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Abstract 39 

 40 

  Difficulties in identifying causal variants and genes underlying genetic associations have 41 

limited the translational potential of genetic studies of body fat distribution, an important, partly-42 

heritable risk factor for cardio-metabolic disease. Rare variant associations facilitate fine-43 

mapping of causal alleles, but their contribution to fat distribution is understudied. We performed 44 

a genome-wide scan of rare nonsynonymous variants for body mass index-adjusted waist-to-hip-45 

ratio (BMI-adjusted WHR; a widely-used measure of fat distribution) in 450,562 European 46 

ancestry individuals, followed by systematic Bayesian fine-mapping at six genome-wide 47 

(p<5×10-08; main-analysis) and two subthreshold signals (significant at a Bonferroni-corrected 48 

p<1.3×10-06). We found strong statistical evidence of causal association for nonsynonymous 49 

alleles in CALCRL (p.L87P, pconditional=5.9×10-12; posterior-probability of association 50 

[PPA]=52%), PLIN1 (p.L90P, pconditional=5.5×10-13; PPA>99%), PDE3B (p.R783X, 51 

pconditional=6.2×10-15; PPA>99%), ACVR1C (p.I195T; pconditional=5.4×10-12; PPA>99%), and FGF1 52 

(p.G21E, pconditional=1.6×10-07; PPA=98%). Alleles at the four likely-causal main-analysis genes 53 

affected fat distribution primarily via larger hip- rather than smaller waist-circumference and six 54 

of nine conditionally-independent WHR-lowering index-variants were associated with protection 55 

from cardiovascular or metabolic disease. All four genes are expressed in adipose tissue and have 56 

been linked with the regulation of intracellular lipolysis, which controls fat retention in mature 57 

cells. Targeted follow-up analyses of key intracellular-lipolysis genes revealed associations for a 58 

variant in the initiator of intracellular lipolysis PNPLA2 (p.N252K) with higher BMI-adjusted-59 

WHR and higher cardio-metabolic risk. This study provides human genetic evidence of a link 60 

between intracellular lipolysis, fat-distribution and its cardio-metabolic complications in the 61 

general population.   62 
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Introduction 63 

 Body fat distribution is a major risk factor for cardiovascular and metabolic disease 64 

independent of obesity (1-5), but the mechanistic foundations of this link are poorly understood. 65 

Several common variants associated with fat distribution (6) or with compartmental fat 66 

deposition (7, 8) are located in regulatory regions near genes that are highly expressed in adipose 67 

tissue. While consistent with a biologically plausible role of adipocyte function in fat distribution, 68 

the translational potential of these observations is limited by challenges in inferring causal genes 69 

and mechanisms underlying associations of non-coding genetic variants. In contrast, the study of 70 

low-frequency nonsynonymous alleles has catalyzed translation from gene identification to 71 

therapeutic drug development, as illustrated by associations in PCSK9 (9, 10), LPA (11), APOC3 72 

(12, 13) or ANGPTL3 (14-16) with lipid phenotypes leading to rapid drug development for 73 

cardiovascular prevention (15, 17-22).  74 

 Previous genome-wide association studies of fat distribution in ~225,000 people have 75 

focused mostly on common variants (6). Rare variants, defined by the 1000 Genomes Project by 76 

minor allele frequency (MAF) below 0.5% (23), are usually population-specific (23) and difficult 77 

to impute (24), and hence their study requires large, homogeneous samples and direct 78 

genotyping. Their contribution to fat distribution remains understudied. A critical advantage of 79 

studying rare variants is that they represent mutational events which occurred more recently in a 80 

population (23), so that they tend to occur on long haplotypes together with more common 81 

variation with which correlation is low (25). This facilitates statistical fine-mapping aimed at 82 

identifying causal variants and distinguishing scenarios where the rare variant is causal rather 83 

than just a “passenger” in the association signal (25). Causal nonsynonymous variants in a gene 84 

provide a strong link between gene and phenotype and also a “genetic model” for functional 85 

studies aimed at understanding the underlying mechanism of association. 86 
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 To exploit these properties, we conducted a genome-wide discovery scan of the association 87 

of rare nonsynonymous variants with body mass index-adjusted waist-to-hip ratio (BMI-adjusted 88 

WHR; a widely-used measure of body fat distribution (5, 6)) in 450,562 European ancestry 89 

individuals. We then conducted systematic analyses of genomic context to distinguish likely-90 

causal from non-causal associations. The aim was to identify variants, genes and pathways 91 

implicated in the regulation of fat distribution in the general population.  92 
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Results 93 

Genome-wide scan of rare nonsynonymous variants and fine-mapping at identified loci 94 

  We conducted a genome-wide association scan of 37,435 directly-genotyped, rare (MAF 95 

<0.5%) nonsynonymous variants with BMI-adjusted WHR in 450,562 European ancestry 96 

participants of UK Biobank (SI Appendix Notes S1-S2, Tables S1-S2 and Fig. S1). There was 97 

evidence of modest inflation of signal (λ=1.045), consistent with polygenic contributions to BMI-98 

adjusted WHR (SI Appendix Fig. S2). In the main analysis, we identified six associations at the 99 

genome-wide level of statistical significance (p<5×10-08) in genes at least 1 Mb apart of each 100 

other (SI Appendix Table S3 and Fig. S2). In addition to the main analysis, we also identified 101 

two additional signals in a women-specific analysis (p<5×10-08 in a women-only secondary 102 

analysis; SI Appendix Table S3) and two additional signals that met a Bonferroni-corrected 103 

statistical significance threshold in the sex-combined analysis (experiment-level p<1.3×10-06, i.e. 104 

a correction for 37,435 variants tested; SI Appendix Table S3).  105 

 We conducted systematic analyses of genomic context to establish whether the identified 106 

rare nonsynonymous variants are likely to be causal for the association with BMI-adjusted WHR, 107 

including conditional analyses and fine-mapping of statistically-decomposed signals (Methods). 108 

Fine-mapping analyses provided strong statistical evidence for the causal association of rare 109 

nonsynonymous variants of CALCRL, PLIN1, PDE3B and ACVR1C in the main analysis and of 110 

FGF1 in the experiment-level statistical significance secondary analysis (Table 1, Fig. 1, and SI 111 

Appendix Fig. S3). Conversely, genomic context analyses were not consistent with causal 112 

associations for identified rare nonsynonymous variants in ABHD15 (main analysis), PYGM 113 

(main analysis), PLCB3 (experiment-level statistical significance and women-specific secondary 114 

analyses) or FNIP1 (women-specific secondary analysis; all results in SI Appendix Tables S3-115 

S4 and Note S3). 116 
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  At CALCRL, there was evidence of two conditionally-independent signals (Table 1, Fig. 1,  117 

and SI Appendix Table S5), led by the rs10177093 common variant and by the rare p.L87P 118 

variant, respectively. Fine-mapping at the latter signal yielded a 99% credible set including only 119 

two variants, rs61739909 (CALCRL p.L87P, posterior probability of casual association 120 

[PPA]=51%) and rs180960888 (intronic to CALCRL, PPA=48.5%). Hence, p.L87P is the most 121 

likely causal variant and CALCRL the most likely causal gene for this signal. Previous genome-122 

wide association studies had identified an association at this locus led by rs1569135 (6), which is 123 

in linkage disequilibrium with the lead common variant for the first signal in this larger analysis 124 

(rs10177093; R2=0.74). However, this association had not been linked to CALCRL via fine-125 

mapping nor were nonsynonymous variants in this gene previously associated with any fat 126 

distribution phenotypes.  127 

  At PLIN1, there was evidence of only one signal led by the rare p.L90P variant (Table 1 and 128 

Fig. 1), which was the only variant in the 99% credible set (PPA>99%; Table 1).  129 

