1	Full title:
2	Triazole ureas covalently bind to strigolactone receptors and regulate signaling
3	Running title:
4	Covalent regulators of strigolactone
5	
6	Authors
7	Hidemitsu Nakamura, ¹ † Kei Hirabayashi, ¹ † Takuya Miyakawa, ¹ Ko Kikuzato, ¹ Wenqian
8	Hu, ¹ Yuqun Xu, ¹ Kai Jiang, ¹ Ikuo Takahashi, ¹ Naoshi Dohmae, ² Masaru Tanokura, ¹
9	Tadao Asami, ^{1,3} *
10	
11	
12	Affiliations
13	¹ Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1
14	Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
15	² Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science,
16	Wako, Saitama, Japan
17	³ Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box
18	80203, Jeddah 21589, Saudi Arabia
19	
20	*Corresponding author. Email: asami@mail.ecc.u-tokyo.ac.jp (T.A.)
21	[†] These authors contributed equally to this work.
22	
23	
24	

25 Abstract

26	Strigolactones (SLs), a class of plant hormones with multiple functions, mediate plant-plant and
27	plant-microorganism communications in the rhizosphere. In this study, we developed potent
28	strigolactone antagonists, which covalently bind to the strigolactone receptor D14, by preparing
29	an array of triazole urea compounds. Using yeast two-hybrid assays and rice tillering assays, we
30	identified a triazole urea compound KK094 as a potent inhibitor of strigolactone receptors. The
31	LC-MS/MS analysis and X-ray crystallography concluded that KK094 was hydrolyzed by D14,
32	and that a reaction product of this degradation covalently binds to the Ser residue of the catalytic
33	triad of D14. We also identified KK052 and KK073, whose effects on D14–D53/D14–SLR1
34	complex formation were opposite due to a trifluoromethyl group on its benzene ring. These
35	results demonstrate that triazole urea compounds are potentially powerful tools for agricultural
36	application and may be useful for the elucidation of the complicated mechanism underlying SL-
37	perception.

38

40 MAIN TEXT

41

42 Introduction

43	Strigolactones (SLs) are a class of plant hormones that control many aspects of plant growth and
44	development. They promote the efficiency of arbuscular mycorrhizal symbiosis and the
45	germination of parasitic plants of the Orobanchaceae family in the rhizosphere (1). Therefore,
46	chemical regulators of SL functions might ultimately achieve widespread use in agricultural
47	applications (2). To date, SL mimics have been developed to inhibit branching $(2, 3)$ and trigger
48	suicidal germination of parasitic weeds, and some compounds have succeeded in generating
49	practical treatments that can induce suicidal germination of parasitic weeds in soil (4), and
50	recently, several groups have reported the development of SL antagonists (5-9).
51	Important factors for SL perception and signaling have been identified using SL mutants
52	(10), including those of D14, an α/β hydrolase (ABH) (11, 12), D3/MAX2 (13, 14), an F-box
53	protein, and D53/SMXLs (15–17). It was recently postulated that SL is received by D14, which
54	forms a complex with D3/MAX2 and D53/SMXLs (16, 17). This interaction stimulates the
55	degradation of SL signaling inhibitors, including D53/SMXLs, which promotes the assembly of
56	the TOPLESS corepressor-nucleosome complex (18), and enhances the expression of SL-
57	inducible genes. Once SL is received by D14, it is hydrolyzed by D14 and a cleaved D-ring
58	fragment is produced (12, 19). Recently, the D-ring-derived cleaved fragment was reported to
59	form a covalent bond with a His residue in the catalytic center of D14 (19, 20). The formation of
60	the D14-covalently linked intermediate molecule (CLIM) complex induces a dramatic change in
61	the conformation of D14 and the formation of the D14–D3/MAX2 complex, which is essential for
62	SL signaling (21). In addition, the SL hydrolysis of D14 is also required for the complex
63	formation directly with D53/SMXLs (16, 17) and another target SLR1 (19), which is a negative
64	regulator of gibberellin signaling. However, the mechanism of their SL-dependent interactions
65	remains unclear.

66	Therefore, the blockade of the hydrolytic activity of D14 is a promising approach for the
67	development of SL signaling inhibitors. D14 is an ABH, which belongs to a serine-hydrolase
68	family. Serine-hydrolases universally possess a nucleophilic Ser-residue in their active sites,
69	which is used for hydrolysis of their substrates. This nucleophilicity can be a target for covalent
70	modification by reactive electrophiles. Indeed, wide-ranging types of electrophiles, including β -
71	lactams/ β -lactones, fluorophosphonates, and carbamates covalently modify the Ser-residue of
72	target proteins (22). The tetrazole urea LY2183240-induced inhibition occurred via covalent
73	carbamoylation of the serine nucleophile of FAAH (23). In addition, an isoxazolonyl urea and a
74	1,2,4-triazole urea were potent inhibitors of serine hydrolases (24, 25). These reports suggest that
75	<i>N</i> -heterocyclic ureas, which can attack the nucleophilic Ser-residue in active sites of their targets,
76	are a potent scaffold for serine hydrolase inhibitor design. Adibekian et al. synthesized a variety
77	of 1,2,3-triazole ureas using click chemistry and determined that they selectively inhibit enzymes
78	from diverse branches of the mammalian serine hydrolase family (26).
79	Here, we report that some 1,2,3-triazole ureas can inhibit the hydrolytic activity of the SL
80	receptor D14 and stimulate rice tillering by blocking SL signaling. We also showed that D14
81	could degrade KK094, a potent 1,2,3-triazole urea D14-inhibitor. Using LC-MS/MS analysis and
82	X-ray crystallography, we further confirmed that a reaction product of this degradation covalently
83	binds to the Ser residue of the catalytic triad of D14. We also identified KK052 and KK073,
84	whose effects on D14–D53 complex formation were opposite due to the presence or absence of
85	trifluoromethyl group on the benzene ring. These compounds may have a potential as a useful
86	tool to deepen our understanding of the molecular mechanism underlying SL-perception.
87	

- **Results**

91 Synthesis and selection of candidate compounds for SL-receptor inhibitors by the

92 yeast two-hybrid assay

According to the former report (26), we synthesized a series of 1,2,3-triazole ureas by mixing 93 unsubstituted 1,2,3-triazole and five different carbamovl chlorides with N,N-dimethyl-4-94 aminopyridine. This synthetic procedure yielded mixtures of N1- and N2-carbamoylated 95 96 regioisomers. Most of these mixtures were separated by silica gel chromatography, and we 97 obtained eight different 1,2,3-triazole urea congeners (Fig. 1A, 1–8). To test whether these compounds are potent inhibitors of D14, we used the yeast two-98 99 hybrid (Y2H) assay to monitor SL-dependent D14–D53 interaction. Growth of AH109 yeast transformed with pGBK-D14 and pGAD-D53 in the SD+His Ade media were not inhibited by 100 any KK compounds tested at the concentration of 50 μ M showing that all KK compounds are not 101 toxic for yeast growth at this concentration (data not shown). All tested compounds inhibited the 102 D14–D53 interaction induced by GR24, a synthetic SL mimic, although the inhibitory effect of 103 KK003 (3, 4) was weaker than that of the other congeners (Fig. 1B). 104 To obtain highly specific and potent D14 inhibitors, we then diversified the structures of 105 1,2,3-triazole urea compounds. The 1,2,3-triazole urea scaffold consists of two major sites for 106 107 diversification: the carbamoyl group and the 1,2,3-triazole leaving group. Adibekian et al. showed that 4-substitution of the 1,2,3-triazole group of 1,2,3-triazole ureas enhanced their potency and 108 selectivity as serine hydrolase inhibitors (26). Therefore, we introduced various substituents onto 109 110 the 4-position of the 1,2,3-triazole group of KK007, which clearly inhibited the D14–D53 and D14–SLR1 interactions induced by GR24 (fig. S1A, 9–15). We tested these in the Y2H assay, but 111 none of these compounds inhibited the D14–D53 and D14–SLR1 interactions induced by GR24 112 (fig. S1B), indicating that the unsubstituted 1,2,3-triazole is essential for the inhibition of D14 113 114 activity.

115	Next, we diversified our collection of D14 inhibitor candidates by converting carbamoyl
116	groups. We synthesized 1,2,3-triazole urea compounds by modifying the morphorine structure of
117	KK004 (fig S1C, 16–25), and the pyrrolidine structure of KK007 (Fig. 1A, 26–27). All of these
118	were tested in the Y2H assay (Fig. 1D and fig. S1D). As a result, we selected KK002-N1,
119	KK004-N1, KK007-N1, KK052, KK053, KK055, KK075, and KK094 for further assays.
120	
121	Inhibitory effects of candidate compounds on the suppression of rice tillering by
122	GR24
123	To confirm whether the selected compounds are good SL-receptor inhibitor candidates, we used
124	in planta assays. In hydroponically grown rice seedlings, the first and second tiller buds of SL-
125	deficient mutants, such as $d10$ and $d17$, grow out, whereas those of wild-type plants remain
126	dormant (27). Treatment of these mutants with SLs restores the dormant phenotype of the first
127	and second tiller buds. Therefore, we performed a rice tillering assay to test whether 1,2,3-triazole
128	ureas attenuate the tiller-inhibiting effects of SLs. When 10 μ M of 1,2,3-triazole ureas and 0.1 μ M
129	of GR24 were applied together to hydroponically grown $d17-1$ rice, several 1,2,3-triazole ureas
130	restored the growth of the first and second tiller bud that had been suppressed by GR24 (Fig. 1C).
131	KK052 (16), KK053 (17), and KK094 (26) significantly restored the tiller bud outgrowth of rice
132	(Fig. 1C). Among them, the effect of KK094 treatment was prominent. KK094 did not inhibit the
133	growth of rice, while KK052 did (fig. S2). We then substituted the 1,2,3-triazole group of KK094
134	to 1,3-imidazole group to yield KK122 and tested it using the Y2H assay and the rice tillering
135	assay. KK122 did not inhibit the GR24-induced D14–D53 and D14–SLR1 interactions, or the
136	tillering inhibition produced by GR24 (fig. S3). These data indicate that the 1,2,3-triazole group is
137	indispensable for the inhibition of D14 function. Next, we generated various KK094 derivatives
138	by modifying the indolinyl structure of KK094 (fig. S4, 29–41); however, none of these was a

- 139 stronger inhibitor than KK094. Thus, we selected KK094 as the most potent SL-receptor inhibitor
- 140 candidate, and KK122 as a negative control compound of KK094.

141	We then treated hydroponically grown seedlings of wild-type rice (Nipponbare) with 10
142	μ M KK094 and found that it significantly promoted the outgrowth of the first and second tiller
143	buds (Fig. 1D), and this outgrowth promotion was concentration-dependent (Fig. 1E). The KK094
144	treatment decreased plant height. A semi-dwarf phenotype is a characteristic of SL-deficient
145	mutants. These features resulting from KK094 treatment support the hypothesis that this
146	compound acts as an SL-signaling inhibitor in rice. Furthermore, we investigated whether KK094
147	can inhibit the germination of parasitic plants and found that it could inhibit GR24-induced seed
148	germination of Striga hermonthica (fig. S5A).

