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Highlight 34 

We used UAV-based sensing platform to investigate plant height over 4 growth stages 35 

for different maize populations, and detected numbers of reliable QTLs using GWAS. 36 

 37 

Abstract 38 

Plant height is the key factor for plant architecture, biomass and yield in maize 39 

(Zea mays). In this study, plant height was investigated using unmanned aerial vehicle 40 

high-throughput phenotypic platforms (UAV-HTPPs) for maize diversity inbred lines 41 

at four important growth stages. Using an automated pipeline, we extracted accurate 42 

plant heights. We found that in temperate regions, from sowing to the jointing period, 43 

the growth rate for temperate maize was faster than tropical maize. However, from 44 

jointing to flowering stage, tropical maize maintained a vigorous growth state, and 45 

finally resulted in a taller plant than temperate lines. Genome-wide association study 46 

for temperate, tropical and both groups identified a total of 238 quantitative trait locus 47 

(QTLs) for the 16 plant height related traits over four growth periods. And, we found 48 

that plant height at different stages were controlled by different genes, for example, 49 

PIN1 controlled plant height at the early stage and PIN11 at the flowering stages. In 50 

this study, the plant height data collected by the UAV-HTTPs were credible and the 51 

genetic mapping power is high, indicating that the application of this UAV-HTTPs 52 

into the study of plant height will have great prospects. 53 

 54 

Key words: Dynamic plant height, GWAS, High-throughput phenotype, QTL, 55 

Temperate maize, Tropical maize, Unmanned aerial vehicle. 56 
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Introduction 68 

Maize (Zea mays) was domesticated from Balsas teosinte (Zea mays subspecies 69 

parviglumis) in southwestern Mexico around 9,000 y BP (van Heerwaarden et al., 70 

2011). Subsequently, maize has been continuously improved by humans, and the most 71 

important improvements were spread from the tropical region to the temperate region, 72 

which can be called adaptation (Liu et al., 2015). The adaptation process allowed 73 

maize to be widely cultivated worldwide and become the largest production food crop 74 

in the world (http://faostat3.fao.org/compare/E). However, the world population is 75 

soaring and the demand for food is also increasing. It has been reported that the 76 

world's grain demand must meet a target of 70% increase by 2050 (Tester and 77 

Langridge, 2010). Therefore, corn, the largest grain, has become particularly 78 

important in safeguarding world food security. 79 

Maize yield is highly complex and is affected by many factors, among which 80 

plant height is a particularly important factor because it not only affects the lodging 81 

resistance, but also biomass and yield (Salas Fernandez 2009). In the first Green 82 

Revolution, with the successful application of the semi-dwarf genes (rht1; sd1) in 83 

wheat and rice, the crop yields increased dramatically (Peng et al., 1999; Khush et al., 84 

2001; Sasaki et al., 2002). Plant height was so important that people have made 85 

unremitting efforts to exploring its genetic mechanism. So far, there were plenty of 86 

quantitative trait loci (QTLs) identified for maize plant height using a diversity of 87 

genetic populations (Peiffer et al., 2014; Yang et al., 2014; Dell'Acqua et al., 2015; 88 

Zhou et al., 2016; Pan et al., 2017). Some of these genes were cloned, such as an1, 89 

dwarf3, dwarf8, dwarf9 and br2, which were mainly involved in the synthesis and 90 

transportation of gibberellin and auxin (Winkler and Freeling, 1994; Bensen et al., 91 

1995; Winkler et al., 1995; Fujioka et al., 1988; Xing et al., 2012).  92 

Maize plant height showed different characteristics during the whole growth 93 

period, especially in the important growth stages, such as the seeding, jointing, 94 

flowering and mature stages (Abendroth et al., 2011). Usually, maize grows slowly in 95 

the seedling stage, fast in the jointing stage, then gradually slower in the grouting 96 

stage, and stops in the milky stage (Zhang et al., 2012). However, for a long time, 97 

researchers have often investigated the plant height at the mature stage to obtain the 98 

final height, leading to a lack of systemic understanding of the entire plant height 99 

development process and the genetic factors of its genetic development mechanism. 100 

Furthermore, the workload of manual measurement also contributed to plant height 101 
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typically only being investigated at one growth stage. 102 