  At PDE3B, there was evidence of three signals, the strongest of which was led by the 130 

rs150090666 p.R783X nonsense variant in PDE3B, which was the only variant in the 99% 131 

credible set  (PPA>99%; Table 1 and Fig. 1). As part of an analysis focused on predicted loss-132 

of-function variants in unrelated participants UK Biobank, Emdin et al. reported an association of 133 

rs150090666 with height and, in follow-up analyses, of a combination of predicted loss-of-134 

function PDE3B variants with BMI-adjusted WHR which was below the genome-wide level of 135 

significance (26). In that study, the genomic context of the association with height, but not BMI-136 

adjusted WHR, was considered. In this study, we included a larger sample of European ancestry 137 

participants (including related individuals) and optimally accounted for relatedness and 138 

population substructure using a mixed-model, finding a genome-wide significant association for 139 

rs150090666 with BMI-adjusted WHR, with fine-mapping providing the strongest possible 140 
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statistical evidence of causal association for this variant.  141 

  At ACVR1C, there was evidence of three distinct signals (Table 1 and Fig. 1). The rare 142 

p.I195T variant led one of the secondary signals at this region and was the only variant in the 143 

99% credible set (PPA>99%; Table 1). In addition, the primary signal at this region was led by a 144 

low-frequency missense variant in ACVR1C (rs55920843, p.N150H), which also had the highest 145 

posterior probability in fine-mapping of this signal (PPA>99%; Table 1). Hence, fine-mapping of 146 

conditionally-independent signals at this locus converges on ACVR1C as causal gene for body fat 147 

distribution and p.I195T and p.N150H as causal variants for the respective association peaks.  148 

  Additional consideration of subthreshold-signals that met the experiment-level Bonferroni 149 

correction showed evidence of six conditionally-independent signals in and around the FGF1 150 

gene, one of which was led by the rare p.G21E missense variant (PPA=98%; Table 1 and SI 151 

Appendix Fig. S3). 152 

  Given previous reports of sex-specific associations with BMI-adjusted WHR (6), we 153 

estimated stratified associations for likely-causal variants identified in our analysis and, in line 154 

with previous studies (6), found larger effect-size estimates in women compared to men, with a 155 

statistically-significant difference for rs150090666 p.R783X in PDE3B (pheterogeneity=5.2×10-06; SI 156 

Appendix Table S6).  157 

  In a gene-based analysis, the burden of rare nonsynonymous alleles in PLIN1, the only gene 158 

with other rare nonsynonymous variants in addition to those found in the main analysis, was not 159 

associated with statistically-significant differences in BMI-adjusted WHR (SI Appendix Table 160 

S7). 161 

 162 

Functional annotation, structural modelling and associations with cardio-metabolic phenotypes  163 

 We conducted detailed in silico analyses that predict functional impact of identified variants 164 
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(SI Appendix Box S1 and Table S8) and estimated their association with a variety of continuous 165 

cardio-metabolic traits and outcomes (Fig. 2-3), to gain insights into their likely function and 166 

phenotypic impact.  167 

 Genetic variants can affect fat distribution via increased abdominal fat (larger waist), reduced 168 

gluteofemoral fat (smaller hip) or both. The minor alleles of all four rare nonsynonymous variants 169 

in CALCRL, PLIN1, PDE3B, and ACVR1C were associated with lower waist-to-hip ratio (i.e. a 170 

more favorable fat distribution) and larger hip circumference, but were not associated with waist 171 

circumference (Fig. 2-3). Certain genetic variants associated with greater gluteofemoral fat show 172 

associations with protection from cardio-metabolic disease, possibly by facilitating storage in 173 

more favorable fat depots (7). At the CALCRL, PLIN1, PDE3B, and ACVR1C loci, two of the 174 

four rare nonsynonymous variants and six of nine total conditionally-independent WHR-lowering 175 

alleles were associated with protection from type 2 diabetes or coronary artery disease (p<0.05; 176 

Fig. 2-3, SI Appendix Table S9), suggesting that the identified variants may enhance the storage 177 

capacity of gluteofemoral adipose tissue. The four rare nonsynonymous variants were also 178 

associated with other cardio-metabolic phenotypes (Fig. 2-3), as described in more detail below.  179 

 The CALCRL p.L87P variant was associated with higher high-density lipoprotein cholesterol 180 

(HDL-C) and protection from coronary disease (Fig. 2). The variant occurs near a strictly 181 

conserved disulfide cross-link in this G-protein coupled receptor, but leucine 87 itself is not a 182 

conserved residue as it is replaced by proline in several species (SI Appendix Box S1), 183 

consistent with integrated evidence from sixteen in silico prediction algorithms (SI Appendix 184 

Table S8). This suggests that p.L87P has a mild functional impact on this G-protein coupled 185 

receptor the knock-out of which is embryonically-lethal in mice (SI Appendix Box S1) (27). The 186 

p.L90P variant in PLIN1, occurring near the conserved serine 81 which is believed to be involved 187 

in the interaction of perilipin 1 with hormone sensitive lipase (SI Appendix Box S1), was 188 
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associated with higher overall adiposity and lower low-density lipoprotein cholesterol (LDL-C; 189 

Fig. 2). In silico prediction algorithms provide initial evidence of a likely-deleterious impact of 190 

this variant (SI Appendix Table S8). Loss-of-function mutations in PLIN1 are associated with 191 

autosomal dominant forms of partial lipodystrophy with lack of gluteofemoral and leg fat, insulin 192 

resistance, dyslipidemia and type 2 diabetes (SI Appendix Box S1) (28). The nonsense p.R783X 193 

variant in PDE3B results in the premature truncation of phosphodiesterase 3B within its catalytic 194 

domain and structural modelling predicts the variant protein to be catalytically dead (SI 195 

Appendix Box S1). Phosphodiesterase 3B is a membrane-bound phosphodiesterase implicated in 196 

terminating intracellular lipolysis in response to insulin (29), hence an inactive enzyme would 197 

result in enhanced intracellular lipolysis at the sites where this phosphodiesterase is expressed. 198 

The variant was associated with approximately a quarter of a standard deviation lower BMI-199 

adjusted WHR (an effect estimate six times greater than that of the strongest common variants 200 

identified in previous genome-wide association studies; SI Appendix Fig. S4), higher BMI and 201 

fat percentage, but lower blood pressure and lower triglycerides (Fig. 2). Nominal associations 202 

with protection from physician-diagnosed hypercholesterolemia and coronary artery disease have 203 

been reported for predicted loss-of-function variants in this gene (26), showing that loss-of-204 

function of the gene may increase overall adiposity, but have protective associations with other 205 

cardio-metabolic traits (i.e. blood pressure, lipid levels, and coronary disease). In light of the 206 

statistical evidence for sex-specific association with BMI-adjusted WHR, we estimated 207 

associations of p.R783X with diabetes and coronary risk separately in men and women, but did 208 

not observe statistically-significant differences in risk for either sex (SI Appendix Table S10). 209 

  At ACVR1C, encoding a negative regulator of the peroxisome proliferator-activated receptor 210 

gamma (30), both p.N150H and p.I195T missense variants were associated with lower diastolic 211 

blood pressure and protection from type 2 diabetes (Fig. 3). On the basis of the three independent 212 
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lead variants at this locus (Table 1), each standard-deviation genetically-lower BMI-adjusted 213 

WHR via ACVR1C was associated with a 69% lower risk of type 2 diabetes (odds ratio, 0.31; 214 

95% confidence interval, 0.18 to 0.54; p=3.1×10-05). The p.I195T missense variant, which in 215 

silico software and structural modelling predict having a more deleterious functional impact than 216 

p.N150H (SI Appendix Box S1 and Table S8), also had greater phenotypic impact on WHR and 217 

diabetes risk (Fig. 3). At FGF1, we found an association for the rare WHR-lowering p.G21E 218 

allele with protection against coronary disease (SI Appendix Fig. S5).  219 

 Interestingly, all four genes implicated in the main analysis are abundantly expressed in 220 

subcutaneous and visceral adipose tissue in GTEx (31) and a review of functional evidence 221 

revealed links between each of the four encoded proteins and the regulation of intracellular 222 

lipolysis, the pathway responsible for the hydrolysis and release of intracellular fat from within 223 

mature cells (SI Appendix Box S1). Perilipin 1 and phosphodiesterase 3B are well established 224 

negative regulators of intracellular lipolysis (29, 32-34), ACVR1C has been experimentally 225 

shown to inhibit intracellular lipolysis in mouse adipocytes (30), while CALCRL is the receptor 226 

of adrenomedullin (35), which has been shown to stimulate intracellular lipolysis in human 227 

adipocytes (details in SI Appendix Box S1). We conducted hypothesis-free pathway-enrichment 228 

analyses using the likely-causal genes identified in this study and found evidence of enrichment 229 

for intracellular lipolysis genes (ppathway-enrichment=0.00093; SI Appendix Table S11), in addition 230 

to insulin-receptor related signaling pathways, which are established casual pathways in extreme 231 

and less severe forms of lipodystrophy (7, 36).  232 

  233 
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Additional evidence of genetic associations at intracellular lipolysis genes 234 

