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Disease classification is fundamental to clinical practice, but current taxonomies 
do not necessarily reflect the pathophysiological processes that are common or 
unique to different disorders, such as those determined by genetic risk factors. 
Here, we use routine healthcare data from the 500,000 participants in the UK 
Biobank to map genome-wide associations across 19,628 diagnostic terms. We 
find that 3,510 independent genetic risk loci affect multiple clinical phenotypes, 
which we cluster into 629 distinct disease association profiles. We use multiple 
approaches to link clusters to different underlying biological pathways and show 
how these clusters define the genetic architecture of common medical 
conditions, including hypertension and immune-mediated diseases. Finally, we 
demonstrate how clusters can be utilised to re-define disease relationships and 
to inform therapeutic strategies.  
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The classification of human diseases is central to their diagnosis, prognosis and 
treatment but poses a long-standing challenge. Current clinical practice is largely 
organised by the tissues or organs affected, but this distinction does not necessarily 
reflect the biological relationships that connect or segregate diseases based on their 
underlying pathophysiology (1). Genome-wide association studies (GWAS) of risk for 
common medical conditions have revealed widespread pleiotropic effects - whereby 
genetic loci are associated with multiple traits - suggesting widespread connections 
between diseases at the molecular level (2–5). For example, cross-trait genetic 
associations have been reported for conditions where the affected organs differ but 
where there is some sharing of etiological mechanisms, such as the immune-mediated 
diseases (IMDs) (6–9). It has thus been recognised that the identification of pleiotropic 
associations could have the potential to help to define the genetic architecture of 
complex traits (10, 11), provide insight into their evolutionary biology (12), and pave the 
way towards improved clinical care (1, 13). 
 
To date, however, it has not been possible to integrate and interrogate information from 
the full range of clinical phenotypes, as GWAS have focused on a relatively small 
number of traits and have often studied patients with only the most clear-cut diagnoses 
and uniform clinical manifestations. The availability of population-based cohorts, such 
as the UK Biobank (9, 14, 15), provides a unique opportunity to take a disease-agnostic 
perspective to investigate cross-trait genetic associations across a heterogeneous 
patient population. The UK Biobank has collected genetic and routine healthcare data 
from over 500,000 participants, including 531 diagnostic terms extracted from self-
reported (SR) information, and 16,310 diagnostic terms from hospitalization episode 
statistics (HES). The latter are recorded using the tree of International Classification of 
Diseases, Tenth Revision (ICD-10) codes that categorizes diagnostic terms under 22 
chapters corresponding to the major organ systems, such as “Diseases of the 
circulatory system”, or key disease classes, such as “Neoplasms”. Genome-wide single 
nucleotide polymorphism (SNP) information across all participants provides a powerful 
platform for identifying connections in genetic risk among common human diseases. 
However, there remain multiple analytical challenges in defining the structure of 
connections, including incomplete power, linkage disequilibrium (LD), underlying 
biological complexity, and a lack of resolution between diagnoses occurring as a direct 
cause of underlying pathology and those which may be secondary. 
 
Here we address the challenges of working with phenome-wide data to resolve the 
genetic connectivity between disease traits in the UK Biobank. Making use of the 
hierarchical structure of standard disease classifications, we have characterised the 
overall genetic architecture of common disorders from routine healthcare data, 
assessing their genetic associations against prior GWAS and profiling their patterns of 
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pleiotropy. We demonstrate that variants associated with multiple traits can be clustered 
based on the sets of phenotypes that they influence, revealing the presence of 
genetically determined, shared biological pathways that underpin different groups of 
diseases and that contribute differentially to shared genetic correlation between 
disorders. Moreover, these clusters can be used to re-define the relationship between 
medical conditions from a molecular perspective, thus providing insight of clinical value.  
 