150 KK094 inhibits SL-hydrolysis

Because KK094 was originally designed to inhibit the SL-hydrolytic activity of D14 by direct 151 binding to its catalytic center, we tested whether KK094 inhibits D14-induced SL-hydrolysis. 152 When 0.2 µM of GR24 was incubated with the purified recombinant D14 for 30 min, and GR24 153 and the reaction product, ABC-OH, were extracted and detected by LC-MS, a decrease in the 154 amount of GR24, and an increase in the amount of ABC-OH were observed (fig. S6A–C). We 155 next conducted the SL-hydrolysis assay at various concentrations of KK094. As a result, KK094 156 efficiently inhibited the decrease in the amount of GR24, and the increase in the amount of ABC-157 OH produced by D14, and these inhibitory effects were concentration-dependent (Fig. 2A). 158 KK094 itself was also hydrolyzed by D14 (fig. S6D), indicating that the hydrolyzed product may 159 bind to the catalytic pocket of D14 and impede entry of SL into the pocket. 160 Yoshimulactone Green (YLG) is a fluorogenic SL-agonist which suppresses the more 161 162 axillary branching phenotype of the Arabidopsis max4 mutant and stimulates the seed germination of Striga (28). YLG can be efficiently hydrolyzed by AtD14 and Striga hermontica 163

164	SL receptors (ShHTLs). YLG-hydrolysis by SL receptors generates the fluorescent product. First,
165	we observed that recombinant D14 protein hydrolyzed YLG to yield green fluorescence, which
166	over time showed a Michaelis constant (K_m^{YLG}) value at 1.84 μ M (Fig. 2C). This reaction was
167	competitively inhibited by GR24, and the median inhibitory concentration (IC $_{50}$) was 5.8 μM (Fig.
168	2B). Then we investigated whether KK094 competes with YLG in its hydrolysis by D14. KK094
169	is a mixture of regioisomers, KK094-N1 and KK094-N2, which we separated using silica gel
170	chromatography. Both the N1 and N2 isomers of KK094 inhibited YLG hydrolysis by D14, with
171	IC_{50} values of 1.8 and 7.9 μ M, respectively (Fig. 2B). KK122 did not inhibit YLG hydrolysis (Fig.
172	2B), indicating that the 1,2,3-triazole moiety is essential for the inhibition of YLG hydrolysis and
173	that the inhibition of YLG hydrolysis is required for the inhibition of SL-signaling. The K_m^{YLG}
174	value was unchanged in the presence of KK094-N1 at a concentration of 0.3 μ M. However,
175	KK094-N1 treatment at a concentration of 0.3 μ M decreased the V_{max}^{YLG} to nearly half the level
176	observed following sham treatment (Fig. 2C), and the increase of KK094-N1-pretreatment time
177	potentiated the inhibitory effect (Fig. 2D). These data strongly support the hypothesis that KK094
178	is a covalent inhibitor of D14.
179	We also assessed the inhibitory effect of KK094 on SL-hydrolysis activity of Striga SL-
180	receptors using YLG. S. hermonthica receives SL by the ShHTL protein, of which there are 11
181	subtypes, upon SL-induced seed germination. Among them, the ShHTL7 subtype is reported to be
182	the most sensitive SL receptor (29) mediating SL-induced seed germination, therefore, we used
183	the ShHTL7 protein in the YLG assay. The IC ₅₀ of KK094 was more than 20 μ M, while that of

184 GR24 was 0.15 μM (fig. S5B).

Next we monitored the interaction between KK094 and D14 using differential scanning
fluorimetry (DSF). DSF revealed a shift in the D14 melting temperature in the presence of KK094,
indicating that KK094 interacts with D14 and changes its stability; however, with KK094
treatment, this shift was not observed in D14^{H297A} in which the catalytic residue is mutated (*19*)

(Fig. 2E). The 8 °C increase in D14 melting temperature suggests that the stabilization of D14 and 189 the potent inhibitory effect of KK094 are correlated.

191

190

KK094 inhibits SL-induced formation of the D14–D53 complex in vitro 192

We performed *in-vitro* pull-down assays (Fig. 3A) using a two-step treatment of D14 with test 193 194 compounds; D14 was treated with the first compound, and then washed and incubated with D53 in the presence of the second compound. The single treatment with KK094 did not induce the 195 D14–D53 interaction when it was added in either step. Meanwhile, the single treatment with 196 GR24 did not induce the interaction when it was added in the first step, but it did only when 197 added in the second step, indicating that a hydrolyzed product of GR24 could be washed away 198 from the catalytic pocket. However, when D14 was treated with KK094 (first step) and GR24 199 (second step), the interaction was not detected, indicating that a hydrolyzed product of KK094 200 stayed in the pocket and inhibited GR24 hydrolysis, and the hydrolyzed product was not washed 201 away in the washing step. These results strongly support a mechanism of covalent inhibition by 202 KK094. A concurrent treatment with KK094 and GR24 weakened the interaction between D14 203 and D53 as compared with GR24 alone. 204

205

Crystal structure of the D14–KK094 complex 206

To determine the binding mode of KK094 in the catalytic pocket of D14, we solved the crystal 207 structure of the D14–KK094 complex at 1.45 Å resolution (table S1, Fig. 3B). The asymmetric 208 unit contains two molecules of D14 with almost identical structures; the root mean square 209 deviation (r.m.s.d.) was 0.37 Å for the main chain Ca atoms. As reported previously, D14 210 consisted of a core domain, also known as α/β hydrolase domain (30), and a cap domain 211 212 composed of four helices forming two antiparallel V shapes (Fig. 3B). A catalytic pocket was formed between the two domains, and the catalytic residue S147 is located at the bottom of the 213

214	pocket and is aligned with H297 and D268 to form the catalytic triad. The electron density map of
215	the D14–KK094 complex clearly showed the existence of a covalently bound KK094-derived
216	carbamoyl moiety (KK094CM), which is assumed to be a hydrolyzed product of KK094, to the
217	hydroxyl group of S147 (Fig. 3C). In the complex structure of D14–KK094CM, the covalently
218	bound KK094CM was embedded completely in the cavity and was surrounded by V148, V240,
219	C241, V244, S270 and H297, and several aromatic residues, such as F78, F176 and F245 (Fig.
220	3D). These residues made favorable hydrophobic and/or van der Waals interactions with
221	KK094CM. In addition, the carbonyl group of KK094CM formed a hydrogen bond network with
222	F78, V148, and H297 including two water molecules (Fig. 3D). In this complex structure,
223	KK094CM is deduced to deprive canonical substrates of opportunities to invade and be
224	hydrolyzed by occupying the active site in the catalytic pocket of D14. The D14-KK094CM
225	complex and the apo-D14 (PDB ID 3VXK) (19) have almost identical structures (r.m.s.d. 0.16 Å),
226	but some minor structural differences occurred in the catalytic pocket (fig. S7A). The side chain
227	of S147 flipped toward KK094CM due to the covalent modification. In addition, upon KK094CM
228	binding, the side chain of F245 moved 1 Å away from the KK094CM, creating a space to
229	accommodate KK094 binding (fig. S7B). This change is consistent with previous structural
230	studies regarding the flexibility of the Phe residue located in this conserved site (19, 31–33).

Hydrolyzed product of KK094 covalently binds to D14

233 We further confirmed whether KK094 covalently binds to D14 using Matrix Assisted Laser

234 Desorption/Ionization-Time of Flight (MALDI-TOF) mass spectrometry and Liquid

235 Chromatography-Tandem Mass Spectrometry (LC-MS/MS) analysis. D14 was incubated with or

without KK094 in 1 mL of PBS at 25 °C for 35 min, and 100 μ L of the reaction solution was

analyzed using MALDI-TOF mass spectrometry (Fig. 4A). The molecular weight of D14

incubated without KK094 was determined to be 29283.3 (-KK094; Fig. 4A), which was almost

239 the	e same as	that	deduced	from the	e amino	acid see	quence of the	he purifie	d D14	protein (molecular
---------	-----------	------	---------	----------	---------	----------	---------------	------------	-------	-----------	-----------

- weight: 29285.8). The molecular weight of D14 incubated with KK094 was determined to be
- 241 29429.7 (+KK094; Fig. 4A). The 146.4 Da difference was thought to represent the covalently
- bound KK094CM (Fig. 4A), which adds 145 Da.

243	The remaining reaction mixtures were then dialyzed and digested with trypsin, and
244	generated peptides were analyzed using MALDI-TOF mass spectrometry (fig. S8A). The amino
245	acid sequences of the digested peptides were deduced based on their molecular masses (table S2).
246	The fragment corresponding to the peptide 141–159 (¹⁴¹ CAFVGHSVSAMIGILASIR ¹⁵⁹ ; m/z
247	1932.446) was not detected when D14 was incubated with KK094 (fig. S8B). On the contrary, the
248	peptide fragment with molecular mass of 2077.454 was detected when D14 was incubated with
249	KK094, although it was not detected when D14 was incubated without KK094. This fragment
250	corresponds to the peptide 141–159 with covalently bound KK094CM (fig. S8B).
251	To confirm the carbamoylation site in peptide 141–159, we conducted LC-MS/MS
252	analysis (Fig. 4B). When trypsin-digested fragments of D14 incubated with KK094 were
253	analyzed, the addition of 145 Da was observed in the y13 and y15 ions but not in the y4–y12 ions

(Fig. 4B; table S3), demonstrating that carbamoylation occurred at S147.

255

Some KK052-derived 1,2,3-triazole ureas show agonist activity in the formation of the D14–D53 complex

As described above, KK052 acted as an SL-antagonist in Y2H and rice tillering assays (fig. S1C

and D), but its inhibition seemed weaker than that of KK094 (Fig. 1A). Two KK052-derivatives,

- 260 KK053 and KK055, showed antagonism both in the Y2H and rice tillering assays (fig. S1C, D
- and Fig. 1C). Unexpectedly, some KK052-derivatives, KK054, KK067, KK070, and KK073
- showed agonism in the formation of the D14–D53/D14–SLR1 complex in the Y2H assay (fig. S9

- and Fig. 5A). Interestingly, these agonists had polar groups. Among them, the agonistic effect of
- 264 KK073 was prominent (Fig. 5A). Thus, we further analyzed the activity of KK073.
- 265

266 KK052 inhibits the SL-induced formation of the D14–D53 complex and KK073-

induced D14–D53 complex formation in vitro

We further conducted *in vitro* pull-down assays using GR24, KK052, and KK073 (Fig. 5B). Like 268 the pull-down assay using KK094, we also used a two-step treatment of D14 with this group of 269 compounds. A single treatment with KK052 did not induce the D14–D53 interaction when it was 270 added in either step. As observed for the KK094 treatment (Fig. 3A), when D14 was treated with 271 KK052 (first step) and then GR24 (second step), the D14–D53 interaction was not detected, 272 indicating that a hydrolyzed product of KK052 (KK052CM) stayed in the pocket and inhibited 273 the action of GR24. Meanwhile, the interaction between D14 and D53 was induced when KK073 274 was added in either step (Fig. 5B). When a combination of KK073 and KK052 was added, the 275 interaction was induced only when KK073 was added in the first step. These results indicate that 276 a hydrolyzed product of KK073, KK073CM, is not washed away from the catalytic pocket and 277 promotes the formation of the D14–D53 complex by a mode of agonistic action different from 278 GR24. 279

280

The hydrolyzed products of KK052 and KK073 covalently bind to D14

To determine whether KK052 and KK073 also covalently bind to D14, we solved the crystal structures of the D14–KK052 and the D14–KK073 complex at 1.49 Å and 1.53 Å resolution,

- respectively (table S1 and Fig. 6A). The electron density map of the D14–KK052 and D14–
- 285 KK073 complex clearly showed the existence of a covalently bound KK052CM or KK073CM,
- respectively, to the hydroxyl group of S147 (Fig. 6B). In these complex structures, the covalently
- bound KK052CM was embedded completely within the cavity, whereas the trifluoromethyl group

288	of KK073CM partially protruded out of the pocket. Both binding sites consisted of V148, I191,
289	V194, C241, V244, S270 and H297, and several aromatic residues, such as F78, F176, F186,
290	W205, Y209, and F245 (Fig. 6C). These residues made favorable hydrophobic and/or van der
291	Waals interactions with KK052CM/KK073CM. In addition, the carbonyl group of
292	KK052CM/KK073CM formed a strong hydrogen bond network with F78, V148, Y209, S270 and
293	H297 mediated by three water molecules (Fig. 6C). Like KK094CM, KK052CM/KK073CM
294	appears to deprive canonical substrates of opportunities to invade and react by occupying the
295	active site. Interestingly, when the structure of the D14-KK073CM complex was compared to
296	that of the D14–D-OH complex (PDB ID 3WIO) (19), the trifluoromethyl group of KK073
297	resided at nearly the same site as the D-OH in the D14–D-OH complex (Fig. 6D). Both the
298	trifluoromethyl group of KK073 and D-OH were located at the aperture of the binding pocket of
299	D14 and surrounded by aromatic residues, such as F186, W205, Y209, and F245. In addition, the
300	trifluoromethyl group of KK073 protruded from the binding pocket and was directly exposed to
301	the solvent; fluorine atoms faced on the surface of D14, generating a polar region in the overall
302	hydrophobic surface of D14 (Fig. 6E). To confirm this hypothesis, we tested KK182, in which a
303	methylene group was inserted between the benzene ring and the piperazine ring, and the distance
304	between the trifluoromethyl group and the carbonyl group is elongated. When KK182 was tested
305	in the Y2H assay, KK182 antagonized the formation of D14–D53 (fig. S9B). These data support
306	the hypothesis that the position of the trifluoromethyl group is critical for the agonistic effect on
307	the formation of the D14–D53/D14–SLR1 complex.