 These data led us to hypothesize that variants at enzymes catalyzing the three hydrolytic 235 

reactions of intracellular lipolysis or at their direct regulators might affect fat distribution (Fig. 4). 236 

To test this hypothesis, we performed targeted follow-up association analyses of all genetic 237 

variation within regions 1 Mb either side of five key genes regulating each of the three hydrolytic 238 

reactions in the pathway and also estimated associations of the burden of rare nonsynonymous 239 

variants in these genes (Methods). While there were no associations at G0S2 or LIPE, there were 240 

strong associations at MGLL, ABHD5 and PNPLA2 (p<5×10-08). At MGLL and ABHD5 the link 241 

between genetic associations and these lipolysis genes were unclear. The association at MGLL 242 

was in the shadow of an association peak over 2 Mb downstream of the gene, which was greatly 243 

attenuated after conditioning for the index-variants, suggesting that this signal is unlikely to be 244 

via this gene (SI Appendix Fig. S6 and Table S12). At ABHD5, there was evidence for one 245 

association peak led by a synonymous variant in the gene (rs141365045; SI Appendix Table S13 246 

and Fig. S7), which tags a low-frequency haplotype spanning the entire gene. The 99% credible 247 

set at this association signal comprises 42 variants in this haplotype that evenly share the PPA 248 

(PPA range 0.7%-3.3%), suggesting that any or a combination of these variants could be causal. 249 

The haplotype does not encompass nonsynonymous variants in the gene and the lead 250 

rs141365045 is associated with expression of the nearby ANO10 and SNRK-AS1 in thyroid tissue, 251 

but not ABHD5 in GTEx (31).  252 

 We identified an association in PNPLA2, encoding adipose triglyceride lipase (ATGL) which 253 

is the enzyme responsible for the initiation of intracellular lipolysis (37) (Fig. 4). At the locus, 254 

there was evidence of two independent signals the strongest of which was led by a missense 255 

variant occurring near a splice-site junction in the gene (rs140201358-G p.N252K; MAF=1.4%; 256 

beta in standard deviations of BMI-adjusted WHR per minor allele [252K], 0.08; standard error, 257 
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0.009; p=2.5×10-22; SI Appendix Table S13 and Fig. S7). Associations were similarly strong in 258 

men and women (pheterogeneity=0.10; SI Appendix Table S6). Fine-mapping of the main signal in 259 

the region identified rs140201358 as the only variant in the 99% credible set, supporting a likely-260 

causal association (PPA>99%; SI Appendix Table S13 and Fig. S7). 261 

 Follow-up analyses of the rs140201358-G p.N252K variant showed associations with lower 262 

BMI and smaller hip circumference, but higher triglycerides and LDL-C (Fig. 5A). Disease 263 

outcome association analyses revealed an association with higher risk of type 2 diabetes (odds 264 

ratio per 252K allele, 1.09; 95% confidence interval, 1.02-1.17; p=0.0073) and coronary artery 265 

disease (odds ratio per 252K allele, 1.12; 95% confidence interval, 1.04-1.20; p=0.0019; Fig. 266 

5B).  267 

 We conducted a number of in vitro experiments to provide an initial functional 268 

characterization of the possible mechanisms linking rs140201358 with fat distribution. In vitro 269 

experiments showed similar basal-, ABHD5 stimulated- and GOS2-inhibited enzyme activity as 270 

well as similar localization to lipid droplets between PNPLA2-N252K and wild-type PNPLA2 271 

(Fig. 5C and SI Appendix Fig. S8), in keeping with structural modelling (SI Appendix Box 272 

S1). However, the C>G substitution occurs at position -2 at the donor splice site of exon 6 in a 273 

partially-conserved nucleotide that is never substituted with a G in mammalian species, 274 

suggesting a possible impact on splicing (Fig. 5D). In silico software predicted this change to 275 

result in the creation of an exonic splicing silencer site, with higher probability of exon skipping 276 

(Methods). We hypothesized that if the variant affected the correct splicing of PNPLA2, this 277 

could alter allele-specific expression of PNPLA2 in carriers. To assess this, we investigated the 278 

allele-specific expression of PNPLA2 in subcutaneous adipose tissue from four unrelated 279 

heterozygous carriers of rs140201358-G from the Twins UK study. Across the four carriers, there 280 

were 2,032 reads of PNPLA2 mRNA in subcutaneous adipose tissue. The number of reads 281 
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carrying the alternative G allele (i.e. 252K) was 21% lower than that of reads containing the wild-282 

type C allele (observed reads, 900; expected, 1,016; two-tailed binomial p=2.9×10-07), with a 283 

statistically-significant within-individual difference in three out of four carriers (p<0.05; Fig. 284 

5E). To assess impact on overall expression, we conducted quantitative polymerase chain 285 

reaction (Q-PCR) analyses of PNPLA2 expression in peripheral blood mononuclear cells from 286 

106 homozygous carriers of the wild-type C allele and 26 heterozygous carriers of the alternative 287 

G allele from the Fenland study. Heterozygous carriers of the G allele had 0.39 standard 288 

deviations lower overall levels of PNPLA2 mRNA compared to homozygous wild-type 289 

individuals (beta in standard deviations, -0.39; standard error, 0.15; p=0.011; Fig. 5F). It remains 290 

to be established if associations with expression levels do reflect a splicing defect or result from 291 

other regulatory mechanisms due to rs140201358 or correlated variants.  292 

 In gene-based analyses, the one rare nonsynonymous variant in PNPLA2 captured by 293 

genotyping (p.S407F) or 10 rare variants in the other intracellular lipolysis genes were not 294 

associated with statistically-significant differences in BMI-adjusted WHR (SI Appendix Table 295 

S7).  296 
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Discussion 297 

By combining human genetics studies in over half a million people with in silico and in vitro 298 

functional analyses, we found evidence implicating intracellular lipolysis genes in the regulation 299 

of fat distribution and its cardio-metabolic consequences in the general population. This genetic 300 

study focused on a subset of genetic variation in order to maximize translational insights of 301 

genetic findings and is distinct from but complementary to genome-wide association studies 302 

assessing all genetic variants to clarify the overall genetic architecture of a trait. In addition, 303 

given the strict criteria for statistical significance and the systematic analysis of genomic context, 304 

all of the likely-causal alleles found in the main analysis would meet the strictest statistical 305 

significance thresholds recommended for genome-wide analyses of densely genotyped or 306 

imputed datasets, including those appropriate for the analysis of whole genome sequencing 307 

results (38). By identifying nonsynonymous alleles with high probability of being the causal 308 

variants underlying identified associations, this study provides (a) new and specific insights that 309 

go beyond the general notion of an impact of adipocyte function on body fat distribution and (b) 310 

a basis for the understanding of the molecular mechanisms behind these robust phenotypic 311 

associations. With fine-mapping, we show that five nonsynonymous variants at four of the 312 

identified genes (PLIN1, PDE3B, ACVR1C, and PNPLA2, found via targeted follow-up analysis) 313 

had >99% PPA, the highest possible statistical evidence of causal association.  314 