Genome-wide associations with the UK Biobank routine healthcare data 
  
To analyse genome-wide associations against all diagnostic terms in the UK Biobank 
SR and HES data sets in a simultaneous and hypothesis-free fashion, we employed our 
recent Bayesian analysis framework, TreeWAS, on 409,525 UK Biobank individuals 
with British Isles ancestry. This approach gains power for identifying phenome-wide 
associations by making use of the tree structure of routine healthcare data to estimate 
the evidence of association with at least one clinical diagnosis, summarised with the 
Tree Bayes factor statistic (BFtree), and to identify individual clinical phenotype codes 
that show association (9). Importantly, our approach allows for arbitrary distributions of 
effects over clinical codes. To enable comparison between variants, we simplify genetic 
effects into null, risk and protection for each code, integrating over a prior on effect size 
(see Methods). This results in strong correlation of BFtree with the original 
implementation (Pearson rho = 1.00 and 0.99 in SR and HES, respectively; fig. S1). Of 
the 654,546 SNPs interrogated, we observed associations for 3.46% and 1.89% of them 
(log10 BFtree ≥ 5) in the HES and SR data sets, respectively; and with 87.55% and 
29.71% of the respective ontology terms showing evidence of association with at least 
one of these variants (PP ≥ 0.75) (Fig. 1A). Through permutation analysis (see 
supplementary materials) we estimated that at this threshold (log10 BFtree = 5) we 
obtained a false positive rate of 5% (fig. S2).  Evidence for association is highly 
correlated between the two data sets (Pearson r = 0.94; fig. S3), with SNPs rs9273363 
and rs9272449 showing the strongest evidence of association in the HES (log10 BFtree = 
694) and the SR data sets (log10 BFtree = 487), respectively. Both SNPs tag the HLA-
DRB1*03:01 allele (r = 0.62 and r = 0.73, respectively) in the major histocompatibility 
complex (MHC). The HLA-DRB1*03:01 allele has been reported to have pleiotropic 
effects (9, 16, 17); we observe associations with 354 ICD-10 codes in the HES data set, 
including coeliac disease, type 1 diabetes, and systemic lupus erythematosus. After 
excluding the extended MHC (chr6:25,000,000-35,000,000), in total we identified 3,510 
independent lead SNPs with a minor allele frequency (MAF) > 0.01 and LD trimmed (r2 
< 0.2) from the HES data. 
 
The extent to which even a single variant can impact a very broad range of biological 
and disease processes is demonstrated by the rs4420638 minor allele, which tags the 
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APOE*ε4 haplotype, the strongest genetic determinant for Alzheimer’s disease (18), 
and which is also associated with cardiovascular diseases (19) and lipid levels (20). We 
found the variant to confer risk for seven main clades within the ICD-10 ontology 
including those with parent nodes G30-G32 “Other degenerative diseases of the 
nervous system”; Chapter V “Mental and behavioural disorders”; Chapter IX “Diseases 
of the circulatory system”; E78 “Disorders of lipoprotein metabolism and other 
lipidaemias”; R41 “Other symptoms and signs involving cognitive function and 
awareness”; and Z95 “Presence of cardiac and vascular implants and grafts” (Fig. 1B, 
fig. S4). Unexpectedly, the same allele was also found to protect against one clade 
whose parent node is K70-K77 “Diseases of the liver” (Fig. 1B, fig. S4), demonstrating 
that implementing our approach across the HES data set can reveal previously 
unrecognised disease associations for even well-studied pleiotropic risk variants. 
 
Patterns of genetic association across diseases can reveal unanticipated parallels and 
connections between genes with seemingly distinct functions. For example, GWAS 
have demonstrated that the nonsynonymous SNP rs3184504 (Trp262Arg) in SH2B3 
affects IMDs (7, 21), but also cardiovascular traits (4, 5, 19) and cancer (22). We found 
associations with 207 ICD-10 codes for this SNP, including risk for multiple IMDs and 
cardiovascular disorders but protection against neoplasms such as C18 “Malignant 
neoplasm of colon” and C50 “Malignant neoplasm of breast” (fig. S5). Intriguingly, we 
found a similar pattern of associations for the rs2476601 (Arg620Trp) SNP in PTPN22, 
which has previously only been reported to confer risk for seropositive autoimmune 
diseases such as rheumatoid arthritis (23, 24) and protection against Crohn’s disease 
(25). We observed risk associations between this SNP and 202 ICD-10 codes, the 
majority of which are IMDs; however, rs2476601 was also found to confer risk for 
cardiovascular disorders including I20 “Angina pectoris” and I21 “Acute myocardial 
infarction”, and protection against certain skin neoplasms (fig. S6). Both genes are 
expressed in haematopoietic cells, but whilst SH2B3 is an adaptor protein that affects 
growth factor and cytokine signalling (26), PTPN22 is a tyrosine phosphatase that 
regulates T and B cell receptor and toll-like receptor signalling (27). Nevertheless, 
specific perturbations of the SH2B3 and PTPN22 genes can have similar effects across 
multiple disorders, suggestive of an analogous impact on a shared biological process.  
 
