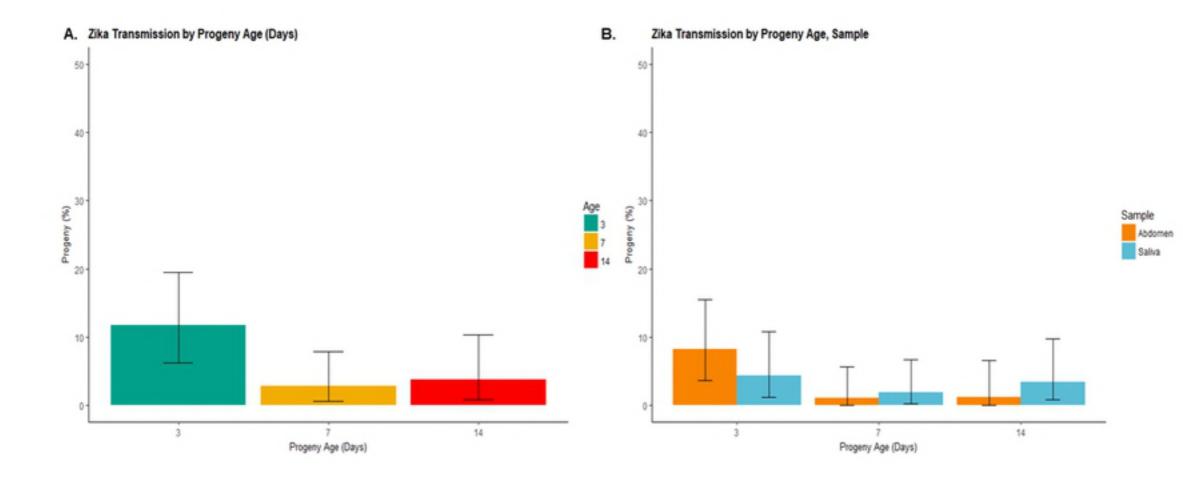
479 10.1590/S0085-56262010000300021

- 480 22. Barbazan P, Guiserix M, Boonyuan W, Tuntaprasart W, Pontier D. Modelling the
- 481 effect of temperature on transmission of dengue. Med Vet Entomol. 2010 Mar. 24;1:66-
- 482 73. doi: 10.1111/j.1365-2915.2009.00848
- 483 23. Ndoen E, Wild C, Dale P, Sipe N, Dale M. Mosquito Longevity, Vector Capacity,
- 484 and Malaria Incidence in West Timor and Central Java, Indonesia. International
- 485 Scholarly Research Notices. 2012. 2012:1-5. doi: 10.1016/j.trstmh.2008.07.025
- 486 24. Black WC, Bennett KE, Gorrochótegui-Escalante N, Barillas-Mury C V., Fernández-
- 487 Salas I, de Lourdes Muñoz M, et al. Flavivirus Susceptibility in Aedes aegypti. Arch Med
 488 Res. Elsevier; 2002 Jul 1. 33;4:379–88. doi: 10.1016/S0188-4409(02)00373-925.
- 489 25. Agbulos D, Barelli L, Giordano B, Hunter F. Zika virus: Quantification, propagation,
- detection, and storage. Curr. Protoc. Microbiol. 2016 Nov. 43:15D.4.1-15D.4.16. doi:
- 491 10.1002/cpmc.19
- 492 26. Franz AWE, Kantor AM, Passarelli AL, Clem RJ. Tissue Barriers to Arbovirus
- 493 Infection in Mosquitoes. Viruses. Multidisciplinary Digital Publishing Institute
- 494 (MDPI).2015. 7;7: 3741-3767. doi:10.3390/v7072795

495


496


- 497 27. Center for Disease Control and Prevention. Trioplex Real Time PCR Assay
- 498 Instructions for Use. Center for Disease Control and Prevention. 2017 April 6. Available


499	from: https://www.cdc.gov/zika/pdfs/trioplex-real-time-rt-pcr-assay-instructions-for-
500	<u>use.pdf</u>
501	28. Gallian P, Cabie A, Richard P, Paturel L, Charel R, et al. Zika virus in asymptomatic
502	blood donors in Martinique. Blood [Internet]. 2017 Jan 12. [cited 2017 Oct
503	4];129;(2):263-266. doiAvailable at: http://www.bloodjournal.org/content/129/2/263
504	DOI: 10.1182/blood-2016-09-737981
505	29. Joshi V, Mourya D, Sharma R. Persistence of dengue-3 virus through transovarial
506	transmission passage in successive generations of Aedes aegypti mosquitoes. Am J Trop
507	Med Hyg. 2002 Aug. 67;2:158-161. doi: 10.4269/ajtmh.2002.67.158
508	30. DeFoliart G, Grimstad P, Watts D. Advances in Mosquito-Borne Arbovirus/Vector
509	Research. Ann Rev Entom. 1987. 32;1:479-505. doi:
510	10.1146/annurev.en.32.010187.002403
511	31. Adams B, Boots M. How important is vertical transmission in mosquitoes for the
512	persistence of dengue? Insights from a mathematical model. Epidemics. 2010 Mar 1.
513	2;1:1-10. doi: 10.1016/j.epidem.2010.01.001
514	32. Grunnill M, Boots M. How Important is Vertical Transmission of Dengue Viruses by
515	Mosquitoes (Diptera: Culicidae)? J Med Entomol. 2016 Jan 1;53(1):1-19. doi:
516	10.1093/jme/tjv168
517	33. Ferreira-de-Brito A, Ribeiro I, Miranda R, Fernandes R, Campos S et al. First
518	detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout
519	South America. Memórias do Instituto Oswaldo Cruz. 2016 Oct. 111;10:655-658. doi:
520	10.1590/0074-02760160332

521	34. Lee H, Rohani A. Transovarial Transmission of Dengue in Aedes aegypti and Aedes
522	albopictus in Relation to a Dengue Outbreak in an Urban Area. Dengue Bulletin. 2005.
523	29:106-111. Available from:
524	http://apps.who.int/iris/bitstream/10665/164121/1/dbv29p106.pdf
525	35. Monaghan AJ, Morin CW, Steinhoff DF, Wilhelmi O, Hayden M, Quattrochi DA, et
526	al. On the Seasonal Occurrence and Abundance of the Zika Virus Vector Mosquito Aedes
527	Aegypti in the Contiguous United States. PLoS Curr [Internet]. 2016 Mar 16 [cited 2018
528	Feb 14]; Available from: http://currents.plos.org/outbreaks/article/on-the-seasonal-
529	occurrence-and-abundance-of-the-zika-virus-vector-mosquito-aedes-aegypti-in-the-
530	contiguous-united-states/

531