Manually investigating plant height is a laborious and time-consuming task. Since 103 

plants are tall at maturity, errors are unavoidable in the measurement process and the 104 

accuracy of the data will be affected. In recent years, with the development of 105 

artificial intelligence, a series of high-throughput automated phenotypic systems have 106 

been developed. At present, indoor platform systems are widely used for dissecting 107 

phenotypic traits in which environmental effects are minimized (Yang et al., 2014; 108 

Zhang et al., 2016; Al-Tamimi et al., 2017); however, field high-throughput platforms 109 

have much fewer applications within the complex environment that farmers routinely 110 

experience (Crain et al., 2016; Liang et al., 2018). Compared with indoor platforms, 111 

the development of field high-throughput platforms requires high flexibility and a 112 

large payload (Araus and Cairns, 2014). Thanks to the advance in remote sensing, 113 

aeronautics and high-performance computing development, some field-based 114 

high-throughput phenotypic platforms (HTPPs) have been developed (Araus and 115 

Cairns, 2014). For example, the Australian Plant Phenomics Facility 116 

(http://www.plantphenomics.org/hrppc/capabilities/technology), and ground-based 117 

HTPPs used for wheat, cotton, sorghum and maize, which can determine the canopy 118 

height, reflectance, temperature, plant height, biomass and so on (Andrade-Sanchez et 119 

al., 2013; Holman 2016; Duan et al., 2017; Liang et al., 2018). However, these 120 

field-based HTPPs have very few applications in genetic improvement, especially for 121 

genetic mapping.  122 

To better understand the dynamic plant height mechanism, we investigated the 123 

plant height through four growth periods with an unmanned aerial vehicle (UAV) 124 

system for maize diversity inbred lines, which covers wide genetic diversity and is 125 

widely used in maize genetic research (Yang et al., 2011; Yang et al., 2014; Liu et al., 126 

2017). Through this design, we hope to explore more plant height characteristics with 127 

the aid of the high-throughput UAV and data processing procedures, and then dissect 128 

the genetic basis for plant height for different maize groups at different stages. 129 

 130 

Materials and methods 131 

Plant materials and experiment design 132 

The maize natural population used in this study was a subset of Yang (Yang et al., 133 

2010), consisting of 117 temperate lines and 135 tropical lines, which had a 134 

high-density genotype of 1.25 million single nucleotide polymorphism (SNPs) with 135 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 16, 2018. ; https://doi.org/10.1101/369884doi: bioRxiv preprint 

https://doi.org/10.1101/369884


5 

 

minor allele frequency (MAF) more than 0.05 (Liu et al., 2017). The population was 136 

sown on 15 May 2017 at Xiao Tang Shan, Changping, Beijing National Precision 137 

Agriculture Research Center of China (115°E, 40°N). The land plots were flat, with 138 

uniform soil fertility. There was a row length of 2 m, including eight plants, and each 139 

line included three rows. Row-to-row distance was set as 65 cm. Phenotypic data 140 

collection with UAV was carried out on 8 June, 29 June, 11 July and 3 August 2017, 141 

days with clear sky and no wind (Table 1; Fig. 1A). On the same days, the height of 142 

44 randomly selected plants was manually measured with a ruler. 143 

 144 

Platform and image acquisition 145 

An Octocopter UAV (DJI Spreading Wings S1000) platform was used to collect a 146 

set of aerial images across four flights (Fig. 1B). A 20.2-megapixel digital camera 147 

(Cyber-shot DSC-QX100) was mounted on the UAV to acquire the images by means 148 

of a global positioning system (GPS) and inertial navigation unit system. In each 149 

flight, the same flight plan was followed with 80% forward overlap and 75% side 150 

overlap at an altitude of approximately 40–60 m, depending on the sun situation. The 151 

flight routes were programmed into the UAV software to automatically generate 152 

efficient flight paths for UAV. Each flight speed was set to 6 m/s. International 153 

Standards Organization sensitivity and shutter speed were set to automatic, and the 154 

focal length was fixed at 10.4 mm. The flight time was within 15 min. Sixteen ground 155 

control points (GCPs), measured using millimeter-accuracy differential GPS (South 156 

Surveying & Mapping Instrument Co., Ltd., China), were evenly distributed in the 157 

field to obtain an accurate geographical reference from multiple dates. 158 

 159 

Plant height image data extraction and verification 160 

Digital surface models (DSMs) and orthomosaics were produced from images 161 

shot by UAV with GCPs using the structure-from-motion software Agisoft PhotoScan 162 