Other cross-trait association patterns reveal distinctions between genes thought to 
affect similar biological pathways. For example, for rs2289252 in the F11 blood clotting 
factor locus, that is associated with venous thromboembolism (28), we observed a 
restricted set of diseases associations, only including I26.9 “Pulmonary embolism 
without mention of acute cor pulmonale”; I80.2 “Phlebitis and thrombophlebitis of other 
deep vessels of lower extremities”; Z86.7 “Personal history of diseases of the circulatory 
system”; and Z92.1 “Personal history of long-term (current) use of anticoagulants”. 
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However, whilst rs6025 (Arg534Gln), known as the Leiden mutation (29) which is found 
in the F5 blood clotting factor gene, has also been reported to affect venous 
thromboembolism (30, 31), we observed a much more diverse range of associations for 
this SNP. These include other vascular traits, such as I26-I28 “Pulmonary heart disease 
and diseases of pulmonary circulation” and I60-I69 “Cerebrovascular diseases”; 
infections (e.g. J14 “Pneumonia due to Haemophilus influenzae”); neoplasms (e.g. D17 
“Benign lipomatous neoplasm”); paroxysmal neurological disorders (e.g. G43 
“Migraine”); drug allergies (e.g. Z88.0 “Personal history of allergy to penicillin”); and 
surgical complications (e.g. T83 “Complications of genito-urinary prosthetic devices, 
implants and grafts”). Therefore, despite both SNPs influencing blood coagulation, their 
only partially overlapping disease association profiles suggest some disparity in the 
biological mechanisms they impact. 
 
Further to associations with known pleiotropic loci, we could also detect the effect of 
genetic variants that have had implications for therapy, such as the low frequency 
rs11591147 SNP (Arg46His; MAF ≃ 2%) in the PCSK9 locus that is correlated with 
reduced low-density lipoprotein cholesterol levels and coronary artery disease risk (32), 
and that has led to the efficacious trialling of PCSK9 blockers (33, 34). We found a 
protective effect of this SNP against 8 SR diagnostic terms (log10 BFtree = 72.21), and 67 
ICD-10 codes (log10 BFtree = 52.04), including E78.0 “Pure hypercholesterolaemia” and 
I25.1 “Atherosclerotic heart disease” (fig. S7). A protective effect of the minor allele of 
the rs11209026 SNP (Arg381Gln) in IL23R was also observed, affecting 21 ICD-10 
codes (log10 BFtree = 19.24), which included inflammatory bowel disease-related clinical 
nodes (K50-K52 “Noninfective enteritis and colitis”) and a weak evidence of association 
(PP = 0.73) in psoriasis (ICD-10 code L40 and child nodes including L40.5 for psoriatic 
arthritis). This allele has been previously reported to protect against multiple IMDs and 
correlates with reduced IL-23-mediated signalling (6, 7, 25, 35). Notably, IL-23 blockade 
has shown promise in the treatment of Crohn’s disease, psoriasis and psoriatic arthritis 
(36–38), consistent with the observed ICD-10 code associations. Thus, characterising 
the extent and nature of pleiotropic genetic effects could help to reveal targets 
amenable to drug repositioning strategies, by providing a rationale for which diseases 
could be treated with the same therapeutics, as well as which could not.  
 