309 Both KK052 and KK073 antagonized the inhibition of rice tillering produced by SL

From the above results, we assumed that KK052 acts as an SL-antagonist, and KK073 acts as an

311 SL-agonist *in planta*. To confirm this assumption, we tested KK052 and KK073 in the rice

tillering assay. Unexpectedly, both KK052 and KK073 showed inhibitory effects on the tillering

313	inhibition by GR24, and KK073 did not act as an SL-agonist (fig. S10A). Generally, SL-agonists
314	decrease the D14 melting temperature $(12, 20)$, which is required for the conformational change
315	in the interaction with D3/MAX2. However, KK073 as well as KK094 (Fig. 2E), increased the
316	melting temperature (fig. S10B), indicating that KK073 interacts with D14 and changes the
317	stability of D14, and this shift was not observed in D14 ^{H297A} . Consistent with this, we found that
318	KK073 could not induce the interaction of D14 with the D3–OSK1 complex in the yeast three-
319	hybrid assay (Fig. 5A).
320 321 322	Discussion
323	The irreversible mode of inhibition of covalent inhibitors has potential benefits, such as high
324	potency extended duration of action as compared with that of the reversible mode of inhibition of
325	noncovalent inhibitors. In this study, we reported the development of 1,2,3-triazole ureas with
326	inhibitory effects on SL activity. Among them, KK094 was the most potent SL-inhibitor. KK094
327	restored the growth of the first and second tiller bud of hydroponically grown $d17-1$ rice that has
328	been suppressed by GR24 (Fig. 1C). KK094 also showed an inhibitory effect on the regulation of
329	tiller bud growth by SLs and the treatment of wild-type rice with KK094 stimulated the growth of
220	

inhibition did not change the $K_{\rm m}$ value, but markedly lowered the $V_{\rm max}$ value of the hydrolysis

reaction (Fig. 2). Pull down analyses showed that KK094 prevents the formation of D14–D53

complex *in vitro* (Fig. 3). KK094 could be hydrolyzed by D14 (fig. S6D), and the hydrolyzed

³³⁴ product (KK094CM) covalently binds to the hydroxyl group of a Ser residue in the catalytic triad

of D14, as indicated by the crystal structure analysis (Fig. 3B-D) and the LC-MS/MS analysis

(Fig. 4). Based on these data, we conclude that KK094 is a potent covalent inhibitor for the

337 strigolactone receptor.

338	Recently, Xiang et al. reported that β -lactones covalently bind to Arabidopsis D14 and
339	inhibit the activity of AtD14 as an SL receptor (7). Here, we used 1,2,3-triazole ureas because
340	they are easily synthesized using a simple scheme. This is a great advantage of 1,2,3-triazole
341	ureas, and we synthesized a wide variety of 1,2,3-triazole urea compounds and tested them both
342	using in planta and in-vitro assays and found some compounds with a spectrum of activities.
343	Among them, we are interested in the compounds which seemed to act as agonists for the
344	formation of D14–D53/D14–SLR1 complex in Y2H assays.
345	In our Y2H assays, KK052 inhibited SL-induced formation of the D14–D53 complex,
346	while KK073 induced formation of the D14–D53 complex. This agonistic effect of KK073 was
347	also observed in the pull-down assay. The difference between KK052 and KK073 is the existence
348	of a trifluoromethyl group on the benzene ring. The opposite activity of KK052 and KK073
349	resulted from the slight difference which provides clues to a deeper insight into the mechanism of
350	the formation of the D14–D53 complex.
351	In the pull-down assay, KK094 inhibited SL-induced formation of the D14–D53 complex
352	by forming a covalent bond with the catalytic S147 residue. This result indicates that the complex
353	formation requires SL binding into the catalytic pocket followed by its hydrolysis. The previous
354	report showed that the hydrolyzed product of SL covalently bound to the catalytic site of D14
355	(20,21). They showed that this binding evoked dramatic changes in the overall structure of D14
356	and induced D14–MAX2 complex formation (21). In contrast, SL-induced formation of the D14–
357	D53 complex could not be detected following a washing step of D14 in complex with SL before
358	the incubation with D53, suggesting that the hydrolyzed product of SL binds non-covalently to
359	D14 and induces the formation of the D14–D53 complex. In our previous report, we observed the
360	non-covalently bound D-OH in the entrance of the ligand binding pocket of D14. It is possible
361	that this D-OH induces the formation of the D14–D53 complex in a way different from that in the
362	formation of D14–MAX2 complex.

363	Unlike GR24, KK073 could induce the formation of the D14–D53 complex even when it
364	was added before the washing step in the pull-down assay. Furthermore, we observed covalent
365	binding of KK073CM to the S147 residue of D14 using X-ray crystallography. Interestingly, the
366	trifluoromethyl group of KK073CM in the D14-KK073CM crystal resided at almost the same site
367	as the D-OH in the D14–D-OH crystal (Fig. 8). Both the trifluoromethyl group of KK073 and D-
368	OH were located at the aperture of the D14 binding pocket. No major change of the overall
369	structure of the complex was observed in both the D14–D-OH(19) and D14–KK073CM
370	complexes (fig. S7).
371	KK052 could not induce the D14–D53 interaction, while KK073 could function as an
372	agonist for the formation of the D14–D53 complex. The position of KK073CM in the binding
373	pocket of D14 was almost the same as that of KK052CM, and the only difference is the
374	trifluoromethyl group on the benzene ring of KK073CM. These data strongly indicate that the
375	formation of the D14–D53 complex requires an additional polar region (e.g., D-OH,
376	trifluoromethyl group) at the entrance of the binding pocket of D14. In addition, there are no
377	structural differences in D14 between the KK073CM- and KK052CM-bound forms, suggesting
378	that the formation of the D14–D53 complex does not require the structural changes that are
379	observed in the D14–D3/MAX2 complex. Indeed, we found that KK1073 could not induce the
380	formation of the D14–D3/MAX2 complex in the yeast three-hybrid assay (Fig. 5C). Furthermore,
381	KK073 increased the D14 melting temperature in the DSF assay (fig. S10B) as well as KK094,
382	while SL-agonists generally decrease the D14 melting temperature (12,20). In general, the
383	decrease of the melting temperature reflects the destabilization of protein that correlates with the
384	conformational change, which is consistent with the dynamic structural changes of D14 in the
385	complex with D3/MAX2 with SL-agonists. In the D14–D3/MAX2 complex, the reposition of the
386	catalytic triad accompanying the formation of CLIM may induce the destabilization of D14 (21).
387	On the other hand, covalently bound KK094CM/KK073CM interacts with many residues

388	composing the pocket and is likely to decrease their flexibility, resulting in the stabilization of
389	D14. These data also support a model of the static formation of the D14–D53 complex.
390	These speculations raise the question of how D14 interacts with both D53 and D3/MAX2
391	by different means. We do not have any direct evidence to answer this question. Investigation of
392	the structure of the complex containing D14, D53 and D3/MAX2 might provide insights
393	regarding this question.
394	Although KK094 strongly inhibited the SL activity in the suppression of the outgrowth of
395	branching buds, the inhibitory effect of KK094 on the SL-induced germination of Striga seeds
396	was relatively weak (fig S5). A greater KK094/GR24 ratio was required to inhibit Striga seed
397	germination than to inhibit the tillering suppression activity of GR24. This weak inhibition of
398	Striga seed germination by KK094 is consistent with the difference in IC_{50} values for the
399	hydrolysis activity of ShHTL7 and D14. However, modification of KK094 might improve its
400	inhibitory effect on the functions of Striga HTL proteins. Thus, KK094 and its derivatives have
401	the potential to regulate plant growth and seed germination of parasitic plants both in laboratories
402	and in fields, and KK052/KK073 and their derivatives are expected to be powerful tools to
403	elucidate the complicated mechanisms underlying SL-perception and signal transduction.
404 405	
406	Materials and Methods
407	Plant materials and the rice tillering assay. An SL-deficient rice mutant, d10-2, of the
408	Japonica-type cultivar (Oryza sativa L. cv. Nipponbare) and a d17-1 rice mutant of the Japonica-
409	type cultivar (Oryza sativa L. cv. Shiokari) were used in this assay. The rice seeds were sterilized
410	in a 2.5% sodium hypochlorite solution containing 0.02% Tween 20 for 20 min. The seeds were

411 washed five times with sterilized water and then incubated in tubes filled with water at 25 $^{\circ}$ C in

412 the dark for 2 days. The germinated seeds were planted in a hydroponic culture medium (34)

solidified with 0.6% agar and cultivated at 25 °C under fluorescent light (70–100 μ mol⁻² sec⁻¹)

- 414 with a 16-hr light/8-hr dark photoperiod for 7 days. Each seedling was transplanted to a glass vial
- filled with 12 mL of sterilized hydroponic culture solution with or without an experimental
- 416 compound and grown under the same conditions for 7 days.
- 417

418	Yeast two-hybrid (Y2H) and yeast three-hybrid (Y3H) assays. The Matchmaker Two-Hybrid
419	System (Takara Bio, Otsu, Japan) was used for the Y2H assay. We used pGBK-D14 (19) as the
420	bait and pGAD-SLR1 (19) or pGAD-D53 (6) as the prey. The Saccharomyces cerevisiae AH109
421	strain was transformed with the bait and prey plasmids and grown in liquid medium for 2 days.
422	The plate assays (synthetically defined medium without histidine and adenine) were performed
423	according to the manufacturer's protocol, except that the plate medium contained various
424	combinations of SLs and test compounds. For the Y3H assay, the yeast strains AH109 and the
425	plasmids pGADT7 were also used and pBridge were obtained from Takara Bio Inc. pBridge-
426	BD:D14-M:OSK1 was constructed by fusing D14 cDNA with the GAL4-BD domain and
427	inserting OSK1 cDNA (Os11g0456300) into the site downstream of pMET25. pGAD-D3 was
428	constructed by fusing D3 cDNA (AK065478) with the GAL-AD domain. AH109 was
429	transformed with the pBridge-BD:D14-M:OSK1 and pGAD-D3 or pGADT7 selected on SD
430	media lacking L-tryptophan (SD-Trp Leu Met). For the assay, the transformants were incubated
431	on SD-Trp, Leu and Met media that lacked Ade and His (SD-His Ade Met).

432

Striga germination assay. *Striga* seed germination assay was performed as described previously
(*35*). Seeds of *Striga hermonthica* harvested in Sudan were kindly provided by Professor A.E.
Babiker (Sudan University of Science and Technology) and imported with the permission of the
Minister of Agriculture, Forestry and Fisheries of Japan. Seeds of *S. hermonthica* were sterilized
with a 1% sodium hypochlorite solution containing 0.01% Tween 20 for 5 min and washed five
times with sterilized water. The seeds were then added to a 0.1% agar solution and dropped onto

439	small, round, glass-fiber filters. Filters containing the seeds were arranged on a filter paper (70
440	mm diameter) in a Petri dish, and 1400 μ L of sterilized water including the appropriate chemical
441	was added to the dish. The dishes were incubated at 30 °C in the dark for 4 days. The small filters
442	containing the seeds were transferred to a 96-well plate, and 10 μ L of sterilized water or water
443	including the appropriate chemical was added to each well. After incubation for 2 days under the
444	same conditions, the number of germinated seeds was counted.