Studies in rare forms of human lipodystrophy (36, 39), in experimental models (40-42) and 315 

recently also in the general population (7, 43-45) have implicated an impaired capacity to store 316 

fat in peripheral adipose compartments in cardio-metabolic disease. Our results highlight 317 

intracellular lipolysis as a novel mechanism linking impaired peripheral fat deposition to the risk 318 

of cardio-metabolic disease. Intracellular lipolysis is the biochemical process that regulates the 319 

release of fatty acid molecules from mature cells and its level of activation ultimately controls the 320 
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propensity of peripheral adipocytes, and other tissues, to retain energy stores in the form of fat 321 

(46, 47). Therefore, modulating this pathway determines where and how efficiently surplus 322 

energy is stored and thus the risk of the complications of sustained positive energy balance. In 323 

addition, in a secondary analysis of this study we found evidence of a likely-causal association 324 

with lower BMI-adjusted WHR of a rare missense variant in FGF1, a gene that murine 325 

experiments have implicated in the remodeling of adipose tissue in response to fluctuations in 326 

nutrient availability (48). In addition to previous evidence about the role of adipogenesis and 327 

intravascular lipolysis (7), findings from this study around intracellular lipolysis and the FGF1-328 

pathway highlight the importance of adipose tissue plasticity in response to energy availability as 329 

a critical mechanism in the determination of fat distribution and its cardio-metabolic 330 

consequences.  331 

All four likely-causal genes identified in our hypothesis-free main-analysis of rare, 332 

nonsynonymous variants have been implicated in intracellular lipolysis by orthogonal 333 

experimental evidence. In addition, a missense variant in PNPLA2, encoding the initiator of 334 

intracellular triglyceride hydrolysis, was associated with unfavorable fat distribution, higher 335 

atherogenic lipid levels and higher risk of type 2 diabetes and coronary artery disease further 336 

supporting the main findings from the scan of rare variants. Rare loss-of-function mutations in 337 

PNPLA2 cause a recessively-inherited lipid storage disease characterized by ectopic fat 338 

deposition, known as neutral lipid storage disease with myopathy, which in some of the few 339 

reported cases has been associated with dyslipidemia and diabetes (49-52). Our study is 340 

consistent with a role of intracellular lipolysis genes in the aetiology of cardiovascular and 341 

metabolic disease in the general population, in line with an earlier study of the Amish population 342 

suggesting that a deletion in hormone sensitive lipase (LIPE), present in ~5% of Amish people 343 

but rarely detected in other populations, results in lower intracellular lipolysis, smaller 344 
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adipocytes, insulin resistance and higher diabetes risk (53).  345 

 Intracellular lipolysis is a pharmacologically modifiable pathway. The gene products of 346 

ACVR1C and PNPLA2 have generated interest as potential drug targets for obesity and its 347 

complications (30, 54-57) on the basis of mouse models showing lower fat accumulation and 348 

improved glucose metabolism upon downregulation or pharmacologic inhibition of these 349 

proteins. In our human genetic studies, the peripheral adiposity-increasing alleles at these genes 350 

were associated with protection from diabetes (ACVR1C and PNPLA2) and coronary disease 351 

(PNPLA2). Hence, pharmacologically enhancing and not reducing peripheral fat deposition by 352 

modulating these genes could protect from cardio-metabolic disease in humans. In addition, the 353 

product of PDE3B is inhibited by cilostazol, a non-selective inhibitor of both phosphodiesterase 354 

3B and 3A used in cardiovascular medicine for its anti-platelet and vasodilating properties (58, 355 

59). The interaction between PLIN1 and ABHD5 can also be inhibited pharmacologically, 356 

resulting in enhanced PNPLA2 activity (60). The association of variation in intracellular lipolysis 357 

genes with multiple cardio-metabolic risk factors and outcomes in our study provides human 358 

genetic evidence supporting further pharmacological development for this pathway. Also, the 359 

translational implications of the association of the FGF1 p.G21E missense variant with fat 360 

distribution and protection from coronary disease deserve further exploration in light of the 361 

mounting therapeutic interest around this pathway (61, 62). 362 

 In conclusion, our study provides human genetic evidence of a link between genes involved 363 

in the regulation of intracellular lipolysis, fat-distribution and its cardio-metabolic complications 364 

in the general population.  365 

  366 
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Methods 367 

Study design and rationale 368 

 The aim of this study was to identify likely-causal nonsynonymous genetic variants and 369 

genes implicated in the regulation of body fat distribution. We performed a hypothesis-free 370 

genome-wide scan of rare (MAF<0.5% in keeping with the 1000 Genomes Project definition 371 

(23)) nonsynonymous variants coupled with systematic conditional and fine-mapping analyses at 372 

identified loci. We focused on rare variants because (a) they facilitate fine-mapping approaches 373 

for causal variant identification (25) and (b) their contribution to fat distribution is understudied 374 

(6). Since these variants are usually population-specific (23) and difficult to impute (24), their 375 

study requires large, homogeneous samples and direct genotyping. For these reasons, we focused 376 

on variants that were directly-genotyped by array genotyping in a single, large population-based 377 

cohort, the UK Biobank study (63). Analyses were focused on individuals of European ancestry. 378 

We chose to focus on nonsynonymous variation as (a) disease-associated variants are enriched 379 

for nonsynonymous variants (38), (b) if a causal variant is a nonsynonymous variant in a gene, 380 

this provides strong evidence for the causal role of the gene (64) and (c) the identification of 381 

causal nonsynonymous variants facilitates downstream functional analyses aimed at 382 

understanding the underlying mechanisms of association. An overview of the study design is in 383 

SI Appendix Fig. S1. 384 

 385 

Main and secondary analyses 386 

 In the main analysis, we studied associations of rare (MAF<0.5%) nonsynonymous variants 387 

with BMI-adjusted WHR in a sex-combined analysis of 452,302 people using the conventional 388 

threshold of genome-wide statistical significance (p<5×10-08). In secondary analyses, we further 389 

considered (a) subthreshold associations with BMI-adjusted WHR that met an experiment-level 390 
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statistical significance threshold (p<1.3×10-06; corresponding to a Bonferroni correction for 391 

37,435 tested genetic variants) or (b) genome-wide significant associations (p<5×10-08) in sex-392 

specific analyses in men or women-only. 393 

 394 

Studies and participants 395 

 Genetic analyses were conducted in up to 452,302 European ancestry participants of UK 396 

Biobank who underwent genome-wide genotyping (SI Appendix Table S2). UK Biobank is a 397 

population-based cohort of 500,000 people aged between 40-69 years who were recruited in 398 

2006-2010 from centers across the United Kingdom (63). In UK Biobank, waist and hip 399 

circumference were measured using a Seca 200cm tape measure, height was measured using a 400 

Seca 240cm measure, while weight and body fat percentage were measured using a Tanita 401 

BC418MA body composition analyzer 402 

(https://biobank.ctsu.ox.ac.uk/crystal/docs/Anthropometry.pdf). Blood pressure and resting heart 403 

rate were measured using an Omron blood pressure monitor following a standardized procedure 404 

(http://biobank.ctsu.ox.ac.uk/crystal/docs/Bloodpressure.pdf). Type 2 diabetes was defined on the 405 

basis of self-reported physician diagnosis at nurse interview or digital questionnaire, age at 406 

diagnosis > 36 years, use of oral anti-diabetic medications and electronic health records (65). 407 

Coronary artery disease was defined as either (a) myocardial infarction or coronary disease in the 408 

participant’s medical history documented by a trained nurse at the time of enrolment or (b) 409 

hospitalization or death involving acute myocardial infarction or its complications (i.e. 410 

International Statistical Classification of Diseases and Related Health Problems codes I21, I22 or 411 

I23), consistent with previous work (66, 67).  412 

 In addition to UK Biobank, genetic associations with type 2 diabetes were estimated from the 413 

EPIC-InterAct study (68) and the DIAbetes Genetics Replication And Meta-analysis (69) 414 
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(DIAGRAM), with a maximum sample size of 47,008 cases and 492,962 controls. In addition to 415 

UK Biobank, genetic associations with coronary artery disease were estimated from the 416 

CARDIoGRAMplusC4D consortium (70), with a maximum sample size of 85,358 cases and 417 