We next sought to assess the overlap of our results with previous GWAS. The NHGRI-
EBI GWAS Catalog (39) has compiled over 15 years of GWAS results and mapped 
diseases and trait terms to the Experimental Factor Ontology (EFO). Among the 41,445 
SNPs present in the GWAS Catalog and genotyped or imputed in the UK Biobank 
cohort, we found evidence for association (log10 BFtree > 0) with TreeWAS for 48.4% and 
strong evidence for association (log10 BFtree ≥ 5) for 8.2%. GWAS Catalog variants are 
enriched among SNPs with increasing levels of evidence of association (fig. S8; odds 
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ratio (OR) of 2.91 for SNPs with log10 BFtree ≥ 5), and depleted of SNPs with a weak 
level of association (log10 BFtree between 0 and 1; OR = 0.70, P = 2.86 x 10-218).  
 
These results confirm that the UK Biobank has substantial power to detect genetic 
associations across a wide range of clinical traits. However, one of the major challenges 
in comparing results between the GWAS Catalog and the UK Biobank is the lack of 
standard for mapping between ontologies (here EFO and ICD-10). This problem can be 
at least partially solved by identifying factors in the two ontologies linked through genetic 
association. To establish such a mapping, we calculated, for each set of GWAS Catalog 
SNPs mapped to a specific EFO term, their joint evidence of association across the 
HES data (see Methods). We found that 41.73% of the EFO terms had evidence of 
association (log10 BFtree > 0). We then used posterior decoding to identify where in the 
ICD-10 classification tree the set of SNPs for each EFO term had an effect (Fig. 1C, fig. 
S9). Often, we found evidence for multiple linkages between ontologies. For example, 
the SNP set associated with the Alzheimer’s disease EFO term in the GWAS Catalog 
was associated, within the UK Biobank, with the HES G30 “Alzheimer’s disease” code 
(PP = 1.0; Fig. 1C), as well as with 26 other ICD-10 codes including G30 child nodes 
and numerous other mental disorder diagnostic terms (F00-F09 “Organic, including 
symptomatic, mental disorders” and its child nodes). Conversely, G30 was also found to 
be associated (PP ≥ 0.99) with SNP sets affecting EFO terms for apolipoprotein E 
isoform E2, beta-amyloid 1-42, imaging and psychomotor measurements, 
demonstrating the potential for genetics to define meaningful connections between 
ontologies for classifying diseases, biological terms and biomarkers.  
 
The structure of genetic pleiotropy in the UK Biobank HES data 
 
To quantify the structure of genetic pleiotropy in the UK Biobank, we determined the 
relationship between the evidence of association for the 3,510 lead SNPs and the 
number of ICD-10 codes associated with it (PP ≥ 0.75). We find that 97.92% of 
associated SNPs affect more than one diagnostic term, with the common SNP (MAF ≥ 
5%) with the most associations being rs13107325 (Ala391Thr/Ser) in SLC39A8, 
affecting risk for 303 terms across 9 Chapters of the ICD-10 ontology, consistent with 
previous observations for this SNP being associated with multiple phenotypes (3, 39). 
Overall, variants with greater evidence of association affect a larger number of 
diagnostic terms (ρ = 0.21, P < 1.0x10-16, Fig. 2A). However, we also observed variants 
with very strong evidence of association (log10 BFtree > 20) that affect only a small 
number of phenotypes. For example, rs2981575 and rs4784227 (both log10 BFtree > 90) 
localise (on different chromosomes) near FGFR2 and TOX3, respectively, and are 
associated with the same 19 nodes in the ICD-10 ontology, all related to breast cancer 
(including C50 “Malignant neoplasm of breast” and its child nodes) and procedures such 
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as Z51.1 “Chemotherapy session for neoplasm”. These SNPs have a similar 
association profile, displaying a strong evidence of association with a high precision in 
the phenotypes affected, and this likely reflects a strong similarity in the biological 
pathways they influence. Overall, we found that 66.81% of the 3,510 lead variants were 
associated with the top node of the ICD-10 classification tree and 68.58% of the SNPs 
were associated with at least 2 of the 22 Chapters of the ICD-10, providing evidence 
that most genetic variants affecting risk to a diagnostic term will often also affect risk to 
other terms distant in the ontology.  
 