Protein preparation. D14 was expressed in *E. coli* and purified as described previously (2). 446 Briefly, D14 (residues 54–318) from rice was expressed with the pET-49b expression vector 447 (Merck-Millipore) in E. coli Rosetta (DE3) cells (Merck-Millipore). The cells were harvested, 448 resuspended in extraction buffer (20 mM Tris-HCl (pH 8.5), 500 mM NaCl, 10% glycerol and 449 3 mM dithiothreitol (DTT)), and disrupted by sonication. The soluble fraction separated by 450 centrifugation was purified using Glutathione Sepharose 4B resin (GE Healthcare). For 451 crystallization, on-column cleavage was performed by adding HRV3C protease, and the eluted 452 D14 was further purified using a Resource S column (GE Healthcare). The purified D14 was 453 concentrated to 6.0 mg mL⁻¹ in buffer containing 20 mM MES-NaOH (pH 6.5), 300 mM NaCl, 454 10% glycerol, and 5 mM DTT. For pull-down assays, GST fusion D14 was eluted with elution 455 buffer (20 mM Tris-HCl (pH 7.8), 500 mM NaCl, 100 mM reduced glutathione and 5 mM DTT. 456 After the eluted product was concentrated and diluted 25-fold in elution buffer lacking NaCl and 457 reduced glutathione, GST-D14 was further purified using a Resource S column. The purified 458 459 GST-D14 was concentrated to 5 µM in buffer containing 20 mM Tris-HCl (pH 7.8), 100 mM NaCl and 5 mM DTT. The D53 open reading frame fragment was amplified by PCR using total 460 complementary DNA from rice seedlings. For expression in E. coli, the PCR product was cloned 461 into the expression vector pGEX-6P-3 (GE Healthcare), and subsequently transformed into E. coli 462 Rosetta (DE3) cells. The cells were grown in Luria-Bertani broth at 37 °C to an OD₆₀₀ of ~0.6 and 463

464	induced with 0.5 mM isopropyl- β -D-thiogalactopyranoside at 15 °C for 32 h. The cells were
465	harvested, resuspended in extraction buffer (20 mM Tris-HCl (pH 8.5), 500 mM NaCl and 5 mM
466	DTT), and disrupted by sonication. The soluble fraction separated by centrifugation was purified
467	using Glutathione Sepharose 4B resin. On-column cleavage was performed by adding HRV3C
468	protease, and the eluted D53 was further purified using a Mono Q column and Superdex 200
469	columns (GE Healthcare). The purified D53 was concentrated to 5 μ M in buffer containing
470	20 mM Tris-HCl (pH 7.8), 100 mM NaCl and 5 mM DTT for pull-down assays.
471	
472	Hydrolysis assay. GR24 and KK094 pre-incubated at 30 °C for 10 min and incubated further at
473	30 °C for 20 min after the addition of 0.33 μM of D14. After adding 5 nmol of CPMF (5-(4-
474	chlorophenoxy)-3-methylfuran- $2(5H)$ -one) (36) as an internal standard, reaction solutions were
475	extracted with ethyl acetate three times. Ethyl acetate layers were combined, dried in vacuo, and
476	then dissolved with 50 μ L methanol. Each sample was injected at a volume of 5 μ l into the
477	reverse-phase HPLC column (CAPCELL CORE C18, 2.1 Å ~100 mm, Shiseido, Tokyo, Japan),
478	coupled to the ESI-MS system (LC-2030C/3D, Shimadzu, Kyoto, Japan). The analytes were
479	eluted with a linear gradient of 40–90% buffer B (methanol with 0.1% (v/v) formic acid) in buffer
480	A (MilliQ water with 0.1% (v/v) formic acid) within 9 min, keeping the final condition for 6 min.
481	The column was operated at 40 °C with a flow rate of 0.2 mL min ⁻¹ . Quantities of GR24 or ABC-
482	OH were monitored at $m/z = 299.10$ or 202.06, respectively, and normalized by the amount of
483	CPMF monitored at $m/z = 224.02$. The amount of GR24 incubated without D14 was set to 1.
484	Error bars indicate SE of six seedlings. Student's <i>t</i> -test was used to determine the significance of
485	differences (*p<0.05, **p<0.01).
486	

487 Yoshimulactone G *in vitro* analysis. In the hydrolysis assay, 0.3 μM of YLG was reacted with
488 0.33 μM of recombinant proteins (D14 or ShKAI2d6/ShHTL7) in a reaction buffer (100 mM PBS

- 489 buffer, pH 7.3) with 0.1% dimethyl sulfoxide (DMSO) at a 300 μL volume on a 96-well black
- 490 plate (Thermo). The fluorescent intensity was measured by ThermoFisher at the excitation by 485
- 491 nm, and detected at a wavelength of 535 nm. The enzymatic reaction was carried out in a 30 °C
- 492 incubator for 15 min. IC_{50} values were calculated using the website:
- 493 http://www.ic50.tk/index.html.
- 494

495	Differential Scanning Fluorometry. DSF experiments were performed using CFX Connect
496	Real-Time PCR Detection System (Bio-Rad, CA). Sypro Orange was used as a reporter dye.
497	After pre-incubation of the reaction mixtures for 5 min and 10 s at 20 °C, reaction mixtures were
498	denatured using a linear 20 °C to 95 °C gradient at a rate of 0.5 °C per 10 s in the absence of light
499	Each reaction was carried out at 20-µL scale in TN buffer (10 mM Tris-HCl, pH=8.0, 200mM
500	NaCl) containing 5 μ M protein, 0.01 μ L Sypro Orange, and each concentration of experimental
501	compounds (final DMSO concentration was 10%). The experiments were repeated twice.
502	
503	Pull-down assays. Pull-down assays of GST-D14 and D53 were performed using a two-step
504	treatment with experimental compounds. The purified GST-D14 (5 μ M) was incubated at 4 °C for
505	30 min with Glutathione Sepharose 4B resin, and then washed three times. The glutathione
506	agarose-bound GST-D14 was incubated with or without 50 μ M of each experimental compound
507	at room temperature for 2 h (first step) and then washed three times. The resin-bound GST-D14
508	was incubated with D53 (5 μ M) with or without 50 μ M of each experimental compound at room
509	temperature for 2 h (second step), then washed three times. Eluted proteins were separated using

- 510 SDS-PAGE electrophoresis (10% gel) and detected using CBB staining.
- 511
- 512 **Crystallization and structure determination.** 6.0 mg/ml of D14 protein and 10 mM
- 513 KK094/KK052/KK073 were mixed together and subjected to crystallization by the sitting drop

514	vapor diffusion method. Crystals of the D14-KK094CM complex were obtained at 20 °C using a
515	reservoir solution containing 100 mM MES (pH 6.5) and 13% PEG20000. Crystals of the D14-
516	KK052CM complex were obtained at 20 °C using a reservoir solution containing 100 mM
517	HEPES (pH 7.5) and 13% PEG20000. Crystals of the D14-KK073CM complex were obtained at
518	20 °C using a reservoir solution containing 100 mM MES (pH 6.5) and 11% PEG 20000. All
519	crystals were soaked in the cryo-protectant solution containing 25% (v/v) ethylene glycol and
520	then flash-cooled with a nitrogen-gas stream at 100 K. All X-ray diffraction data were collected
521	on the BL-1A beamline at the Photon Factory (Tsukuba, Japan) and processed using the XDS
522	package (37). Molecular replacement was performed using Phaser (38) in PHENIX (39) with the
523	apo-D14 structure (PDB ID 3VXK) (19) as the initial model. Coot (40) was used to manually fit
524	the protein models, and the structure was refined with PHENIX. The geometry of the final model
525	was analyzed using RAMPAGE (41), and superposition and r.m.s.d. of the structures were
526	calculated using the CCP4 program LSQKAB (42). All structure Figures were prepared using
527	PyMOL (43,44). X-ray data and refinement statistics are given in table S1. Coordinates of the X-
528	ray structures of the D14-KK094CM complex, the D14-KK052CM complex, and the D14-
529	KK073CM complex have been deposited in the Protein Data Bank, under accession codes 5ZHR,
530	5ZHS and 5ZHT, respectively.

- 539 MALDI-TOF MS in reflector mode using α -cyano-4-hydroxycinnamic acid as a matrix. For
- 540 binding site determination, the digests were further analyzed by nano-liquid chromatography-
- tandem mass spectrometry using a Q Exactive mass spectrometer (Thermo Fisher Scientific). The
- 542 peptide mixtures (2 μ L) were separated using a nano ESI spray column (75 μ m [ID] × 100 mm
- 543 [L], NTCC analytical column C18, 3 µm, Nikkyo Technos, Tokyo, Japan) with a linear gradient
- of 0–35% buffer B (acetonitrile with 0.1% (v/v) formic acid) in buffer A (MilliQ water with 0.1%
- 545 (v/v) formic acid) at a flow rate of 300 nL min⁻¹ over 10 min (EAST-nLC 1000; Thermo Fisher
- 546 Scientific). The mass spectrometer was operated in the positive-ion mode, and the MS and
- 547 MS/MS spectra were acquired using a data-dependent TOP10 method. The MS/MS spectra were
- drawn using the Qual Browser, Thermo Xcalibur 3.1.66.10.
- 549

550 **Preparation of KK compounds.** A description is available in the **Supplementary Notes**.

551

552 **References and Notes**

- M. T. Waters, C. Gutjahr, T. Bennett, D. C. Nelson, Strigolactone Signaling and Evolution.
 Annu Rev Plant Biol 68, 291–322 (2017).
- 555 2. H. Nakamura, T. Asami, Target sites for chemical regulation of strigolactone signaling.
 556 *Front Plant Sci* 5, 623 (2014).
- S. Lumba, M. Bunsick, P. McCourt, Chemical genetics and strigolactone perception.
 F1000Res 6, 975 (2017).
- 4. H. Samejima, A. G. Babiker, H. Takikawa, M. Sasaki, Y. Sugimoto, Practicality of the suicidal germination approach for controlling *Striga hermonthica*. *Pest Manag Sci* 72, 2035–2042 (2016).
- 5. D. Holbrook-Smith, S. Toh, Y. Tsuchiya, P. McCourt, Small-molecule antagonists of germination of the parasitic plant *Striga hermonthica*. *Nat Chem Biol* **12**, 724–729 (2016).
- 6. O. Mashita, H. Koishihara, K. Fukui, H. Nakamura, T. Asami, Discovery and
 identification of 2-methoxy-1-naphthaldehyde as a novel strigolactone-signaling inhibitor.
 Journal of Pesticide Science 41, 71–78 (2016).
- 567 7. H. Xiang, R. Yao, T. Quan, F. Wang, L. Chen, X. Du, W. Zhang, H. Deng, D. Xie, T. Luo,
 568 Simple β-lactones are potent irreversible antagonists for strigolactone receptors. *Cell Res* 569 27, 1525–1528 (2017).
- M. Yoshimura, A. Sato, K. Kuwata, Y. Inukai, T. Kinoshita, K. Itami, Y. Tsuchiya, S.
 Hagihara, Discovery of shoot branching regulator targeting strigolactone receptor
 DWARF14. ACS Central Science 4, 230–234 (2018).