551,249 controls. Lipid traits associations were from up to 304,873 participants of the Global 418 

Lipids Genetics Consortium (71, 72). Associations with lipid traits for the p.R783X variant in 419 

PDE3B, which was not studied in the Global Lipids Genetics Consortium, were estimated in a 420 

meta-analysis of genetic associations in the Fenland (73), EPIC-Norfolk cohorts (74) and EPIC-421 

InterAct subcohort (68). Descriptions of the cohorts participating in each analysis and of the 422 

sources of data are presented in SI Appendix Table S1 and Note S1. Ethical approvals were 423 

obtained at each study site and informed consent was obtained from all participants. 424 

 425 

Genome-wide association scan of rare nonsynonymous genetic variants  426 

 Similar to previous genetic studies (1, 5, 6), the BMI-adjusted WHR phenotype was 427 

constructed as the ratio of waist and hip circumferences adjusted for age, age2 and BMI. 428 

Residuals were calculated for men and women separately and then transformed by the inverse 429 

standard normal function. Adjustment for BMI has been suggested to possibly result in spurious 430 

associations with higher BMI-adjusted WHR of variants primarily associated with lower BMI 431 

(via collider bias) (75). However, likely-causal nonsynonymous variants at CALCRL, PLIN1, 432 

PDE3B, ACVR1C, FGF1 and PNPLA2, were all also strongly associated with WHR not adjusted 433 

for BMI, with stronger associations than with BMI, consistent with a genuine and primary 434 

association with fat distribution (Fig. 2-3, 5A and SI Appendix Fig. S5). Genetic variants were 435 

genotyped in UK Biobank using the Affymetrix UK BiLEVE or the Affymetrix UK Biobank 436 

Axiom arrays (76). Genotyping underwent quality control procedures including (a) routine 437 

quality checks carried out during the process of sample retrieval, DNA extraction, and genotype 438 
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calling; (b) checks and filters for genotype batch effects, plate effects, departures from Hardy-439 

Weinberg equilibrium, sex effects, array effects, and discordance across control replicates; (c) 440 

individual and genetic variant call rate filters (76). We further excluded genetic variants with a 441 

genotype call rate below 95% and variants that were not rare or nonsynonymous. A total of 442 

37,435 genetic variants in 12,355 genes were available for analysis. Genomic annotations were 443 

performed using the Annovar software (77). Genome-wide association analyses in 450,562 444 

participants of European Ancestry were conducted using the BOLT-LMM software (78). BOLT-445 

LMM fits linear mixed models that account for relatedness between individuals using a genomic 446 

relationship matrix, adjusting for relatedness and population stratification (78). Full details of 447 

these genetic analyses are in SI Appendix Note S2. 448 

 449 

Conditional analyses and fine-mapping 450 

 At each associated genomic region, we conducted systematic analyses of the genomic context 451 

of associations. Our goal was to establish whether or not the identified rare nonsynonymous 452 

variants are likely to be the causal variants for the association with BMI-adjusted WHR. At each 453 

region 1 Mb either side of the nonsynonymous genetic variants associated with BMI-adjusted 454 

WHR, we conducted both approximate and formal conditional analyses. We considered the 455 

association of all genetic variants in the regions regardless of functional annotation or allele 456 

frequency using directly-genotyped and densely-imputed data using the Haplotype Reference 457 

Consortium. First, approximate conditional analyses were conducted on summary-level estimates 458 

using GCTA (79) to identify sets of conditionally-independent index genetic variants (p<5×10-08 459 

in the main or in sex-specific analyses and p<1.3×10-06 in analyses using experiment-level 460 

statistical significance). Individual-level genotypes for the conditionally-independent variants 461 

identified in this first step were then extracted in 350,721 unrelated European ancestry 462 
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participants of UK Biobank and their independent association was confirmed in multivariable 463 

linear regression models including all variants put forward from approximate analyses. Then, at 464 

each region, we statistically decomposed the identified index signals by conditioning for the other 465 

conditionally-independent index variants. We then performed Bayesian fine-mapping (80) to 466 

estimate the posterior probability of association for each variant (PPA, where 0% indicates that 467 

the variant is not causal and 100% indicates the highest possible posterior probability that the 468 

variant is causal) and define the 99% credible set at that signal (i.e. a set of variants in a genomic 469 

window that accounts for 99% of the PPA at that association signal). To perform credible set 470 

mapping, the association results at each locus were converted to Bayes factors (BF) for each 471 

variant within the locus boundary. The posterior probability that a variant-j was causal was 472 

defined by: 473 

φj �
BFj

Σk BFk
 

where, BFj denotes the BF for the jth variant, and the denominator is the sum of BFs for all 474 

included variants at that signal. A 99% credible set of variants was created by ranking the 475 

posterior probabilities from highest to lowest and summing them until the cumulative posterior 476 

probability exceeded 0.99 (i.e. 99%). 477 

 478 

Additional associations with BMI-adjusted WHR at intracellular lipolysis regulators 479 

  The findings from our rare-variant scan led us to hypothesize that variation at key enzymes 480 

of the intracellular lipolytic pathway might affect fat distribution (Fig. 4). To test this hypothesis, 481 

we systematically investigated variation in and around the key regulators of each of the three 482 

enzymatic reactions in intracellular lipolysis (46): PNPLA2, ABHD5, G0S2, LIPE, and MGLL. 483 

PNPLA2 encodes adipose triglyceride lipase (PNPLA2 or ATGL), the main enzyme for 484 
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triglyceride hydrolysis; ABHD5 encodes Alpha-Beta Hydrolase Domain Containing 5 also known 485 

as Comparative Gene Identification-58 (CGI-58), the activator of PNPLA2; G0S2 encodes 486 

G0/G1 Switch 2, the inhibitor of PNPLA2; LIPE encodes hormone sensitive lipase, the main 487 

enzyme for diglyceride hydrolysis; MGLL encodes monoglyceride lipase, the main enzyme for 488 

monoacylglyceride hydrolysis. For each of these gene regions we estimated their associations 489 

with BMI-adjusted WHR for all variants that were either directly genotyped or imputed using the 490 

Haplotype Reference Consortium in the region defined by 1 Mb either side of the gene 491 

boundaries.  492 

 493 

Gene-based analyses  494 

 For the four likely-causal genes identified in the main analysis (CALCRL, PLIN1, PDE3B 495 

and ACVR1C) and the five key intracellular lipolysis genes (ABHD5, G0S2, PNPLA2, LIPE and 496 

MGLL) we sought to estimate the association with BMI-adjusted WHR of the burden of rare 497 

nonsynonymous variants. We extracted genotypes of independent (R2<0.01) rare nonsynonymous 498 

variants in 350,721 unrelated European ancestry participants of UK Biobank with available BMI-499 

adjusted WHR and estimated the burden of these variants using linear regression adjusted for age, 500 

sex and genetic principal components comparing carriers to non-carriers of these rare alleles. 501 

 502 

Structural modelling, functional prediction of identified nonsynonymous variants, pathway 503 

enrichment analyses 504 

 Models were built with the MODELLER software (81). Sequence alignment was achieved 505 

by HHpred, MUSCLE and Blast algorithms implemented in MPI toolkit (82). Paralogues and 506 

orthologues were extracted from Orthologous Matrix database (83), and displayed and edited in 507 
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Jalview (84). Structures are displayed using MolSoft Browser-Pro software (URL: 508 

http://www.molsoft.com/icm_browser_pro.html).  509 

 We used the Annovar (77) to generate annotations that predict deleteriousness of amino acid 510 

changes. We generated the summary results of sixteen computational algorithms that predict 511 

whether or not an amino acid change is likely to be deleterious to the function of the encoded 512 

protein. For each of these algorithms, the prediction of likely functional impact contributed to an 513 

overall score of predicted deleteriousness (see SI Appendix Table S8 for details on the 514 

algorithms and scoring criteria). 515 

 We investigated the expression of the likely-causal genes in 53 tissues from the Genotype-516 