1.3 (Agisoft LLC, St. Petersburg, Russia) (Fig. 1B). This process included feature 163 

point matching, dense point cloud generation, product output, etc. A digital elevation 164 

model (DEM) (i.e., a non-vegetation ground model) was constructed from the first set 165 

of aerial images collected 24 days after sowing by the local polynomial interpolation 166 

method. Crop surface models (CSMs) were calculated by subtracting the DSM at 167 

different plant growth stages from the DEM (Fig. 1B, Hoffmeister et al., 2010; Bendig 168 

et al., 2013; Hoffmeister et al., 2013). The CSM includes a raster dataset that mixes 169 
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the soil and plant pixels. Many studies have shown that extracting plant height 170 

directly from CSM results in underestimation (Bendig et al., 2015; Holman et al., 171 

2016; Watanabe et al., 2017). Segmenting plants from soils using the excess green 172 

index proposed by Woebbecke et al. (1995) was a necessary measure for the above 173 

extraction. Kriging spatial interpolation and maximum adjacent pixel methods were 174 

performed on CSMs to remove the soil background, and the maximum of 175 

interpolation was taken as the representative value of plant height at the plot scale. To 176 

assess the accuracy of plant height extraction from UAV, 44 maize plants were 177 

randomly selected to manually measure plant height at the second, third and fourth 178 

timepoints of plant growth. A linear regression model was applied with multiple dates 179 

using R v. 3.2.4 statistical software. 180 

 181 

Plant height variation between temperate and tropical maize 182 

A total of 252 maize inbred lines, consisting of 117 temperate lines and 135 183 

tropical lines, were used in this study. Plant heights were evaluated at four different 184 

growth stages, and a total of 16 plant height related traits were calculated, including 4 185 

absolute plant height traits (PH), 3 incremental plant height difference (IPH), 3 186 

growth rates of plant height (GRPH), 3 daily incremental plant height difference 187 

(DIPH) and 3 daily growth rates of plant height (DGRPH). The PH represents the 188 

absolute plant height at each timepoint. The IPH represents the difference between the 189 

adjacent timepoints, e.g. IPH_1t2 equals PH_2 minus PH_1. The GRPH was 190 

calculated as the ratio of IPH divided by the former plant height, e.g. GRPH_1t2 191 

equals IPH_1t2 divided by PH_1. The DIPH was the IPH divided by the total days 192 

between the adjacent timepoints. Finally, the DGRPH was calculated as the GRPH 193 

divided by the total days between the adjacent timepoints. The phenotypic distribution 194 

and graphs were implemented in the R v. 3.2.4 statistical software.  195 

 196 

Association analysis for plant height 197 

Genome-wide association study (GWAS) was carried out in temperate (TEM), 198 

tropical (TST) maize and both of the two e population (BOTH). Genotype data 199 

quality control was performed separately, with 1,141,328, 1,110,483 and 1,227,441 200 

SNPs remaining for TEM, TST and BOTH groups, respectively. We used 16 201 

plant-height-related traits in the GWAS program, including PH, IPH, GRPH, DIPH 202 

and DGRPH traits for the three groups. Combined with phenotypes and genotypes, 203 
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the FarmCPU model in the MVP software package, which iteratively uses fixed and 204 

random effect model, was used for association tests in TEM and TST groups with 205 

only kinship considered (Al-Tamimi et al., 2016; Liu et al., 2016). For the BOTH 206 

population, the top five principal components were added in FarmCPU model to 207 

control false positives, which may be caused by population stratification and the 208 

non-genetic effect (Al-Tamimi et al., 2016; Liu et al., 2016). The adjusted Bonferroni 209 

method (i.e., P ≤ 1/N, where N is the total number of genome-wide SNPs) was used 210 

as the global P value cutoff to declare significance of SNPs associated with a given 211 

trait. The P values were 8.76e−7, 9.0e−7 and 8.14e−7 for the TEM, TST and BOTH 212 

populations, respectively. QTL intervals were calculated as the upstream and 213 

downstream 100kb for each significant SNP (Deng et al., 2017). Any SNP in the 214 