- 573 9. C. Hamiaux, R. S. M. Drummond, Z. Luo, H. W. Lee, P. Sharma, B. J. Janssen, N. B.
 574 Perry, W. A. Denny, K. C. Snowden, Inhibition of strigolactone receptors by. *J Biol Chem*575 293, 6530–6543 (2018).
- S. Lumba, D. Holbrook-Smith, P. McCourt, The perception of strigolactones in vascular
 plants. *Nat Chem Biol* 13, 599–606 (2017).
- T. Arite, H. Iwata, K. Ohshima, M. Maekawa, M. Nakajima, M. Kojima, H. Sakakibara, J.
 Kyozuka, DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in
 rice. *Plant J* 51, 1019–29 (2007).
- 58112.C. Hamiaux R. S. Drummond B. J. Janssen S. E. Ledger J. M. Cooney R. D. Newcomb K.582C. Snowden, DAD2 is an α/β hydrolase likely to be involved in the perception of the plant583branching hormone, strigolactone. *Curr Biol* **22**, 2032–2036 (2012).
- P. Stirnberg, K. van De Sande, H. M. Leyser, MAX1 and MAX2 control shoot lateral
 branching in Arabidopsis. *Development* 129, 1131–1141 (2002).
- 586 14. S. Ishikawa, M. Maekawa, T. Arite, K. Onishi, I. Takamure, J. Kyozuka, Suppression of
 587 tiller bud activity in tillering dwarf mutants of rice. *Plant Cell Physiol* 46, 79–86 (2005).
- J. P. Stanga, S. M. Smith, W. R. Briggs, D. C. Nelson, SUPPRESSOR OF MORE
 AXILLARY GROWTH2 1 controls seed germination and seedling development in
 Arabidopsis. *Plant Physiol* 163, 318–330 (2013).
- F. Zhou, Q. Lin, L. Zhu, Y. Ren, K. Zhou, N. Shabek, F. Wu, H. Mao, W. Dong, L. Gan,
 W. Ma, H. Gao, J. Chen, C. Yang, D. Wang, J. Tan, X. Zhang, X. Guo, J. Wang, L. Jiang,
 X. Liu, W. Chen, J. Chu, C. Yan, K. Ueno, S. Ito, T. Asami, Z. Cheng, C. Lei, H. Zhai, C.
 Wu, H. Wang, N. Zheng, J. Wan, D14-SCF(D3)-dependent degradation of D53 regulates
 strigolactone signalling. *Nature* 504, 406–410 (2013).
- L. Jiang, X. Liu, G. Xiong, H. Liu, F. Chen, L. Wang, X. Meng, G. Liu, H. Yu, Y. Yuan,
 W. Yi, L. Zhao, H. Ma, Y. He, Z. Wu, K. Melcher, Q. Qian, H. E. Xu, Y. Wang, J. Li,
 DWARF 53 acts as a repressor of strigolactone signalling in rice. *Nature* 504, 401–415
 (2013).
- H. Ma, J. Duan, J. Ke, Y. He, X. Gu, T. H. Xu, H. Yu, Y. Wang, J. S. Brunzelle, Y. Jiang,
 S. B. Rothbart, H. E. Xu, J. Li, K. Melcher, A D53 repression motif induces
 oligomerization of TOPLESS corepressors and promotes assembly of a corepressornucleosome complex. *Sci Adv* 3, e1601217 (2017).
- H. Nakamura, Y. L. Xue, T. Miyakawa, F. Hou, H. M. Qin, K. Fukui, X. Shi, E. Ito, S. Ito,
 S. H. Park, Y. Miyauchi, A. Asano, N. Totsuka, T. Ueda, M. Tanokura, T. Asami,
 Molecular mechanism of strigolactone perception by DWARF14. *Nat Commun* 4, 2613
 (2013).
- A. de Saint Germain, G. Clavé, M. A. Badet-Denisot, J. P. Pillot, D. Cornu, J. P. Le Caer,
 M. Burger, F. Pelissier, P. Retailleau, C. Turnbull, S. Bonhomme, J. Chory, C. Rameau, F.
 D. Boyer, An histidine covalent receptor and butenolide complex mediates strigolactone
 perception. *Nat Chem Biol* 12, 787–794 (2016).
- R. Yao, Z. Ming, L. Yan, S. Li, F. Wang, S. Ma, C. Yu, M. Yang, L. Chen, Y. Li, C. Yan,
 D. Miao, Z. Sun, J. Yan, Y. Sun, L. Wang, J. Chu, S. Fan, W. He, H. Deng, F. Nan, J. Li,
 Z. Rao, Z. Lou, D. Xie, DWARF14 is a non-canonical hormone receptor for strigolactone. *Nature* 536, 469–473 (2016).
- D. A. Shannon, E. Weerapana, Covalent protein modification: the current landscape of
 residue-specific electrophiles. *Curr Opin Chem Biol* 24, 18–26 (2015).
- 618 23. J. P. Alexander, B. F. Cravatt, The putative endocannabinoid transport blocker
 619 LY2183240 is a potent inhibitor of FAAH and several other brain serine hydrolases. *J Am*620 *Chem Soc* 128, 9699–9704 (2006).
- 4. D. B. Lowe, S. Magnuson, N. Qi, A. M. Campbell, J. Cook, Z. Hong, M. Wang, M.
 Rodriguez, F. Achebe, H. Kluender, W. C. Wong, W. H. Bullock, A. I. Salhanick, T.

- Witman-Jones, M. E. Bowling, C. Keiper, K. B. Clairmont, *In vitro* SAR of (5-(2H)isoxazolonyl) ureas, potent inhibitors of hormone-sensitive lipase. *Bioorg Med Chem Lett*14, 3155–3159 (2004).
- S. Ebdrup, L. G. Sørensen, O. H. Olsen, P. Jacobsen, Synthesis and structure-activity
 relationship for a novel class of potent and selective carbamoyl-triazole based inhibitors of
 hormone sensitive lipase. *J Med Chem* 47, 400–410 (2004).
- A. Adibekian, B. R. Martin, C. Wang, K. L. Hsu, D. A. Bachovchin, S. Niessen, H. Hoover, B. F. Cravatt, Click-generated triazole ureas as ultrapotent *in vivo*-active serine hydrolase inhibitors. *Nat Chem Biol* 7, 469–478 (2011).
- M. Umehara, A. Hanada, S. Yoshida, K. Akiyama, T. Arite, N. Takeda-Kamiya, H.
 Magome, Y. Kamiya, K. Shirasu, K. Yoneyama, J. Kyozuka, S. Yamaguchi, Inhibition of
 shoot branching by new terpenoid plant hormones. *Nature* 455, 195–200 (2008).
- S. Toh, D. Holbrook-Smith, P. J. Stogios, O. Onopriyenko, S. Lumba, Y. Tsuchiya, A.
 Savchenko, P. McCourt, Structure-function analysis identifies highly sensitive
 strigolactone receptors in Striga. *Science* 350, 203–207 (2015).
- Y. Tsuchiya, M. Yoshimura, Y. Sato, K. Kuwata, S. Toh, D. Holbrook-Smith, H. Zhang, P.
 McCourt, K. Itami, T. Kinoshita, S. Hagihara, PARASITIC PLANTS. Probing
 strigolactone receptors in *Striga hermonthica* with fluorescence. *Science* 349, 864–868
 (2015).
- M. Nardini, B. W. Dijkstra, Alpha/beta hydrolase fold enzymes: the family keeps growing.
 Curr Opin Struct Biol 9, 732–737 (1999).
- M. Kagiyama, Y. Hirano, T. Mori, S. Y. Kim, J. Kyozuka, Y. Seto, S. Yamaguchi, T. Hakoshima, Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. *Genes Cells* 18, 147–160 (2013).
- 647 32. Y. Guo, Z. Zheng, J. J. La Clair, J. Chory, J. P. Noel, Smoke-derived karrikin perception
 648 by the α/β-hydrolase KAI2 from Arabidopsis. *Proc Natl Acad Sci U S A* **110**, 8284–8289
 649 (2013).
- 33. Y. Xu, T. Miyakawa, H. Nakamura, A. Nakamura, Y. Imamura, T. Asami, Structural basis
 of unique ligand specificity of KAI2-like protein from parasitic weed Striga hermonthica. *Sci Rep* 6, 31386 (2016).
- 34. K. Kamachi, T. Yamaya, T. Mae, K. Ojima, A Role for Glutamine Synthetase in the
 Remobilization of Leaf Nitrogen during Natural Senescence in Rice Leaves. *Plant Physiol*96, 411–417 (1991).
- 35. Y. Sugimoto, T. Ueyama, Production of (+)-5-deoxystrigol by *Lotus japonicus* root culture. *Phytochemistry* 69, 212–217 (2008).
- K. Fukui, S. Ito, K. Ueno, S. Yamaguchi, J. Kyozuka, T. Asami, New branching inhibitors
 and their potential as strigolactone mimics in rice. *Bioorg Med Chem Lett* 21, 4905–4908 (2011).
- 661 37. W. Kabsch, XDS. Acta Crystallogr D Biol Crystallogr 66, 125–132 (2010).
- 662 38. McCoy, A.J. et al. Phaser crystallographic software. *J Appl Crystallogr* **40**, 658–674 (2007).
- P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd,
 L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, A. J. McCoy, N. W. Moriarty, R.
 Oeffner, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger, P. H. Zwart,
 PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr D Biol Crystallogr* 66, 213–221 (2010).
- P. Emsley, K. Cowtan, Coot: model-building tools for molecular graphics. *Acta Crystallogr D Biol Crystallogr* 60, 2126–2132 (2004).

- 41. P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd,
 L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, A. J. McCoy, N. W. Moriarty, R.
 Oeffner, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger, P. H. Zwart,
 Structure validation by Calpha geometry: phi,psi and Cbeta deviation. *Proteins* 50, 437–
 450 (2003).
- 42. W. Kabsch, Solution for best rotation to relate 2 sets of vectors. *Acta Crystallographica Section a* 32, 922–923 (1976).
- 43. W. DeLano, *The PyMOL Molecular Graphics System*, version 1.8.6.0, (Schroedinger, LLC, New York, 2012).
- 44. D. Eisenberg, E. Schwarz, M. Komaromy, R. Wall, Analysis of membrane and surface
 protein sequences with the hydrophobic moment plot. *J Mol Biol* 179, 125–142 (1984).
- 682
- 683

684 Acknowledgments

- ⁶⁸⁵ The authors thank Prof. A.E. Babiker (Sudan University of Science and Technology) for
- 686 providing the seeds of *S. hermontica* harvested in Sudan and thank Prof. J. Kyozuka (Tohoku
- 687 University) for kindly providing rice SL mutants. Funding: This work was supported in part by a
- grant from the Core Research for Evolutional Science and Technology (CREST) Program of the
- Japan Science and Technology Agency (JST) (to T.A.); the Program for the Promotion of Basic
- and Applied Researches for Innovation in Bio-oriented Industry (BRAIN) (to T.A.); a JSPS
- 691 Grant-in-Aid for Scientific Research (grant number 26520303 to H.N., 16H06736, 17J04676 and
- 692 17K15258 to K.H.; a JSPS Grant-in-Aid for Scientific Research on Priority Areas (grant number
- 693 18H04608 to H. N.). The synchrotron-radiation experiments were performed on BL-1A
- beamlines at the Photon Factory with the support from the Platform Project for Supporting Drug
- 695 Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life
- 696 Science Research (BINDS)) from AMED under Grant Number JP17am0101071. Author
- 697 contributions: H.N., M.T., and T.A. designed research; H.N. and W.H. performed the Y2H
- 698 assay, inhibitor screening and *in planta* assays and the *in vitro* enzymatic assays. K.H., T.M., and
- 699 Y.X. performed the crystal structure analysis and pull-down assay; K.J. performed the DSF assay;
- N.D. performed the MALDI-TOF-MS and LC-MS/MS analyses; K.K. synthesized chemicals;

- H.N., K.H., and T.A. wrote the paper; all authors read and approved the manuscript. Competing
- 702 interests: The authors declare no competing financial interests. Data and materials availability:
- 703 The structure coordinates and structural factors are deposited in the Protein Data Bank with
- accession numbers of 5ZHR (D14–KK094CM complex), 5ZHS (D14–KK052CM complex) and
- 705 5ZHT (D14–KK073CM complex).

706

710

Fig. 1. Inhibition of the SL-dependent D14-D53 interactions and rice tillering. (A) Structures 711 of 1,2,3-triazole ureas. (**B**) Growth of AH109 yeast transformed with pGBK-D14 and pGAD-D53 712 were grown for 2 days in the liquid SD+His Ade media for 2 days at 30 °C and 5 µL of each yeast 713 culture was spotted on SD-His Ade plates containing 1 µM GR24 with 10 µM or 50 µM 714 concentrations of the 1,2,3-triazole ureas. The bottom numbers indicate dilutions of the yeast 715 culture. (C) Inhibition of the effect of SL on rice tillering by 1,2,3-triazole ureas. Seven-day-old 716 d17-1 mutant rice seedlings were treated with experimental compounds and grown for a further 7 717 days, and the length of the first/second tillers were measured. (**D**) Stimulation of rice tillering by 718 KK094. Eight-day-old wild-type rice (cv Nipponbare) seedlings were treated with/without 10 µM 719 KK094 and grown for a further six days. Arrow heads indicate out growing tillers. Scale bars = 3720 cm. (E) Concentration-dependent effects of KK094 on plant growth and rice tillering. Eight-day-721 old wild-type rice (cv Nipponbare) seedlings were treated with/without KK094 and grown for a 722 further six days; and the length of first/second tillers were measured. Error bars indicate SE of six 723

- seedlings. Student's *t*-test was used to determine the significance of differences (*p<0.05,
- 725 ***p*<0.01).
- 726

bioRxiv preprint doi: https://doi.org/10.1101/362830; this version posted July 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fig. 2. Inhibition of D14 by KK094. (A) KK094 concentration-dependently inhibits hydrolysis
of GR24 by D14. GR24 and KK094 were pre-incubated at 30° C for 10 min and incubated further
at 30° C for 20 min after addition of 0.33 μM of D14. Then the quantities of GR24 or ABC-OH

733	were monitored by LC-MS. The amount of GR24 incubated without D14 was set to 1. Error bars
734	indicate SE of three sample replicates. Student's <i>t</i> -test was used to determine the significance of
735	differences (* p <0.05, ** p <0.01). (B) Competitive inhibition of D14-mediated Yoshimulactone G
736	(YLG) hydrolysis. A concentration of 0.3 μM of YLG was reacted with 0.33 μM of D14 and the
737	fluorescent intensity was measured at an excitation wavelength of 485 nm and detected at 535 nm.
738	The fluorescent values relative to the hydrolysis without inhibitor was shown. FU = fluorescence
739	unit. Error bars indicate SE of three sample replicates. IC_{50} values were calculated using the
740	website http://www.ic50.tk/index.html. (C) KK094 alters the V_{max} value, not the K_{m} value, of
741	YLG hydrolyzation by D14. Error bars indicate SE of three sample replicates. 0.3 μ M of KK094-
742	N1 reduced the V_{max} value by half but did not change the K_{m} value. (D) Preincubation with
743	KK094-N1 reduced hydrolysis activity of D14. Pre-incubation of 0.33 μ M of D14 with 0.3 μ M of
744	KK094-N1 for the indicated time and incubated for another 10 min after the addition of 0.3 μ M of
745	YLG, and the fluorescent intensity was measured. Error bars indicate SE of three sample
746	replicates. (E) Melting temperature curves for D14 and the $D14^{H297A}$ mutant protein at varying
747	concentrations of KK094 as monitored by differential scanning fluorometry. Each line represents
748	the average protein melt curve for three sample replicates measured in parallel.