We next considered the extent to which variants show a combination of risk and 
protection across different classes of disorder. For each associated SNP we calculated 
sign heterogeneity, defined as the minimum of the ratio of phenotypes for which the 
minor allele confers risk (PP ≥ 0.75) and the ratio of phenotypes for which this allele 
promotes protection (range 0 to 0.5). We found that 85.38% of associated SNPs show 
no sign heterogeneity, whilst for the 14.62% that do, the degree of sign heterogeneity 
was approximately uniformly distributed (Fig. 2B). For example, the rs4245791 SNP in 
ABCG8 was found to be associated with 47 nodes (log10 BFtree = 127.69) and had a sign 
heterogeneity of 0.47, with the minor allele protecting against disorders of the 
gallbladder (22 ICD-10 codes) and increasing risk to hypercholesterolaemia and 
cardiovascular diseases (25 ICD-10 codes). SNPs that reduce risk for some diseases 
but increase it for others may provide more challenging therapeutic targets for which, 
however, putative side effects of the therapeutic intervention could be predicted. 
 
Decoding cross-trait associations through hierarchical SNP clustering 
 
Across independently associated variants we observed several repeated patterns of risk 
and protection suggestive of distinct genes modulating the same underlying biological 
processes. To test this hypothesis formally, we calculated, for every pair of variants, a 
Bayes factor comparing a model in which they share the same profile, to a model in 
which they are independent (see Methods). We then used hierarchical clustering to 
define groups of variants with similar profiles (see Methods, Fig. 3A, fig. S10) and for 
each cluster we computed a joint posterior decoding to identify associated diagnostic 
terms. After filtering for variants with strong evidence in the HES data, we identified 629 
distinct clusters with sizes ranging from 1-51 SNPs. Overall, 50% of SNPs occurred in 
the largest 161 clusters of 7 or more SNPs each. For example, the previously 
mentioned highly pleiotropic rs3184504 and rs2476601 SNPs in SH2B3 and PTPN22, 
respectively, both lie in clusters of size one, while the less pleiotropic PCSK9 
rs11591147 SNP lies in a cluster of 19 variants. The diagnostic code with the greatest 
number of distinct clusters showing association is N19.8 “Chronic renal failure”, followed 
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by I50.0 “Congestive heart failure”, and the cluster with the greatest number of SNPs 
affects 33 nodes. 
 
Each cluster represents a potentially distinct biological mechanism or pathway 
conferring risk for common diseases, with distinct patterns of potential co-morbidity. To 
investigate this hypothesis, we assessed enrichment of variants within each cluster 
among SNPs reported previously in the GWAS Catalog (at the level of EFO terms) and 
to gene ontology (GO) terms for biological processes, by mapping individual SNPs to 
genes in a 100 Kb window around each SNP (see Methods). We find 139 clusters that 
show overlap with EFO terms (permutation P < 0.05; Fig. 3B) and, 69 clusters with 
evidence for enrichment in GO terms (permutation P < 0.05; Fig. 3C). For example, 
Cluster 12, containing 8 SNPs, associated with ICD-10 codes in the blocks J40-J47 
“Chronic lower respiratory diseases” and J30-J39 “Other diseases of upper respiratory 
tract”, as well as branches containing the clinical diagnosis for asthma and nasal polyps 
(ICD-10 codes J45 and J33, respectively). The SNPs in this cluster were enriched for 
GWAS Catalog SNPs reported for the EFO terms asthma (Fig. 3B), eosinophil 
percentage of granulocytes, eosinophil percentage of leukocyte, eosinophil count, 
neutrophil percentage of granulocytes (permutation P < 0.05) and GO terms related to 
interleukin-5 production (P = 9.7x10-8). Genes in the vicinity of these SNPs that are 
linked to the significant GO terms include GATA3, IL1RL1 and IL33. Given, that GATA3 
inhibition is an effective treatment for asthma (40), genes affected by other SNPs in this 
cluster could serve as potential targets for the same biological pathway.  
 