QTL interval with the lowest P value was considered as the peak SNP.  215 

We searched the genes in each QTL according to the physical position of each 216 

gene in maizeGDB (https://www.maizegdb.org/). Gene annotations were based on 217 

both maizeGDB and InterProScan database (http: //www. 218 

ebi.ac.uk/interpro/scan.html). The gene expression profiles were also from 219 

maizeGDB. 220 

 221 

Results 222 

High-throughput digital plant height extraction and validation 223 

To investigate the plant height of 117 temperate and 135 tropical maize inbred 224 

lines for the four stages, we used the unmanned aerial vehicle high-throughput 225 

phenotypic platform (UAV-HTTP) system to collect the image data. We carried out 226 

four flights during the whole development stage of maize during the seedling, jointing, 227 

trumpet and flowering periods (the V5, V10, V12 and R stages at 24, 45, 57 and 80 228 

days after seeding, respectively). On each flight, the average flight altitude was 52.5 229 

m. A total of 559 original images were taken on four flights (Table 2). Using the 230 

self-developed automated data extraction process, we first filtered the original images, 231 

and retained 460 high-quality images, with an average of 115 images per flight. After 232 

the reconstruction of the orthomosaic model, the obtained image ground resolution 233 

was 1.15 cm/pixel. The DSM was constructed using the orthomosaic model output 234 

point cloud data. The average image accuracy of the DSM was 2.31 cm/pixel. The 235 

DEM was generated by interpolation of the DSM points located on the surface of the 236 
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bare land. Finally, we obtained the CSM containing bare soil (DSM − DEM, Fig. 1B). 237 

Here, the tiny terrain at the bottom of the crop can be ignored because whole plant 238 

area was flatted by a farmland leveling machine. Therefore, CSM is equivalent to crop 239 

height. The average coefficient of variation (CV) of plant height gradually decreased 240 

from 53% to 11.6% among first three growth stages caused by the increasing 241 

heterogeneity of plant height. The mean crop height ranged from 9.6 to 253.4 cm 242 

among the four periods with an average growth rate of 4.06 cm/d (Table 2). 243 

To verify the accuracy of the plant height data extracted using UAV-HTTP, 44 244 

lines were randomly selected for plant height measurement by ruler at the same time 245 

as the 2nd, 3rd and 4th flight. A linear regression model was established for the 246 

UAV-HTTP data and ruler measurement data and the model correlation coefficient 247 

was very high (r2= 0.91), indicating that the data obtained by the UAV platform had 248 

high accuracy (Fig. 2). 249 

 250 

Plant height varies greatly at different stages of development 251 

Based on the accurate plant height data obtained by UAV-HTTP, we performed 252 

further analysis of the variation for maize plant height across the four growth stages 253 

among the three different groups (Table 3). For the BOTH group, the average PH 254 

were between 13.66 and 218.26 cm, from the first to the fourth flight (Fig. 1C). The 255 

DIPH values for the three adjacent periods were from 3.68 to 4.74 cm, with the 256 

maximum for 2t3 stages, and minimum for 3t4 stages. However, the DGRPH values 257 

varied from 0.02 to 0.31, with the maximum for 1t2 stages, and minimum for 3t4 258 

stages. The inconsistence for DIPH and DGRPH indicate that growth rate was not 259 

positively correlate to incremental growth.  260 

We conducted a correlation analysis for the BOTH group to reveal the 261 

relationship between the 16 traits at different plant stages (Fig. 3). A strong positive 262 

correlation was found between IPH and DIPH, GRPH and DGRPH. Second, 263 

correlations for PHs at different stages were also positively related, from 0.14 to 0.73. 264 

Third, the correlation between IPHs was weak ranging from −0.25 to 0.05. PHRs 265 

were also weakly related to each other, from −0.09 to 0.1. However, there was a 266 

positive correlation between IPH and PH, ranging from −0.28 to 0.94. The correlation 267 

between GRPH and PH was mainly negative, ranging from −0.73 to 0.62. In addition, 268 

the correlation between IPH and GR was relatively variable, ranging from −0.57 to 269 

0.95. 270 
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As the wide diversity of the BOTH group, we divided the group into TEM and 271 

TST groups, and found the plant height between TEM and TST maize exhibited a 272 

significant difference at each growth stage (Fig. 4). From the first to the third flight 273 

(namely 1t2 and 2t3 stages) the DIPH values for TEM and TST were 3.87 vs. 3.52 cm 274 

and 4.97 vs. 4.53 cm, respectively, showing that TEM maize consistently grew faster 275 

than the TST maize. However, from the third to the fourth period, the TST grew faster 276 

than the TEM maize, and the DIPH for TEM and TST were 2.32 vs. 3.79 cm. More 277 

importantly, the most significant difference for the two groups were at 3t4 stage when 278 

most TEM lines were flowering, while most TST lines were still in vegetative growth. 279 