Tissue Expression (GTEx) consortium (31). Data were accessed from the online portal (URL: 517 

https://www.gtexportal.org/home/) on the 1st of September 2017. 518 

 We performed pathway enrichment analyses using the ConsensusPathDB software 519 

(http://cpdb.molgen.mpg.de/) (85). The software integrates data from 32 public databases to 520 

identify pathways that are over-represented in a given gene list, providing a p-value for 521 

enrichment compared to what expected by chance given the number of genes in the list and the 522 

prevalence of genes of a given pathway in the list of interrogated genes (in this case the list of 523 

12,355 genes available for analysis). 524 

  525 
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Initial functional characterization of the PNPLA2 p.N252K variant 526 

 Given the central role of PNPLA2 in intracellular lipolysis and the existence of established 527 

experimental protocols for studying the impact of variants of this gene on hydrolytic activity 528 

(86), we investigated the impact of the p.N252K variant. Green monkey kidney (Cos-7, ATCC 529 

and CRL-165) cells were seeded at 900,000 cells per 10 cm dish and transfected with: (a) human 530 

wild-type PNPLA2 tagged with yellow fluorescent protein, (b) human PNPLA2-N252K, and (c) 531 

LacZ as a control using Metafectene. Twenty-eight hours after transfection, cells were harvested 532 

in 300 µL HSL-buffer plus pi and disrupted by sonication. After centrifugation at 2000 g for 10 533 

minutes at 4°C, protein concentration was determined using Bradford reagent and bovine serum 534 

albumin as a standard. Expression of human wild-type PNPLA2 and human PNPLA2-N252K 535 

was verified by Western Blotting analysis. Triglyceride hydrolase activity assay was performed 536 

as described previously (87). A total of 20 µg of Cos-7 lysates containing overexpressed human 537 

wild-type PNPLA2, human PNPLA2-N252K or LacZ as a control were incubated with 1µg 538 

purified CGI-58 (ABHD5) or 1.5 µg purified G0S2 and radiolabeled Triolein emulsified with 539 

PC/PI (0.5 mM, 20 µCi/µmol) for one hour at 37°C. Radioactivity present in the extracted fatty 540 

acids was determined using liquid scintillation counting. Activity was measured in three technical 541 

replicates, has been corrected for Cos-7 background activity (LacZ) and is presented as mean and 542 

individual results of three technical replicates.  543 

 We also investigated the intracellular localization of wild-type and mutant PNPLA2. Cos-7 544 

cells were seeded onto coverslips in 12 well tissue culture plates with a density of 60,000 cells 545 

per well and transfected with the following constructs: (a) human wild-type PNPLA2 tagged with 546 

yellow fluorescent protein, (b) human PNPLA2-N252K, (c) human PNPLA2-S47A, which is a 547 

catalytically inactive variant, (d) human PNPLA2 with both the N252K and S47A variants. 548 

Constructs were generated by site-directed mutagenesis using the Agilent primer design software 549 
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and the QuickChangeII XL Kit following manufacturer’s instructions. 400 µM oleic acid 550 

conjugated with BSA was supplemented 4 hours after transfection for 20 hours to promote lipid 551 

droplet formation. Cells were fixed with 4% formaldehyde for 15 minutes, followed by three 552 

washes in PBS, and incubated with LipidTox DeepRed 633 for 1 hour for lipid droplet staining. 553 

Cells were mounted on microscope slides with ProLong Gold Antifade Mountant and the yellow 554 

fluorescent protein-tagged PNPLA2 localization was determined using the Leica TCS SP8 555 

confocal microscope with a 63X immersion oil objective (1.3 NA). Yellow fluorescent protein 556 

fluorescence was excited at 514 nm and emission was detected between 520 and 545 nm. 557 

LipidTox DeepRed was excited at 633 nm and detected between 640–680 nm.  558 

 The expression of yellow fluorescent protein-PNPLA2 transfected into Cos-7 cells was 559 

determined by immunoblotting as previously described (33, 86). Briefly, cells were rinsed twice 560 

with ice-cold PBS and lysed in RIPA buffer supplemented with protease inhibitors. Cell debris 561 

was spun down at 13,000 RPM for 10 minutes at 4C. Typically, 15-20 µg of the clarified lysate 562 

was resolved and transferred onto nitrocellulose membrane using the NuPAGE Bis-tris SDS 563 

PAGE/IBlot system (Invitrogen) with yellow fluorescent protein tagged-PNPLA2 being detected 564 

using an anti-GFP antibody (Roche) and GAPDH (GeneTex) serving as loading control. 565 

 566 

Impact of the rs140201358-G PNPLA2 variant on gene expression  567 

  Splicing consequences for the rs140201358-G variant were predicted using the Human 568 

Splicing Finder software (88), while the likelihood of exon skipping was predicted using the EX-569 

SKIP software (89).  570 

 Allele-specific expression of PNPLA2 in adipose tissue was investigated in four unrelated 571 

heterozygous carriers from 477 female participants of the TwinsUK cohort using paired whole 572 

genome sequence and RNAseq data. Phased whole-genome sequence (6X) was generated as 573 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 18, 2018. ; https://doi.org/10.1101/372128doi: bioRxiv preprint 

https://doi.org/10.1101/372128


26 
 

described in the UK10K project (90). RNAseq data from subcutaneous adipose tissue was 574 

generated as described in Buil and colleagues (91). Raw RNA reads were aligned to personal 575 

genomes using the following strategy. The phased whole genome sequences from UK10K were 576 

re-aligned to the human genome build GRCh37/hg37 to create diploid personal genomes for each 577 

sample using vcf2diploid (92). RNAseq reads were processed as follows. Adapter sequences 578 

were trimmed from RNA-seq reads using TrimGalore, software that combines Cutadapt (93) and 579 

FastQC (URL: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Trimmed sequences 580 

with less than 20 bases or which had Phred score below 1 were excluded. Poly-A tails longer than 581 

4bp were trimmed with PRINSEQ-lite (94). Processed reads were then aligned to the 582 

corresponding personal diploid genomes using Spliced Transcripts Alignment to a Reference 583 

(STAR) (95). Pairing of RNA-seq reads was evaluated for a Mapping Quality (MAPQ) score 584 

above 30 and a maximum mismatch threshold of 5. Genomic locations of the reads of personal 585 

genomes were crosslinked to their genome locations on the reference genome with CrossMap 586 

v.0.2.3 (96). A read’s haplotype origin was assigned to either the haplotype with the least number 587 

of mismatches or assigned randomly to break ties. Uniquely mapped reads were retained and the 588 

number of reads mapping to each haplotype was quantified with ASEReadCounter (97). We 589 

tested for differential expression of the two alleles of rs140201358 (C or G) in individual carriers 590 

and in pooled data from four unrelated carriers by calculating the two-sided bionomial probability 591 

of observed reads mapping to the G allele assuming an expected probability of 0.5. 592 

 Peripheral blood mononuclear cells (PBMCs) were isolated from 1,084 participants of the 593 

population based Fenland study (7, 73) using Ficoll-Paque (VWR International Ldt) gradient 594 

centrifugation from 20 mL sodium citrate whole blood. After washing with DPBS (Sigma-595 

Aldrich Co Ltd), cells were re-suspended in 1 mL KOSR/DMSO (Sigma-Aldrich Co Ltd) at a 596 

concentration of approximately 1×107 cells/mL. Vials were frozen to -80 °C in a controlled 597 
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container and then transferred to liquid nitrogen. Expression of PNPLA2 was measured by 598 

quantitative polymerase chain reaction (Q-PCR) in 26 heterozygous carriers of the alternative G 599 

allele, constituting all carriers with available PBMCs, and a random selection of 106 homozygous 600 

carriers of the wild-type C allele. Briefly, RNA was extracted from 1-2 million PBMCs using the 601 