A cluster-based approach to dissecting genetic risk can reveal the multiple different 
processes and pathways that contribute to any single clinical endpoint. To illustrate this, 
we considered the single most common code within the UK Biobank HES data, I10 
“Essential (primary) hypertension” (for which there are 24.37% of individuals with at 
least one record of this code). We observed 69 distinct clusters with strong association 
to the code (PP ≥ 0.75), which each affect between one and 698 ICD-10 codes (PP ≥ 
0.75). Among these clusters, one affects hypertension only; 19 are strongly associated 
with type 2 diabetes and obesity; 14 are associated with hypercholesterolaemia, angina 
and myocardial infarction; 23 are associated with chronic kidney disease; four are 
associated with disorders of the gallbladder and bile duct such as cholangitis, and 30 
are extremely broadly-acting, affecting over 300 ICD-10 codes, including mental health, 
tobacco use and alcohol abuse (Fig. 4). This diverse range of different clinical 
phenotypes associated with each of these many clusters suggests that multiple, 
heterogeneous biological mechanisms can underpin the development of any single 
common, complex disease. Clusters affecting hypertension are typically small (median 
5 SNPs), and we see no significant GO enrichment for any, indicating the need for 
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variant-level (as opposed to gene level) annotation of molecular function and biological 
process. 
 
The genetic ontology of common human diseases 
 
Finally, we considered the extent to which patterns of genetic risk are consistent with 
the ICD-10 ontology or could be well represented by any other single hierarchical 
ontology. For example, IMDs are widely distributed across the ICD-10 ontology, not 
least because they affect various tissues and organs across the body, and genetic risk 
scores for these diseases are highly precise in identifying the focal disorder within the 
UK Biobank (9). However, IMDs are also well known to share many genetic risk factors 
(6–8), indicating overlapping underlying biological risk processes, consistent with this 
we observed that 265/629 clusters are associated with risk for at least two distinct IMDS 
(PP ≥ 0.75, see Methods). 
 
We first measured the evidence, for each cluster of SNPs, that they impact more than a 
single clade (a given node and all descendant nodes) within the ICD-10 ontology, by 
calculating a Bayes factor comparing models with single and arbitrary numbers of 
clades of activity. Among the 629 clusters, 94.43% show compelling evidence (log10 BF 
≥ 5) for multiple clades (Fig. 5A), with the estimated number of switches in active state 
along the topology ranging from 2 to 736. However, we also found overwhelming 
evidence that the ICD-10 ontology describes the correlation structure of association 
better than a star-ontology (log10 BF > 1,000). These results indicate that the ICD-10 
ontology provides a partial, but incomplete, match to the structure of genetic risk.   
 
We next sought to ask whether any single hierarchical ontology could adequately 
capture the structure of association. For every pair of clusters, we calculated the 
evidence for departure from hierarchical consistency, by comparing models in which the 
effects of the variants across clinical codes are consistent with a tree (only three out of 
the four possible combinations of active/inactive at the two clusters are present) to one 
in which they can have arbitrary patterns (see Methods). In doing so, we estimate a 
quantity we refer to as ‘phenotypic disequilibrium’ between clusters, which is analogous 
to the |D’| statistic measure of linkage disequilibrium (41). We find that 12.6% of pairs of 
clusters show strong evidence (LRT, P < 0.001, see Methods) for the presence of all 
four combinations of activity across phenotypes, which is incompatible with any single 
hierarchical ontology (Fig. 5B). The distribution of phenotypic disequilibrium is skewed 
towards low values, with only 15.7% of pairs of clusters having |D’| ≥ 0.9 (Fig. 5C). We 
therefore conclude that patterns of genetic risk across common diseases typically 
exhibit combinations of risk and/or protection that are inconsistent with any single 
hierarchical ontology.   
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Although our results falsify the notion of a single hierarchical ontology of underlying 
genetically determined pathophysiological processes, nevertheless, they can be used to 
decompose the well-established genetic covariance between traits, such as for IMDs 
(6–8). For example, among 91 ICD-10 codes corresponding to IMDs we observe 
patterns of overlap in genetic risk consistent with previous findings (6–9, 42) (Fig. 5D). 
However, the covariance can be decomposed into the contributions of individual 
clusters, which have diverse structures. Notably, we find 41 clusters associated with 
child nodes of L40 “Psoriasis” (PP ≥ 0.75), which show a wide variety of patterns of 
covariance (Fig. 5E), consistent with the observed heterogeneity in symptoms, 
comorbidities and response to treatment among patients (43, 44).  
 