 280 

Genetic basis affecting the dynamic development of plant height 281 

In view of the above-mentioned differences in plant height and related traits in 282 

different groups and at different stages of growth, we conducted GWAS for the 16 283 

plant heigt related traits in the TEM, TST, and BOTH groups. A total of 238 QTLs 284 

were detected, covering 10 chromosomes of the maize genome (Data S1-S5; Fig. 285 

S1-S4). There were 38, 49, 50, 50 and 51 QTLs detected for PH, IPH, GRPH, DIPH 286 

and DGRPH traits, respectively.  287 

To verify the accuracy of the QTL, we compared the previously reported QTLs 288 

and genes related to plant height and found that 45% of the QTLs overlapped with 289 

previous research (Peiffer et al., 2014; Yang et al., 2014; Dell'Acqua et al., 2015; Zhou 290 

et al., 2016; Pan et al., 2017). In addition, genes involving the GA and auxin pathway 291 

were also detected to be associated with plant height, such as ARFTF4, D3, GA2OX8, 292 

KS3, PIN1 and PIN11, indicating that the QTL results of this study were highly 293 

reliable (Tudroszen et al., 1977; Winkler and Helentjaris,1995; Lo et al.,2008; 294 

Yamaguchi, 2008; Li et al., 2016; Weijers et al., 2018). Furthermore, 55% of QTLs 295 

were newly identified in the present study, including traits related to plant height and 296 

growth rate. Combining a large number of validated and new QTLs, we can discover 297 

the genetic basis affecting the dynamic development of plant height. 298 

First, plant height at different stages was controlled by different QTLs. There 299 

were 6, 6, 2 and 24 loci detected for PH traits at the V5, V10, V12 and R stages, 300 

respectively (Fig.5; Data S1). More QTLs at the flowering stage were detected than at 301 

other stages. However, comparison of the QTLs for the four developmental stages did 302 

not show any overlapping regions, suggesting that plant height was controlled by 303 

different genes at different stages. For example, at the V5 stage, the gene PIN1, an 304 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 16, 2018. ; https://doi.org/10.1101/369884doi: bioRxiv preprint 

https://doi.org/10.1101/369884


10 

 

auxin transport protein (Kumari et al., 2015), was detected near to the QTL of chr9: 305 

3.23-3.43Mb for the TEM group. The expression profile of PIN1 in B73 showed high 306 

expression in the early stem, indicating that the gene may involve in the early stages 307 

of development. At the R stage, the gene PIN11 which is an auxin efflux carrier 308 

family protein (Tudroszen et al., 1977; Balzan et al., 2014), was detected in the QTL 309 

of chr2:192.33-192.53Mb for the TEM group. The expression profile of PIN11 for 310 

B73 showed that the gene expressed highly in the SAM and internode, indicating that 311 

the gene was likely to have controlled plant height, especially in later development. 312 

Second, different QTLs controlled plant height in different groups. We found that 313 

few QTLs for the three populations overlapped in the same stage. For the PH trait 314 

across four stages, there were more QTLs detected in the other two groups than 315 

BOTH group except in the first stage (Fig. 6). The reason may be different GWAS 316 

model used for the three groups, and the model used for BOTH group was strict than 317 

the other two groups with population structure be considered. In addition, for the 318 

similar model of TEM and TST groups, the QTLs were still different, which may be 319 

caused by the allele frequencies. For example, the QTL chr2: 192.33-192.53 Mb 320 

(containing PIN11) was only detected in the TEM group at the R stage. The allele 321 

frequencies of the peak SNP (chr2.S_192432591, A/G) were 0.52/0.47 in the TEM 322 

group, 0.16/0.85 in the TST. 323 

Third, we have found considerable overlap between PH, IPH, GRPH, IDPH and 324 

DGRPH (Fig. 7; Fig. S5). Based on the correlations between the five class traits, and 325 

the results of co-localization of QTLs, we can obtain a systematic understanding of 326 

the genetic basis of traits. For example, the QTL region chr2:2.49-4.36 Mb was 327 

co-located by PH_4, IPH_3t4 and GRPH_3t4, which contained the auxin 328 

corresponding factor gene ARFTF4 (Auxin response factor 4; Li et al., 2016), 329 

indicating that the plant height at the R stage was mainly contributed by the difference 330 

of the growth rate of V12 to R stages rather than other periods. These results indicate 331 

that the plant height surveyed at a specific stage was affected by many factors, such as 332 