RNeasy Plus Micro Kit (Qiagen), following the manufacturer’s protocol. A total of 0.1 µg RNA 602 

was reverse transcribed to cDNA using M-MLV reverse transcriptase (Promega). Q-PCR was 603 

performed to determine the mRNA expression levels of PNPLA2 and housekeeping gene 604 

hypoxanthine phosphoribosyltransferase 1 (HPRT1) from undiluted cDNA with TaqMan gene 605 

expression assays (ThermoFisher Scientific, Hs00386101_m1 and Hs02800695_m1, 606 

respectively), and TaqMan Universal PCR Master Mix. The mRNA expression of PNPLA2 from 607 

each PBMC was normalized to HPRT1 expression using a standard curve. Measures were carried 608 

out in two technical replicates. PNPLA2 mRNA levels were standardized to a mean of 0 and a 609 

standard deviation of 1 using the distribution in wild-type homozygous carriers. The association 610 

of genotype status with PNPLA2 mRNA levels was estimated using repeated measures general 611 

linear regression to account for duplicate measures. 612 

 613 

Statistical analysis 614 

 Genetic associations were estimated using linear mixed models, linear regression or logistic 615 

regression as appropriate for the outcome phenotype and study design. Results were scaled to 616 

represent the beta estimate in standardized units for continuous outcomes or the odds ratio for 617 

binary outcomes per allele. At the ACVR1C gene, associations of genetically-determined body fat 618 

distribution with type 2 diabetes of multiple genetic variants were estimated using an inverse 619 

variance weighted approach (98). Estimates of (1) ACVR1C genetic variant to BMI-adjusted 620 

WHR and (2) ACVR1C genetic variant to diabetes associations were used to calculate estimates 621 
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of (3) genetically-higher BMI-adjusted WHR via ACVR1C to diabetes association. Statistical 622 

analyses were conducted using BOLT-LMM (78) and STATA v14.2 (StataCorp, College Station, 623 

Texas 77845 USA).  624 

 625 

Data availability 626 

 627 

This research has been conducted using the UK Biobank resource. Access to the UK Biobank 628 

genotype and phenotype data is open to all approved health researchers 629 

(http://www.ukbiobank.ac.uk/). 630 

 631 

Data download: 632 

DIAGRAM consortium (http://diagram-consortium.org/) 633 

CARDIoGRAMplusC4D (http://www.cardiogramplusc4d.org/)  634 

GLGC consortium (http://csg.sph.umich.edu//abecasis/public/lipids2013/;  635 

http://csg.sph.umich.edu//abecasis/public/lipids2017/) 636 

 637 

Study websites: 638 

UK Biobank (http://www.ukbiobank.ac.uk/) 639 

EPIC-InterAct (http://www.inter-act.eu/) 640 

Twins UK (http://www.twinsuk.ac.uk/) 641 

Fenland (http://www.mrc-epid.cam.ac.uk/research/studies/fenland/) 642 

EPIC-Norfolk (http://www.srl.cam.ac.uk/epic/) 643 

 644 

Online data or software: 645 

Human Splicing Finder (http://www.umd.be/HSF3/) 646 

EX-SKIP (http://ex-skip.img.cas.cz/) 647 

FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 648 

MolSoft Browser-Pro (http://www.molsoft.com/icm_browser_pro.html) 649 

ConsensusPathDB (http://cpdb.molgen.mpg.de/)   650 

Genotype-Tissue Expression (GTEx) consortium (https://www.gtexportal.org/home/)  651 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 18, 2018. ; https://doi.org/10.1101/372128doi: bioRxiv preprint 

https://doi.org/10.1101/372128


29 
 

Acknowledgement 652 

This research has been conducted using the UK Biobank resource. Access to the UK Biobank genotype 653 

and phenotype data is open to all approved health researchers (http://www.ukbiobank.ac.uk/). This study 654 

was funded by the United Kingdom’s Medical Research Council through grants MC_UU_12015/1, 655 

MC_PC_13046, MC_PC_13048 and MR/L00002/1. This work was supported by the MRC Metabolic 656 

Diseases Unit (MC_UU_12012/5) and the Cambridge NIHR Biomedical Research Centre and EU/EFPIA 657 

Innovative Medicines Initiative Joint Undertaking (EMIF grant: 115372). Data from the EPIC-InterAct 658 

study contributed to this study. EPIC-InterAct Study funding: funding for the InterAct project was 659 

provided by the EU FP6 programme (grant number LSHM_CT_2006_037197). D.B.S. and S.O’R. are 660 

supported by the Wellcome Trust (WT107064 and WT 095515 respectively) the MRC Metabolic Disease 661 

Unit, the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre and the 662 

NIHR Rare Disease Translational Research Collaboration. K.S.S. is supported by MRC Project Grant 663 

L01999X/1.  The TwinsUK study was funded by the Wellcome Trust and European Community’s 664 

Seventh Framework Programme (FP7/2007-2013). The TwinsUK study also receives support from the 665 

National Institute for Health Research (NIHR)- funded BioResource, Clinical Research Facility and 666 

Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with 667 

King's College London.  Some computation was enabled through access granted to K.S.S. to the MRC 668 

eMedLab Medical Bioinformatics infrastructure, supported by the Medical Research Council (grant 669 

number MR/L016311/1). M. I. McC.  is a Wellcome Senior Investigator supported by Wellcome grants 670 

098381, 090532, 106130, 203141. M. I. McC. was supported by the National Institute for Health Research 671 

(NIHR) Oxford Biomedical Research Centre (BRC) and the views expressed in this article are those of the 672 

author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health. Dr. R. A. S. is an 673 

employee and shareholder of GlaxoSmithKline Plc. (GSK). The authors gratefully acknowledge the help 674 

of the MRC Epidemiology Unit Support Teams, including Field, Laboratory and Data Management 675 

Teams. 676 

 677 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 18, 2018. ; https://doi.org/10.1101/372128doi: bioRxiv preprint 

https://doi.org/10.1101/372128


30 
 

Tables 
 
Table 1. Conditionally independent index variants and fine-mapping at the CALCRL, PLIN1, PDE3B, ACVR1C and FGF1 loci. 
 

Locus Signal 
dbSNP 

rsID 

Genomic coordinate, 
chromosome, 

position, effect allele, 
other allele (effect 

allele frequency, %) 

Annotation 

Beta 
(SE) from 
univariate 
analysis, 

in SD units 

p-value 
univariate 
analysis 

Beta 
(SE) from 

conditional 
analysis*, 

in SD units 

p-value 
condition

al 
analysis* 

Genomic 
position of 

99% 
credible set 

window, 
(width in 

number of 
base pairs) 

Number of 
variants in 
the credible 

set 

PPA for 
the index 
variant, 

% 

Main analysis 

CALCRL 

1 rs10177093 
chr2:188213819:G:T 

(45.6%) 
CALCRL 
intronic 

-0.02 
(0.002) 

2.2×10-27 
-0.02 

(0.002) 
7.7×10-26 

188088527-
188213819 
(125,293) 

60 17% 

2‡ rs61739909 
chr2:188245439:G:A 

(0.3%) 
CALCRL 
p.L87P 

-0.13 
(0.018) 2.0×10-13 

-0.12 
(0.018) 

5.9×10-12 
188245439-
188270259 

(24,821) 
2 51% 

PLIN1 1‡ rs139271800 
chr15:90214777:G:A 

(0.1%) 
PLIN1 
p.L90P 

-0.21 
(0.029) 

5.5×10-13 
-0.21 

(0.029) 
5.5×10-13 

90214777   
(1) 

1 >99% 

PDE3B 

1‡ rs150090666 
chr11:14865399:T:C 

(0.1%) 
PDE3B 

p.R783X 
-0.26 

(0.032) 
1.4×10-15 

-0.25 
(0.032) 

6.2×10-15 
14865399  

(1) 
1 >99% 

2 rs2970332 
chr11:14360435:G:A 

(23.1%) 
RRAS2 
intronic 

-0.02 
(0.002) 

9.9×10-12 
-0.02 

(0.002) 
6.3×10-12 

14258010-
14689340 
(431,331) 

20 23% 

3 rs79634051 
chr11:14561945:C:G 

(2.8%) 
PSMA1 
intronic 

-0.03 
(0.006) 

6.4×10-08 
-0.04 

(0.006) 
2.1×10-09 

14242862-
14891141 
(648,280) 