- 769 MS/MS. MS/MS spectra of peptides corresponding to peptides 141–159
- 770 (¹⁴¹CAFVGHSVSAMIGILASIR¹⁵⁹; *m/z* 1932.446 for -KK094 (upper), *m/z* 2077.454 for +KK094
- (lower)) are shown. Peaks of the ions y13 and y15 indicate that the Ser-residue (red letter) is
- covalently modified by KK094CM.

- and KK073 are shown on the right. Y2H: Growth of AH109/pGBK-D14-pGAD-D53 or
- 778 AH109/pGBK-D14–pGAD-SLR1 on SD-His Ade plates containing experimental compounds for
- 4 days at 30°C. KK073 showed an agonistic effect (in red squares) and KK052 showed
- antagonism (in blue squares). Y3H: Growth of AH109/ pBridge-BD:D14-M:OSK1-pGAD-D3 or
- 781 AH109/ pBridge-BD:D14-M:OSK1–pGADT7 on SD-His Ade Met plates containing
- experimental compounds for 4 days at 30°C. (**B**) *In-vitro* pull-down assays of GST–D14 and D53

- using a two-step treatment with GR24/KK052/KK073. The interaction of D14 with D53 was
- 784 detected by SDS-PAGE and CBB staining.

785

- in red, whereas hydrophilic sites are shown in white. KK073CM and D-OH are depicted in van
- der Waals surfaces. The trifluoromethyl group of KK073 protruded out of the pocket and
- generated a polar patch in the hydrophobic surface of D14.

- 802
- . . .
- 803
- 804

805 Supplementary Materials

- fig. S1. Inhibition of the SL-dependent D14–D53 interaction by KK007-and KK004-derivatives.
- 807 fig. S2. Effects of KK compounds on plant growth.
- fig. S3. Inhibition of the SL-dependent D14–D53 interactions and rice tillering by KK122.
- fig. S4. Inhibition of the SL-dependent D14–D53 interactions and rice tillering by KK094derivatives.
- fig. S5. Inhibition of *Striga* seed germination and a *Striga* SL receptor, ShHTL7, by KK094.
- fig. S6. LC-MS analyses of GR24- or KK094N1-hydrolysis by D14.
- 813 fig. S7. Structural comparisons.
- fig. S8. MALDI-TOF-MS analysis of trypsin-treated D14 with or without KK094.
- fig. S9. Inhibition or stimulation of the SL-dependent D14–SLR1/D14–D53 interaction by
 KK052-derivatives.
- fig. S10. KK073 showed antagonism of the suppression of rice tillering induced by strigolactone.
- table S1. X-ray data collection and refinement statistics.
- table S2. Deduced peptide mass values of D14 fragments digested with trypsin.
- table S3. Theoritical mass values of peptide 141–159 (¹⁴¹CAFVGHSVSAMIGILASIR¹⁵⁹).
- 821 Supplementary Notes
- 822

823

fig. S1. Inhibition of the SL-dependent D14–D53 interaction by KK007-and KK004-

derivatives. (A) Structures of KK007N1-derivatives. Various substituents were introduced onto the 4-position of the 1,2,3-triazole group of KK007N1. (B) Growth of AH109/pGBK-D14– pGAD-D53 on SD-His Ade plates containing 1 μ M GR24 with 10 μ M or 50 μ M 1,2,3-triazole ureas for 4 days at 30 °C. (C) Structures of KK004-derivatives. The morphorine structure derived from KK004 (mixture of N1- and N2-compounds; shown in the dashed box) was modified by the addition of various substituents. (D) Growth of AH109/pGBK-D14–pGAD-D53 on an SD-His Ade plate containing 1 μ M GR24 with 10 μ M or 10 μ M of 1,2,3-triazole ureas for 4 days at 30 °C.

- A de plate containing 1 µM GR24 with 10 µM or 10 µM of 1,2,3-triazole ureas for 4 days at .
- 832 833

fig. S2. Effects of KK compounds on plant growth. Seven-day-old *d17-1* mutant rice seedlings were treated with experimental compounds, grown for a further 7 days, then plant heights were measured. Error bars indicate SE of six seedlings. Unpaired tw-Student's t-test was used to determine the significance of differences (*p < 0.05, **p < 0.01).

853

fig. S3. Inhibition of the SL-dependent D14–D53 interactions and rice tillering by KK122.

(A) Growth of AH109 yeast transformed with pGBK-D14 and pGAD-T7/pGAD-D53/pGAD-

SLR1 on an SD-His Ade plate containing 10 μ M GR24 with 10 μ M KK094N1/KK122 for 4 days

at 30 °C. (**B**) Inhibition of the effect of SL on rice tillering by KK122. Seven-day-old *d17-1* mutant rice seedlings were treated with experimental compounds and grown for a further 7 days,

- and plant heights and the length of the first/second tillers were measured. Error bars indicate SE of six seedlings. Unpaired two-tailed Student's *t*-test was used to determine the significance of
- 861 differences (**p < 0.01).
- 862
- 863
- 864

KK094N1-derivatives

KK094N2-derivatives

	Ser N		$\overset{s_{r_1}}{\underset{R_2}{\mapsto}}$	R ₃	Z	N N	R₄	\Box	2 22	R ₅	J	< 2 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 ×	R ₆	< Z 25
		R ₁ =	R ₂ =		R3=			R4=			R5=		R ₆	;=
		CH ₃	CH ₃	NO ₂	CI	CH3	NO ₂	CI	CH3	NO ₂	CI	CH3	NO ₂	CI
	KK094 (26)	29	30	31	32	33	34	35	36	37	38	39	40	41
Inhibition of SL-induced D14-D53 complex formation in Y2H assay	+++	-	++	-	-	-	-	-	-	-	-	-	-	-
Promotion of rice tilering in wild-type rice	+++	-	++	-	-	-	-	-	-	-	-	-	-	-

867

fig. S4. Inhibition of the SL-dependent D14–D53 interactions and rice tillering by KK094-

derivatives. Upper line in the bottom column: Growth of AH109 yeast transformed with pGBK-

870 D14 and pGAD-T7/pGAD-D53 on an SD-His Ade plate containing 1 μ M GR24 with 871 experimental compounds for 4 days at 30° C. The extent of growth inhibition is indicated by – to 872 +++ (- no inhibition; ++ partial inhibition; +++ complete inhibition). Lower line in the bottom 873 column: Inhibition of the effect of SL on rice tillering. Seven-day-old *d17-1* mutant rice seedlings 874 were treated with/without 1 μ M GR24 and 10 μ M KK094-derivatives and grown for 7 days

before the length of second tillers were measured. The extent of tillering bud growth promotion is presented by - to +++ (- no promotion [2nd tiller length = 0 cm]; + weak promotion [2nd tiller

length = 0-1.0 cm]; ++ intermediate inhibition [2nd tiller length = 1.0-3.0 cm]; +++ strong

promotion [2nd tiller length > 3.0 cm]).

879

881

(A) KK094 concentration-dependently inhibits seed germination of *Striga hermonthica*. 883 Germination ratios of Striga seeds treated with 1 µM of GR24 and KK094 at the concentrations 884 shown. Error bars indicate SE of three independent experiments. Unpaired two-tailed Student's t-885 test was used to determine the significance of differences with the germination rate of KK094-886 non-treated seeds (**p<0.01). (B) Competitive inhibition of ShHTL7-mediated YLG hydrolysis. 887 Following reaction of 0.3 µM of YLG with 0.33 µM of D14, the fluorescent intensity was 888 measured at the excitation wavelength of 485 nm and detected at a wavelength of 535 nm. The 889 fluorescent values relative to the hydrolysis without inhibitor is shown. FU = fluorescence unit. 890 IC50 values were calculated using the website: http://www.ic50.tk/index.html. 891 892

fig. S6. LC-MS analyses of GR24- or KK094N1-hydrolysis by D14. (A) The reaction formula of D14-mediated hydrolysis of GR24. (**B**–**D**) GR24 or KK094 was pre-incubated at 30 °C for 10 min and incubated further at 30 °C for 20 min after addition of 0.33 μ M of D14. Then quantities of GR24 or ABC-OH were monitored using LC-MS (**B**, **C**). Quantities of KK094N1 were also monitored by LC-MS (**D**). Error bars indicate SE of three sample replicates.. Unpaired two-tailed Student's *t*-test was used to determine the significance of differences (*p<0.05, **p<0.01).

- 901
- 902

fig. S7. Structural comparisons. (A) KK094CM-bound D14, KK042CM-bound D14, and
KK073CM-bound D14 are superimposed on apo-D14 (PDB ID 3VXK) (white). The orientation
and color coding are the same as in Fig. 3A and Fig. 6A. Each r.m.s.d. for the Cα atoms was 0. 16
Å (KK094CM), 0.35 Å (KK052CM), and 0. 35 Å (KK073CM). (B) The close-up view of the
ligand-binding sites in (A). The orientation and structural representation are the same as in Fig.
3A and 6C. Water molecules from apo-D14 are shown as white balls.

912

fig. S8. MALDI-TOF-MS analysis of trypsin-treated D14 with or without KK094. (A) D14 914 was incubated without (upper panel) or with (lower panel) KK094. The reaction mixture of D14 915 without or with KK094 (-KK094/+KK094, respectively) was dialyzed against 50 mM NH₄HCO₃ 916 solution. Dialyzed sample was digested with trypsin and analyzed using MALDI-TOF-MS. (B) 917 Magnification of the red box in panel (A). The fragment corresponding to the peptide 141–159 918 $(^{141}CAFVGHSVSAMIGILASIR^{159}; m/z$ 1932.446) was detected under the -KK094 condition but 919 was not detected under the +KK094 condition. On the contrary, the peptide fragment with a 920 molecular mass of 2077.454, corresponding to the peptide 141–159 with covalently-bound 921 KK094-CM was detected when D14 was incubated with KK094. 922 923

- 924
- 925

fig. S9. Inhibition or stimulation of the SL-dependent D14–SLR1/D14–D53 interaction by KK052-derivatives. (A) Structures of KK052-derivatives are shown on the right. The

morphorine structure derived from KK052 (mixture of N1- and N2-compounds; shown in the
 dashed box) were modified by various substituents. Growth of AH109/pGBK-D14–pGAD-D53
 or AH109/pGBK-D14–pGAD-SLR1 on an SD-His Ade plate containing experimental

compounds for 4 days at 30 °C. Three compounds showed an agonist effect (in red squares), and two showed antagonism (in blue squares). (**B**) Structures of KK182 (a mixture of N1- and N2-

compounds) and growth of AH109/pGBK-D14–pGAD-D53 on an SD-His Ade plate containing

experimental compounds for 4 days at 30 °C.

bioRxiv preprint doi: https://doi.org/10.1101/362830; this version posted July 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

938

939 fig. S10. KK073 showed antagonism of the suppression of rice tillering induced by

940 **strigolactone.** (**A**) KK073 produced attenuation of the tillering inhibition induced by GR24. 941 Seven-day-old *d10-1* mutant rice seedlings were treated with experimental compounds and grown 942 for a further 2 weeks, then the length of second/third tillers were measured. Error bars indicate SE 943 of three to six seedlings. Unpaired two-tailed student's *t*-test was used to determine the 944 significance of differences (**p<0.01). (**B**) Melting temperature curves for D14 and D14^{H297A} 945 mutant proteins at varying concentrations of KK073 as monitored by differential scanning 946 fluorimetry. Each line represents the average protein melt curve for three replicate samples

- 947 measured in parallel.
- 948
- 949

-

_

table S1. X-ray data collection and refinement statistics.