Discussion 
 
Our approach has enabled a unified interrogation of the structure of genetic risk for 
multiple disease traits. We have demonstrated how the architecture of genetic risk for 
complex disorders, such as hypertension and IMDs, consists of distinct groups of loci 
that impact specific sets of disorders. These results indicate the presence of underlying 
biological pathways, whose dysregulation can affect risk for a variety of disorders and 
which, through the identification of the underlying genes and molecular mechanisms, 
offer multiple routes to therapeutic intervention. For example, the presence of 69 distinct 
SNP clusters associated with hypertension suggests that there may be as many 
different genetically determined pathways driving this condition that are potentially 
amenable to drug targeting. However, prioritisation or exclusion of clusters for further 
investigation in a therapeutic context would likely depend on their full profile of cross-
trait associations. For instance, we find evidence that for multiple clusters, typically 
those comprising a small number of variants, there is a widespread and often complex 
pattern of risk. This suggests that therapeutic perturbation of the biological pathways 
corresponding to these clusters would result in a lack of specificity and potential off-
target or adverse effects, whereas the subset of clusters with more restricted or uniform 
association profiles would likely reveal more promising drug targets. 
  
The overall architecture of genetic risk that we observed mirrors previous findings 
relating to the structure of pathophysiological pathways implicated in common diseases, 
such as the presence of a small number of genes acting as master regulators of risk 
with a widespread impact across multiple traits, and many specialised genes with more 
disease-specific effects (3, 10, 11). Unexpectedly, we found that few loci show evidence 
for sign heterogeneity, even among loci affecting a large numbers of disorders, though 
there are notable exceptions, such as variants in APOE and the ABO and Colton red 
blood cell antigen systems. Theoretically, both a trade-off between early-benefit and 
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later-disease risk or mutation-selection-drift balance can maintain genetic variance for 
complex diseases (45). Here, we find little evidence for trade-offs at the level of 
common disease, though early life benefits may be manifest through processes other 
than avoiding risk for disease (such as through sexual selection) or from challenges 
(such as infection or starvation) that are rare in western society. Rather, our results are 
more compatible with complex disease arising from dysregulation of underlying 
quantitative traits, where small genetic perturbations can either be beneficial or 
deleterious depending on their genetic background (45). Future fine-mapping of causal 
variants and inference of their ancestral state will indicate whether new mutations 
always increase the risk of disease or, as would be expected from a stable quantitative 
trait, are balanced in terms of effect direction. 
  
From a clinical perspective, the identification of genetic pathways of risk raises the 
potential for defining a biologically meaningful substructure to the diagnosis, prognosis 
and treatment of common disorders. An individual’s risk for any single disease spans 
multiple dimensions, each one with a specific set of potential comorbidities (46). 
Individuals who reach disease may therefore possess differential dysregulation across 
underlying dimensions, manifest as different patterns of comorbidity and potentially 
differential responsiveness to treatment options. The identification of genetic clusters 
with similar association profiles, and the elucidation of the molecular mechanisms they 
correspond to, thus suggest the possibility for discovering dimension-specific 
biomarkers and therapeutic targets. However, an important implication of our findings is 
that the phenotypic consequences of different dimensions do not typically form a simple 
hierarchical ontology. Rather, genetics reveal a complex connectivity between diseases 
that is reflected through multiple different combinations of conditions. 
 
Finally, we note that our approach has highlighted key analytical challenges, including 
the need to handle covariates and to model non-genetic associations between traits 
adequately. Appropriately modelling the impact of genetics on the longitudinal nature of 
disease and the complex interplay between factors, whilst also coping with the 
heterogeneity that arises from variable data recording and clinical practices, remains an 
important and unsolved problem. Moreover, ultimately, each locus has a unique biology, 
and hence our approach of identifying variant clusters is essentially a statement of 
ignorance: the full integration and interpretation of clinical, quantitative and molecular 
phenotypes will require new approaches for data sharing, aggregation and analysis.     
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Figure Legends 
 