IPH and the plant height at the former stage.  333 

 334 

Discussion 335 

High-throughput phenotyping platforms promote genetic research 336 

Application of genetic improvement is the most effective way to increase crop 337 

yields. With the fast development of sequencing technology, genomic researches have 338 
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recently been rapidly increasing; however, the phenotype has been facing bottleneck 339 

(Furbank and Tester, 2011). The development of HTPPs to obtain more phenotypes 340 

has been the focus of the fast development of genetics and breeding. 341 

A series of indoor phenotypic platforms have recently been developed and 342 

applied into genetic researches (Chen et al., 2014; Yang et al., 2014; Zhang et al., 343 

2016). The application of these high-throughput, automated phenotyping devices can 344 

greatly shorten the phenotypic investigation time, ensure the accuracy of the 345 

phenotype, and discover phenotypes that researchers cannot obtain by conventional 346 

techniques. More importantly, the traits discovered by the high throughput platform 347 

can identify some known genes as well as the novel loci, providing a valuable ability 348 

for gene identification.  349 

Compared with indoor platforms, the development of field HTPPs will be much 350 

more complex because of the requirement for high flexibility and a large payload 351 

(Araus and Cairns, 2014). To date, UAV has been an excellent tool as field 352 

high-throughput techniques, and has achieved great success in the researches of wheat 353 

and cotton (Andrade-Sanchez et al., 2013; Holman et al., 2016). However, the 354 

applications for UAV in maize plant height research were very few. In this study, we 355 

applied the UAV platform to survey maize plant height in the fields and used the 356 

resultant accurate data for genetic mapping. A large number of reported and many 357 

novel QTLs were detected, showing the advantage of GWAS using the UAV-HTPPs 358 

in mining of plant height loci. The platform is likely to have a wide range of future 359 

applications and can be extended to more complex agronomic traits. 360 

 361 

Dynamic phenotype accelerates the dissection of the genetic basis of plant height 362 

The determination of plant height variation depends on the in-depth investigation 363 

of phenotype. Currently, the survey of plant height typically takes place at the mature 364 

stage, which can obtain stable traits, but a lot of useful plant height information is 365 

likely to be missed. In this study, we monitored the plant height from the seeding 366 

stage to the flowering stage, through division into four periods. We found that GRPH 367 

of maize varies greatly at different stages of development, with the fastest in 1t2 stage, 368 

and slowest in 3t4 stage. Second, we found that TST maize grew slower and had a 369 

shorter plant height than the TEM maize from sowing to jointing stage. However, 370 

from the jointing to the flowering stages, TST maize had a faster growth rate, and 371 

finally resulted in a taller plant than TEM maize. Third, there were different genes 372 
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regulating the plant height at different stages, some controlling early growth, some 373 

controlling mid-term and some controlling later stages. In this study we have detected 374 

6, 6, 2 and 24 QTLs for the PH traits at V5, V10, V12 and R stages, but no common 375 

QTLs among the four stages. The results were consistent with Yan (Yan et al., 2003), 376 

who investigated plant heights in five periods and found that QTLs controlling plant 377 

heights were expressed differently in different periods. The above results indicate that 378 

if we assess the plant height over different growth stages, we will be able to identify 379 

more genes affecting plant height. Fourth, we found that a few regions can be 380 

co-localized by PH, IPH and GRPH. For example, we found that the co-localized 381 

QTLs controlling later IPH or GRPH were also detected in later PH traits and vice 382 

versa. This indicates that by dividing the plant height into several stages of growth, 383 

the key factors for the plant height can be better identified at specific stages. The 384 

dynamic phenotype enables us to have a clearer understanding of plant developmental 385 

processes. The usage of dynamic phenotypic data for mapping can identify more 386 

QTLs affecting the development of the trait, which is of great importance for the 387 

analysis of the genetic basis of traits and subsequent improvement of the trait. 388 

 389 
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Table 1．The investigation date for plant height  589 

Flight Date DASa DAFDb 
Development 

stage 
Description 

1 8 June 2017 24 — V5 seeding stage 

2 29 June 2017 45 21 V10 jointing stage 

3 11 July 2017 57 12 V12 trumpet 

4 3 August 2017 80 23 R flowering stage 

Note: 590 

a: DAS means days after sowing 591 

b: DAFD means days after the closest former date592 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 16, 2018. ; https://doi.org/10.1101/369884doi: bioRxiv preprint 

https://doi.org/10.1101/369884


19 

 