	D14-KK094CM	D14-KK052CM	D14-KK073CM
	complex	complex	complex
	(5ZHR)	(5ZHS)	(5ZHT)
Data collection			
Space group	$P2_{1}2_{1}2_{1}$	<i>P</i> 3 ₂ 21	P3 ₂ 21
Cell dimensions			
<i>a</i> , <i>b</i> , <i>c</i> (Å)	48.25, 88.64, 119.38	48.97, 48.97, 192.20	49.35, 49.35, 192.47
α, β, γ (°)	90, 90, 90	90, 90, 120	90, 90, 120
Resolution (Å)	1.45 (1.54 - 1.45)	1.49 (1.58 - 1.49)	1.53 (1.62 - 1.53)
No. of observations	846,524	434,216	376,778
No. of unique reflections	90,592	44,884	41,947
$R_{\rm merge}^{\rm a}$ (%)	4.7 (27.4)	6.1 (39.0)	5.8 (39.6)
I/\sigmaI	26.3 (5.9)	20.0 (4.3)	20.1 (3.1)
$CC_{1/2}^{b}$ (%)	100.0 (95.2)	99.9 (96.2)	99.9 (93.4)
Completeness (%)	99.0 (94.0)	99.9 (99.2)	99.5 (97.3)
Redundancy	9.3 (6.8)	9.7 (9.5)	9.0 (5.8)
Refinement			
Resolution (Å)	49.51 - 1.45	41.41 - 1.49	41.72 - 1.53
No. of used reflections	173,170	84,082	78,145
$R_{\text{work}}^{\text{c}} / R_{\text{free}}^{\text{d}}$ (%)	16.6/19.9	18.8/21.1	19.5/22.1
No. of atoms			
Protein	4,102	2,046	2,051
Ligand	22	14	18
Water	526	280	283
<i>B</i> factors (Å ²)			
Protein	16.2	21.5	24.1
Ligand	12.2	16.0	20.0
Water	26.2	31.9	34.8
r.m.s. deviations			
Bond lengths (Å)	0.009	0.005	0.004
Bond angles (°)	1.215	0.930	0.887
Ramachandran plot (%)			
Favored	97.5	97.7	97.3
Allowed	2.5	2.3	2.7
Outliers	0.0	0.0	0.0

Values in parentheses correspond to the highest-resolution shell.

 ${}^{a}R_{\text{merge}} = \sum_{hkl} \sum_{i} |I_{i}(hkl) - \langle I(hkl) \rangle | / \sum_{hkl} \sum_{i} I_{i}(hkl).$ ${}^{b}CC_{1/2} \text{ is the percentage of correlation between intensities from random half-datasets.}$

 ${}^{c}R_{\text{work}} = \sum_{hkl} ||F_o(hkl)| - |F_c(hkl)|| / \sum_{hkl} |F_o(hkl)|.$ ${}^{d}R_{\text{free}} \text{ is the } R_{\text{work}} \text{ calculated for 5\% of the data set not included in refinements.}$

- 951 952
- 953

955 table S2. Deduced peptide mass values of D14 fragments digested with trypsin.

Num	From-To	MH⁺	Mass	Sequence
1	1-5	429.25	428.24	GPGAK
2	6-13	968.63	967.62	LLQILNVR
3	14-20	703.37	702.37	VVGSGER
4	21-37	1845.92	1844.92	VVVLSHGFGTDQSAWSR
5	38-44	861.52	860.51	VLPYLTR
6	45-47	427.2	426.2	DHR
7	48- 67	2266.1	2265.09	VVLYDLVCAGSVNPDHFDFR
8	68- 68	175.12	174.11	R
9	69-87	2181.11	2180.1	YDNLDAYVDDLLAILDALR
10	88-90	385.26	384.25	IPR
11	91-109	1932.02	1931.01	CAFVGHSVSAMIGILASIR
12	110-116	846.48	845.48	RPDLFAK
13	117-125	925.58	924.58	LVLIGASPR
14	126-177	5624.6	5623.59	FLNDSDYHGGFELEEIQQVFDAMGANYSAWATGYAPLAVGADVPAAVQEFS R
15	178-196	2249.16	2248.15	TLFNMRPDISLHVCQTVFK
16	197-200	504.28	503.27	TDLR
17	201-207	731.42	730.42	GVLGMVR
18	208-217	1073.58	1072.57	APCVVVQTTR
19	218-230	1319.72	1318.71	DVSVPASVAAYLK
20	231-236	610.34	609.33	AHLGGR
21	237-262	2857.56	2856.55	TTVEFLQTEGHLPHLSAPSLLAQVLR
22	263-263	175.12	174.11	R
23	264-267	430.28	429.27	ALAR
24	268-268	182.08	181.07	Y
25	1-13	1378.85	1377.85	GPGAKLLQILNVR
26	6-20	1652.98	1651.97	LLQILNVRVVGSGER
27	14-37	2530.28	2529.27	VVGSGERVVVLSHGFGTDQSAWSR
28	21-44	2688.43	2687.42	VVVLSHGFGTDQSAWSRVLPYLTR
29	38- 47	1269.71	1268.7	VLPYLTRDHR

30	45-67	2674.28	2673.28	DHRVVLYDLVCAGSVNPDHFDFR
31	48- 68	2422.2	2421.19	VVLYDLVCAGSVNPDHFDFRR
32	68- 87	2337.21	2336.2	RYDNLDAYVDDLLAILDALR
33	69-90	2547.35	2546.34	YDNLDAYVDDLLAILDALRIPR
34	88-109	2298.26	2297.25	IPRCAFVGHSVSAMIGILASIR
35	91-116	2759.48	2758.48	CAFVGHSVSAMIGILASIRRPDLFAK
36	110-125	1753.05	1752.04	RPDLFAKLVLIGASPR
37	117-177	6531.17	6530.16	LVLIGASPRFLNDSDYHGGFELEEIQQVFDAMGANYSAWATGYAPLAVGAD VPAAVQEFSR
38	126-196	7854.74	7853.73	FLNDSDYHGGFELEEIQQVFDAMGANYSAWATGYAPLAVGADVPAAVQEFS RTLFNMRPDISLHVCQTVFK
39	178-200	2734.42	2733.41	TLFNMRPDISLHVCQTVFKTDLR
40	197-207	1216.68	1215.68	TDLRGVLGMVR
41	201-217	1785.98	1784.98	GVLGMVRAPCVVVQTTR
42	208-230	2374.28	2373.27	APCVVVQTTRDVSVPASVAAYLK
43	218-236	1911.04	1910.04	DVSVPASVAAYLKAHLGGR
44	231-262	3448.88	3447.87	AHLGGRTTVEFLQTEGHLPHLSAPSLLAQVLR
45	237-263	3013.66	3012.65	TTVEFLQTEGHLPHLSAPSLLAQVLRR
46	263-267	586.38	585.37	RALAR
47	264-268	593.34	592.33	ALARY

959 table S3. Theoritical mass values of peptide 141–159 (¹⁴¹CAFVGHSVSAMIGILASIR¹⁵⁹).

Theoretical mass value: CAFVGHVSAMIGILASIR								
Mass	Fragment		Fragment	Mass				
104.017	b1	Cys	y17	-				
175.054	b2	Ala	y16	1829.011				
322.123	b3	Phe	y15	1757.974				
421.191	b4	Val	y14	1610.905				
478.212	b5	Gly	y13	1511.837				
615.271	b6	His	y12	1454.815				
702.303	b7	Ser	y11	1317.756				
801.372	b8	Val	y10	1230.724				
888.404	b9	Ser	у9	1131.656				
959.441	b10	Ala	у8	1044.624				
1090.481	b11	Met	у7	973.587				
1203.565	b12	lle	у6	842.546				
1260.587	b13	Gly	у5	729.462				
1373.671	b14	lle	y4	672.441				
1486.755	b15	Leu	уЗ	559.357				
1557.792	b16	Ala	y2	446.273				
1644.824	b17	Ser	y1	375.236				
1757.908	b18	lle	у0	288.204				
-	b19	Arg	y1	175.120				

Theoretical mass value: CAFVGHSVSAMIGILASIR+KK094CM								
Mass	Fragment		Fragment	Mass				
104.017	b1	Cys	y17	-				
175.054	b2	Ala	y16	1974.064				
322.123	b3	Phe	y15	1903.026				
421.191	b4	Val	y14	1755.958				
478.212	b5	Gly	y13	1656.890				
615.271	b6	His	y12	1599.868				
847.356	b7	Ser	y11	1462.809				
946.425	b8	Val	y10	1230.724				
1033.457	b9	Ser	у9	1131.656				
1104.494	b10	Ala	у8	1044.624				
1235.534	b11	Met	у7	973.587				
1348.618	b12	lle	y6	842.546				
1405.640	b13	Gly	у5	729.462				
1518.724	b14	lle	y4	672.441				
1631.808	b15	Leu	уЗ	559.357				
1702.845	b16	Ala	y2	446.273				
1789.877	b17	Ser	y1	375.236				
1902.961	b18	lle	у0	288.204				
-	b19	Arg	y1	175.120				

* Shaded cells represent that these fragments were detected. Mass values written in bold letters represent that these fragments covalently bind to KK094CM.

968

969 Supplementary Notes

970

General Procedure: NMR spectra (¹H, ¹³C) were recorded at 500 MHz on a JNM-A500
spectrometer (JEOL, Tokyo, Japan) or a VNMR500 spectrometer (Agilent, CA). High resolution
mass spectra (HRMS) were determined by electrospray ionization coupled to a time-of-flight

- analyser (Triple TOF 5600+ system, SCIEX, MA).
- 975

976 KK002-N1 (1), KK002-N2 (2): *N*,*N*-diethyl-1*H*-1,2,3-triazole-1-carboxamide (1), *N*,*N*-diethyl977 2*H*-1,2,3-triazole-2-carboxamide (2).

978 The mixture of diethylcarbamoyl chloride (136 mg, 1 mmol), 1*H*-1,2,3-triazole (83 mg, 1.2

mmol) and *N*,*N*-dimethyl-4-aminopyridine (DMAP) (cat.) in tetrahydrofuran (THF)/triethylamine

980 (NEt₃) (5:1, 2 mL) was stired overnight at 60 $^{\circ}$ C. The solvent was removed under vacuum and the

resulting residue was purified on a silica gel column (Hexane/ethyl acetate (EtOAc) 7:3 to 6:4)

giving KK002-N1 (1) as colorless oil (73mg, 43%) and KK002-N2 (2) as a white solid (55 mg, 33%).

984 **KK002-N1** (1); ¹H NMR (500 MHz, CDCl₃): δ 8.19 (d, J = 1.0 Hz, 1H), 7.72 (d, J = 1.0 Hz, 1H),

985 3.80-3.40 (m, 4H), 1.33 (t, J = 7.0 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 148.7, 132.7, 125.2,

986 44.3, 14.1. HRMS (*m/z*): calcd. for C₇H₁₂N₄ONa [M+Na]⁺: 191.0903; found, 191.0905.

987 **KK002-N2 (2)**; ¹H NMR (500 MHz, CDCl₃): δ 7.80 (s, 2H), 3.75-3.30 (m, 4H), 1.29 (t, *J* = 7.0

988 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 135.6, 43.1, 12.4. HRMS (*m/z*): calcd. for C₇H₁₂N₄O

989 [M+Na]⁺: 191.0903; found, 191.0911.