Figure 1. Genome-wide evidence for association to the UK Biobank self-reported 
(SR) and hospital episode statistics (HES) phenotype datasets. (A) Double 
Manhattan plot depicting evidence of association (log10 BFtree) across the SR (left) and 
HES (right) datasets. SNPs labelled with gene names exemplify notable associations to 
common human diseases and genetic evidence for therapeutic strategies to treat 
common diseases (see text). (B) Posterior decoding of genetic effect direction and 
strength of evidence for the rs4420638 SNP in the APOE locus as observed in the HES 
dataset ICD-10 classification tree. (C) Insert of the overlap, with a focus on Alzheimer’s 
disease, between previous GWAS (from NHGRI-EBI GWAS Catalog) and clinical 
associations in the UK Biobank HES data. Variants within the GWAS Catalog that are 
mapped to a specific Experimental Factor Ontology (EFO) term are tested, as a group, 
for evidence of association to the ICD-10 ontology. Colour indicates for each ICD-10 the 
posterior probability (PP) of association of the EFO variant set. Full analysis is available 
in the supplementary materials. 
 
Figure 2. Genetic pleiotropy across common human diseases in the HES data set. 
(A) Relationship between the evidence of association of a SNP in the disease ontology 
(BFtree) with the number of phenotypes associated with the SNP with non-zero effect 
sizes (PP ≥ 0.75). (B) Sign heterogeneity in SNP effects across associated phenotypes. 
Sign heterogeneity per SNP is defined as the minimum between the ratio of phenotypes 
where the minor allele is risk and the ratio of phenotypes where the minor allele is 
protective. 
 
Figure 3. Genetic risk profiles across common diseases in the HES data set.  
(A) Posterior decoding for 116 risk profiles with at least 8 SNPs identified from 
clustering of 3,510 variants. The tree on the top depicts the ICD-10 ontology where 
each node represents an ICD-10 code. Below the tree each row represents a risk 
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profile, where bars depict associations (PP ≥ 0.75) to ICD-10 codes, and colours relate 
to the direction of the effect (orange is risk; blue is protection). The barplot on the left 
shows the number of SNPs present in each cluster and the barplot on the right the 
estimated BFtree for the cluster with colour-coding based of proportion of associations 
that are risk (orange) and protective (blue). (B) Extent to which SNPs present in each 
cluster are enriched in GWAS Catalog phenotypes. Results are shown for the top 66 
clusters as the remaining ones do not show evidence of enrichment, with the exception 
of clusters 93, 103 and 115 with GWAS Catalog terms ‘cognitive decline measurement’, 
‘schizophrenia’ and ‘bone density’, respectively. Each column represents one GWAS 
Catalog EFO term. (C) Enrichment of GO biological process terms in cluster SNP sets. 
For each cluster SNP set we calculate enrichment statistics for all GO terms and record 
the minimal P-value observed across all terms. We then, for each cluster, calculate an 
empirical P-value which is the proportion of times the minimal GO term P-value is 
smaller than those observed by randomly generating SNP sets from background of the 
same size (see Methods).  
 
Figure 4. Genetic risk profiles associated with hypertension. 23 risk profiles for 
clusters with at least 5 SNPs associated with the ICD-10 term I10 “Essential (primary) 
hypertension” (PP ≥ 0.75). For each cluster (columns), the relative posterior across 
1,206 codes (where at least one of the clusters shows evidence for association with PP 
≥ 0.75 and where annotations are observed) is shown. Light and dark blue indicate ICD-
10 codes at the category level. Terms mentioned in the text are highlighted.  
 
Figure 5. Genetics and disease ontology. (A) The relationship between the breadth 
of phenotypic activity for clusters, number of SNPs in a cluster, and evidence (log10 BF) 
for the cluster affecting > 1 clade in the ICD-10 ontology. (B) Histogram of the estimated 
phenotypic disequilibrium, |D’|, between pairs of clusters. (C) The percentage of pairs of 
clusters showing a given level of evidence (P-value from LRT assuming Chi-squared 
distribution with one degree of freedom) for patterns of association that are inconsistent 
with any hierarchical ontology. Coloured lines indicate P < 10-3 (grey), P < 10-5 (orange) 
and P < 10-8 (red). (D) Heatmap showing the overlap in posterior profiles across clusters 
(weighted by variants in cluster) for 91 clinical codes relating to common IMDs. (E) 
Genetic covariance for 16 clusters that each affect at least one of the ICD-10 code L40 
“Psoriasis“ child nodes (PP ≥ 0.75).  
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