 593 

Table 2. Features for the extraction for the plant height using UAV-HTTP 594 

Flight 

Flight  

Altitude 

(m) 

Original  

images 

quantity 

Checked 

images  

quantity 

Orthomosaic 

Resolution 

(cm/pixel) 

Point 

Density 

(points/cm-2) 

DSM 

Resolution 

(cm/pixel) 

Min of 

CSM 

(cm) 

Max of 

CSM 

(cm) 

CV of  

CSM 

(%) 

Mean of 

CSM(cm) 

1 40 166 120 0.72 47.9 1.44 0 26 53 9.6 

2 60 113 98 1.33 14.2 2.65 69 184 13.4 124.9 

3 60 121 95 1.35 13.7 2.71 117 251 11.6 185.9 

4 50 159 147 1.23 16.4 2.47 148 365 14.5 253.4 
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Table 3. Statistic analysis for plant height variation for the whole population during 596 

four growth stages 597 

Trait 
Max 

(cm) 

Min 

(cm) 

Mean 

(cm) 

Sd 

(cm） 

CV 

(%) 

PH_1 31.34 5.35 13.66 5.07 37.09 

PH_2 149.99 54.28 90.42 15.46 17.1 

PH_3 212.56 96.52 146.98 22.63 15.4 

PH_4 325.01 112.9 218.26 35.58 16.3 

IPH_1t2 125.98 44.45 77.35 13.59 17.57 

IPH_2t3 89.79 11.25 56.85 14.54 25.58 

IPH_3t4 153.81 0.26 71.57 32.76 45.78 

DIPH_1t2 6 2.12 3.68 0.65 17.57 

DIPH_2t3 7.48 0.94 4.74 1.21 25.58 

DIPH_3t4 6.69 0.01 3.11 1.42 45.78 

GRPH_1t2 16.05 2.26 6.47 2.7 41.75 

GRPH_2t3 1.32 0.12 0.64 0.18 28.47 

GRPH_3t4 1.27 0 0.51 0.25 49.61 

DGRPH_1t2 0.76 0.11 0.31 0.13 41.75 

DGRPH_2t3 0.11 0.01 0.05 0.02 28.47 

DGRPH_3t4 0.06 0 0.02 0.01 49.61 

 598 
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Figure legends 600 

 601 

Fig. 1 Field high-throughput phenotyping for plant height. A, digital designed 602 

graphs for the maize plants during the four stages. B, the UAV equipment and the 603 

plant height extraction process. The main process contained the image collection by 604 

the UAV, then divided the pictures into the mosaic plots, and extracted plant height 605 

based on the formula (CSM=DSM-DEM). C, Dynamic plant height and QTL 606 

dissection. The whole procedure included trait variation and correlation analysis, as 607 

well as GWAS. 608 

 609 

Fig. 2 Linear relationship for plant height by UVA and manual measurement by 610 

ruler at three growth stages. The blue solid line represents the regression line, and 611 

the grey shadow represents the 99% confidence interval. 612 

 613 

Fig. 3 Correlation coefficient matrix among 16 plant-height-related traits. Yellow 614 

and blue indicate positive and negative correlations, respectively, and the size of the 615 

circle is proportional to the correlation coefficient. The number indicates the 616 

correlation coefficient. 617 

 618 

Fig. 4 Plant height and its related trait variations between the TEM and TST 619 

populations at four growth stages. Blue and red represent the TEM and TST 620 

populations, respectively. The line in the box plots show the median value. Box edges 621 

represent the first and third quartiles, and the dots outside the whiskers represent the 622 

value over 1.5 × interquartile range. Stars means phenotypic distribution has 623 

significantly difference below 0.05.  624 

 625 

Fig. 5 Genome-wide association study for the plant heights at the four stages 626 

among the TEM, TST and BOTH groups. Different colors represent different 627 

chromosomes. The dotted line is the threshold. SNPs above the threshold showed 628 

significant association ones. 629 

 630 

Fig. 6 Number of QTL for plant height among the three groups (TEM, TST and 631 

BOTH) for four stages. A, the number and proportion of QTLs for the three groups. 632 

B, the QTLs for each group at each of the four stages. 633 
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Fig. 7 The venn graph of QTLs for PH, IPH and GRPH traits. 634 

 635 
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