15 78% 

ACVR1C 

1 rs55920843 
chr2:158412701:G:T 

(1.2%) 
ACVR1C 
p.N150H 

-0.08 
(0.009) 

8.9×10-19 
-0.09 

(0.009) 
4.6×10-20 

158412701 
(1) 

1 >99% 

2 rs2444770 
chr2:158503739:C:T 

(14.8%) 
18kb 5' of 
ACVR1C 

-0.02 
(0.003) 

5.9×10-13 
-0.02 

(0.003) 
7.7×10-15 

158496502-
158518238 

(21,737) 
7 46% 

3‡ rs56188432 chr2:158406865:G:A 
(0.2%) 

ACVR1C 
p.I195T 

-0.14 
(0.021) 

4.9×10-11 
-0.14 

(0.021) 
5.4×10-12 

158406865 
(1) 

1 >99% 

Experiment-level p-value analysis† 

FGF1 

1 rs10477191 
chr5:142077715:A:G 

(95.1%) 
79bp 5' of 

FGF1 
-0.04 

(0.005) 
5.5×10-17 

-0.04 
(0.005) 

7.1×10-16 
142077715 

(1) 
1 >99% 

2 rs7712968 
chr5:142086214:T:C 

(93.3%) 
8.6kb 5' of 

FGF1 
-0.03 

(0.004) 
1.3×10-12 

-0.03 
(0.004) 

3.5×10-11 
142082930- 
142101101 

(18,172) 
5 58% 

3 rs34000 chr5:141973501:T:C 3’-UTR of 0.01 1.2×10-10 0.01 9.9×10-08 141480886- 192 30% 
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(59.6%) FGF1 (0.002) (0.002) 142470008 
(989,123) 

4 rs10065321 
chr5:141857415:C:T 

(58.3%) 
114kb 3' of 

FGF1 
0.01 

(0.002) 
1.3×10-09 

0.01 
(0.002) 

3.8×10-10 
141857415- 
141861399 

(3,985) 
5 55% 

5 rs2434416 
chr5:141789701:A:C 

(56.2%) 
85kb 5' of 

SPRY4 
-0.01 

(0.002) 
8.3×10-09 

-0.01 
(0.002) 

1.5×10-09 
141769319- 
141824669 

(55,351) 
34 22% 

6‡ rs17223632 
chr5:141993631:T:C 

(0.3%) 
FGF1 

p.G21E 
-0.10 

(0.018) 
8.1×10-08 

-0.09 
(0.018) 

1.6×10-07 
141589594- 
142413739 
(824,146) 

62 98% 

Analyses are from 450,562 European ancestry individuals. Beta and standard errors are in standardized units of BMI-adjusted WHR per copy of the effect allele. 
Genomic coordinates according to human genome reference sequence GRCh37. 
* Adjusting for conditionally-independent index variants highlighted in the joint conditional model. 
† Using a p-value threshold p<1.3×10-06, corresponding to a Bonferroni correction for 37,435 genetic variants studied in this analysis. 
Abbreviations: SE, standard error; SD, standard deviation. 
‡ Variant identified in the genome-wide scan of rare nonsynonymous variants. 
Abbreviations: SE, standard error; SD, standard deviation; PPA, posterior probability of association.
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Figure Legends 
 
 
Figure 1. Regional association plots of the overall and statistically-decomposed signals at the CALCRL, PLIN1, 
PDE3B and ACVR1C genes. Plots were drawn using LocusZoom (99). Joint meta-analysis models using GCTA 
(79) were used at each locus to assess how many independent signals were present. Then, at each locus each signal 
was statistically-decomposed from others by estimating associations of all variants in the region adjusted for all other 
index variants at the region. Fine-mapping of each signal was performed using a Bayesian approach (80). 
 
Figure 2. Association of rare nonsynonymous genetic variants at CALCRL, PLIN1 and PDE3B with 
continuous metabolic traits and risk of cardio-metabolic disease outcomes. Associations are presented as beta 
coefficient in standardized units of continuous trait or odds ratio for disease outcome per minor allele. The minor 
allele is listed following the rsid above the corresponding plot. Lipid association estimates were not available for 
rs150090666 in the Global Lipids Genetics Consortium, so they were estimated in the Fenland, InterAct and EPIC-
Norfolk studies. Abbreviations: WHR, waist to hip ratio unadjusted for body mass index; Waist, waist 
circumference; Hip, hip circumference; BMI, body mass index; BF %, body fat percentage; SBP, systolic blood 
pressure; DBP, diastolic blood pressure; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density 
lipoprotein cholesterol; SD, standard deviation; OR, odds ratio. 
 
Figure 3. Associations with continuous metabolic traits and risk of cardio-metabolic disease outcomes of 
genetic variants at the ACVR1C gene. The three genetic variants were independently associated with waist-to-hip 
ratio adjusted for body mass index in conditional analyses at the ACVR1C gene. Associations are presented as beta 
coefficient in standardized units of continuous trait or odds ratio for disease outcome per minor allele. The minor 
allele is listed following the rsid above the corresponding plot. Abbreviations: WHR, waist to hip ratio unadjusted 
for body mass index; Waist, waist circumference; Hip, hip circumference; BMI, body mass index; BF %, body fat 
percentage; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL-C, low-density lipoprotein 
cholesterol; HDL-C, high-density lipoprotein cholesterol; SD, standard deviation; OR, odds ratio. 
 
Figure 4. Schematic depiction of the three catalytic reactions of intracellular lipolysis and key genes in the 
pathway. Evidence contributing to this representation has been recently reviewed (46).  
 
Figure 5. Phenotypic associations and functional consequences of the rs140201358-G variant in PNPLA2. 
Panel A reports associations with continuous traits of rs140201358-G p.N252K, while Panel B reports associations 
with cardio-metabolic disease outcomes. Associations are presented as beta coefficient in standardized units of 
continuous trait or odds ratio for disease outcome per minor allele G. The minor allele is listed following the rsid 
above the corresponding plot. Abbreviations: WHR, waist to hip ratio unadjusted for body mass index; Waist, waist 
circumference; Hip, hip circumference; BMI, body mass index; BF %, body fat percentage; SBP, systolic blood 
pressure; DBP, diastolic blood pressure; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density 
lipoprotein cholesterol; SD, standard deviation; OR, odds ratio. Panel C shows the specific enzymatic activity of 
PNPLA2-N252K and wild-type protein in in vitro expression studies. The graph reports the results of three technical 
experimental replicates. Full blue circles (individual replicate result) and horizontal bars (averages) are for wild type 
PNPLA2 while full dark red circles (individual replicate result) and horizontal bars (averages) are for p.N252K 
mutant PNPLA2. Abbreviations: FA, fatty acids; ABHD5, Abhydrolase Domain Containing 5 also known as 
Comparative Gene Identification-58 (CGI-58); G0G2, G0/G1 Switch 2. Panel D represents the location of the 
rs140201358 p.N252K variant at the exon 6 – intron 6 splice junction of PNPLA2. At the top of the panel is a 
representation of conservation of residues across mammalian species, with the proportion of observed nucleotides at 
each position represented by the size of the font. Panel E shows the results of allele-specific expression of PNPLA2 
in subcutaneous adipose tissue from four unrelated heterozygous carriers of rs140201358 p.N252K. The individual 
results are shown on the left, while the pooled results on the right. The reported p-values are two-tailed binomial 
probabilities. Panel F shows the association of rs140201358 N252K genotype with PNPLA2 gene expression 
measured by quantitative transcription polymerase chain reaction in peripheral blood mononuclear cells from 106 
homozygous carriers of the wild-type C allele (i.e. 252N) and 26 heterozygous carriers of the alternative G allele (i.e. 
252K). The mRNA levels of PNPLA2 were standardized on the basis of the distribution in homozygous wild-type 
participants. Boxes represent the median and interquartile range, whiskers represent the upper and lower adjacent 
values, circles represent outliers for each genotype group. Association between genotype and PNPLA2 expression 
was estimated by linear regression.  
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Figure 3 
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Figure 4 
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Figure 5 
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