990

991 KK003-N1 (3), KK003-N2 (4): N,N-diphenyl-1H-1,2,3-triazole-1-carboxamide (3), N,N-

- 992 diphenyl-2*H*-1,2,3-triazole-2-carboxamide (**4**).
- 993 The mixture of diphenylcarbamoyl chloride (280 mg, 1.21 mmol), 1H-1,2,3-triazole (100 mg,

994 1.45 mmol) and DMAP (cat.) in THF/NEt₃ (5:1, 2 mL) was stired overnight at 60 °C. The solvent

995 was removed under vacuum and the resulting residue was purified on a silica gel column

- 996 (Hexane/EtOAc 7:3 to 6:4) giving KK003-N1 (**3**) (197 mg, 62%) as a white solid and KK003-N2
- 997 (4) (121mg, 38%) as a white solid.
- 998 **KK003-N1 (3)**; ¹H NMR (500 MHz, CDCl₃): δ 8.11 (d, *J* = 1.3 Hz, 1H), 7.59 (d, *J* = 1.3 Hz, 1H),
- 999 7.38-7.33 (m, 4H), 7.30-7.25 (m, 2H), 7.23-7.18 (m, 4H). ¹³C NMR (125 MHz, CDCl3): δ 148.81,
- 1000 142.30, 132.74, 129.51, 127.49, 126.48, 124.51.

1001 **KK003-N2 (4)**; ¹H NMR (500 MHz, CDCl₃): δ 8.11 (d, J = 1.3 Hz, 1H), 7.59 (d, J = 1.3 Hz, 1H),

- 1002 7.38-7.33 (m, 4H), ¹H NMR (500 MHz, CDCl₃): δ 7.61 (s, 2H), 7.30-7.34 (m, 4H), 7.22-7.26 (m,
- 1003 2H), 7.16-7.18 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 149.31, 142.55, 136.17, 129.32, 127.02,
- 1004 126.30.
- 1005
- 1006 **KK004-N1 (5), KK004-N2 (6)**: morpholino(1*H*-1,2,3-triazol-1-yl)methanone (5),
- 1007 morpholino(2*H*-1,2,3-triazol-2-yl)methanone (**6**).
- 1008 The mixture of 4-morpholinecarbonyl chloride (150 mg, 1 mmol), 1H-1,2,3-triazole (83 mg, 1.2
- 1009 mmol) and DMAP (cat.) in THF/NEt₃ (5:1, 2 mL) was stired overnight at 60 °C. The solvent was
- 1010 removed under vacuum and the resulting residue was purified on a silica gel column
- 1011 (Hexane/EtOAc 7:3 to 6:4) giving KK004-N1 (5) (53 mg, 29%) as a white solid and KK004-N2
- 1012 (**6**) (26 mg, 14%) as a white solid.
- 1013 **KK004-N1 (5)**; ¹H NMR (500 MHz, CDCl₃): δ 8.19 (d, J = 1.1 Hz, 1H), 7.74 (d, J = 1.1 Hz, 1H),
- 1014 4.17-3.66 (m, 8H). ¹³C NMR (125 MHz, CDCl₃): δ 133.0, 125.4, 66.6, 48.4, 45.7. HRMS (*m/z*):
- 1015 calcd. for $C_7H_{10}N_4O_2$ [M+Na]⁺: 205.0696; found, 205.0695.
- 1016 **KK004-N2 (6)**; ¹H NMR (500 MHz, CDCl₃): δ 7.83 (s, 2H), 4.10-3.65 (m, 4H). ¹³C NMR (125
- 1017 MHz, CDCl₃): δ 136.2, 66.6, 48.4, 45.8. HRMS (*m*/*z*): calcd. for C₇H₁₀N₄O₂ [M+Na]⁺: 205.0696; 1018 found, 205.0694.
- 1019
- 1020 **KK007-N1 (7), KK007-N2 (8)**: pyrrolidin-1-yl(1*H*-1,2,3-triazol-1-yl)methanone (7), pyrrolidin-
- 1021 1-yl(2*H*-1,2,3-triazol-2-yl)methanone (**8**).
- 1022 The mixture of 1-pyrrolidinecarbonyl chloride (100 mg, 0.8 mmol), 1H-1,2,3-triazole (124 mg,
- 1023 1.8 mmol) and DMAP (cat.) in THF/NEt₃ (5:1, 2 mL) was stired overnight at 60 °C. The solvent
- 1024 was removed under vacuum and the resulting residue was purified on a silica gel column
- 1025 (Hexane/EtOAc 7:3 to 6:4) giving KK007-N1 (7) (68 mg, 55%) as a white solid and KK007-N2
- 1026 (8) (36 mg, 29%) as a white solid.
- 1027 **KK007-N1 (7)**; ¹H NMR (500 MHz, CDCl₃): δ 8.31 (d, J = 1.4 Hz, 1H), 7.72 (d, J = 1.4 Hz, 1H),
- 1028 4.04 (t, J = 6.5 Hz, 2H), 3.74 (t, J = 6.7 Hz, 2H), 2.08-1.95 (m, 4H). ¹³C NMR (125 MHz,
- 1029 CDCl₃): δ 147.12, 132.59, 124.65, 50.25, 48.92, 26.48, 23.90. HRMS (*m*/*z*): calcd. for C₇H₁₀N₄O
- 1030 $[M+Na]^+$: 189.0747; found, 189.0751.
- 1031 **KK007-N2 (8)**; ¹H NMR (500 MHz, CDCl₃): δ 7.81 (s, 2H), 3.84 (t, J = 6.4 Hz, 2H), 3.75 (t, J =
- 1032 6.5 Hz, 2H), 2.02-1.94 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 135.80, 50.02, 48.62, 26.44,
- 1033 24.12. HRMS (m/z): calcd. for C₇H₁₀N₄O [M+Na]⁺: 189.0747; found, 189.0749.
- 1034
- 1035 **KK020 (9)**: (4-benzyl-1*H*-1,2,3-triazol-1-yl)(pyrrolidin-1-yl)methanone.

- 1036 The mixture of 1-pyrrolidinecarbonyl chloride (190 mg, 1.4 mmol), 4-benzyl-1*H*-1,2,3-triazole
- 1037 (226 mg, 1.4 mmol) and DMAP (cat.) in THF/NEt₃ (5:1, 2 mL) was stired overnight at 60 °C. The
- solvent was removed under vacuum and the resulting residue was purified on a silica gel column
- 1039 (Hexane/EtOAc 7:3 to 6:4) giving KK020 (9) (86 mg, 24%) as yellow oil.
- ¹H NMR (500 MHz, CDCl₃): δ 7.91 (s, 1H), 7.21-7.34 (m, 5H), 4.11 (s, 2H), 4.01 (t, J = 6.3 Hz,
- 1041 2H), 3.69 (t, J = 6.6 Hz, 2H), 1.92-2.04 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 147.2, 146.5,
- 1042 138.3, 128.7, 128.7, 126.7, 50.2, 48.9, 31.9, 26.5, 23.9. HRMS (m/z): calcd. for C₁₄H₁₆N₄O
- 1043 $[M+H]^+$: 257.1397; found, 257.1403.
- 1044
- 1045 **KK021 (10)**: (4-(6-methoxynaphthalen-2-yl)-1H-1,2,3-triazol-1-yl)(pyrrolidin-1-yl)methanone.
- 1046 The mixture of 1-pyrrolidinecarbonyl chloride (190 mg, 1.4 mmol), 4-(6-methoxynaphthalen-2-
- 1047 yl)-1*H*-1,2,3-triazole (338 mg, 1.5 mmol) and DMAP (cat.) in THF/NEt₃ (5:1, 2 mL) was stired
- overnight at 60 °C. The solvent was removed under vacuum and the resulting residue was purified
 on a silica gel column (Hexane/EtOAc 7:3 to 6:4) giving KK021 (10) (47 mg, 10%) as a white
 solid.
- ¹⁰⁵¹ ¹H NMR (500 MHz, CDCl₃): δ 8.56 (s, 1H), 8.34 (s, 1H), 7.92 (dd, J = 8.3, 1.7 Hz, 1H), 7.86-
- 1052 7.77 (m, 2H), 7.21-7.14 (m, 2H), 4.10 (t, J = 6.5 Hz, 2H), 3.94 (s, 3H), 3.77 (t, J = 6.5 Hz, 2H),
- 1053 2.09-1.97 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 158.13, 147.19, 146.62, 134.60, 129.81,
- 1054 128.91, 127.51, 124.82, 124.79, 124.31, 120.01, 119.44, 105.78, 55.33, 50.34, 49.01, 26.58, 23.96.
- 1055 HRMS (m/z): calcd. for C₁₈H₁₈N₄O₂ [M+H]⁺: 323.1503; found, 323.1498.
- 1056
- 1057 **KK022** (11): (4-phenyl-1*H*-1,2,3-triazol-1-yl)(pyrrolidin-1-yl)methanone.
- 1058 The mixture of 1-pyrrolidinecarbonyl chloride (417 mg, 3.1 mmol), 4-phenyl-1*H*-1,2,3-triazole
- 1059 (300 mg, 2.1 mmol) and DMAP (cat.) in THF/NEt₃ (5:1, 2 mL) was stired overnight at 60 °C. The
- solvent was removed under vacuum and the resulting residue was purified on a silica gel column
- 1061 (Hexane/ EtOAc 7:3 to 6:4) giving KK022 (11) (243 mg, 48%) as a white solid.
- ¹H NMR (500 MHz, CDCl₃): δ 8.49 (s, 1H), 7.91-7.86 (m, 2H), 7.49-7.43 (m, 2H), 7.41-7.34 (m,
- 1063 1H), 4.07 (t, J = 6.7 Hz, 2H), 3.75 (t, J = 6.7 Hz, 2H), 2.09-1.95 (m, 4H). ¹³C NMR (125 MHz,
- 1064 CDCl₃): δ147.08, 146.35, 129.60, 129.06, 128.91, 128.78, 128.60, 125.88, 120.17, 50.28, 48.96,
- 1065 26.52, 23.89. HRMS (m/z): calcd. for C₁₃H₁₄N₄O [M+H]⁺: 243.1240; found, 243.1238.
- 1066
- 1067 **KK025** (12): (4-(4-phenoxyphenyl)-1*H*-1,2,3-triazol-1-yl)(pyrrolidin-1-yl)methanone.
- 1068 The mixture of 1-pyrrolidinecarbonyl chloride (480 mg, 3.6 mmol), 4-(4-phenoxyphenyl)-1*H*-
- 1069 1,2,3-triazole (568 mg, 2.4 mmol) and DMAP (cat.) in THF/NEt₃ (5:1, 2 mL) was stired overnight

- at 60 °C. The solvent was removed under vacuum and the resulting residue was purified on a silica gel column (Hexane/EtOAc 7:3 to 6:4) giving KK025 (**12**) (219 mg, 27%) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.44 (s, 1H), 7.84 (dt, J = 9.2, 2.4 Hz, 2H), 7.43-7.30 (m, 2H), 7.18-7.11 (m, 1H), 7.11-7.01 (m, 4H), 4.07 (t, J = 6.6 Hz, 2H), 3.75 (t, J = 6.6 Hz, 2H), 2.09-1.96 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 157.80, 156.70, 147.09, 145.92, 129.82, 127.42, 124.61, 123.62, 119.68, 119.20, 118.98, 50.28, 48.97, 26.54, 23.90. HRMS (m/z): calcd. for C₁₃H₁₂N₄OCl₂
- 1076 [M+H]⁺: 311.0461; found, 311.0460.
- 1077
- 1078 **KK030 (13)**: (4-(3,4-dichlorophenyl)-1*H*-1,2,3-triazol-1-yl)(pyrrolidin-1-yl)methanone.
- 1079 The mixture of 1-pyrrolidinecarbonyl chloride (810 mg, 6.1 mmol), 4-(3,4-dichlorophenyl)-1*H*-
- 1080 1,2,3-triazole(865mg, 4.0mmol) and DMAP (cat.) in THF/NEt₃ (5:1, 2 mL) was stired overnight
- at 60 °C. The solvent was removed under vacuum and the resulting residue was purified on a
- silica gel column (Hexane/EtOAc 7:3 to 6:4) giving KK030 (13) (407 mg, 32%) as a white solid.
- ¹⁰⁸³ ¹H NMR (500 MHz, CDCl₃): δ 8.51 (s, 1H), 8.00 (d, J = 1.9 Hz, 1H), 7.71 (dd, J = 8.3, 1.9 Hz,
- 1084 1H), 7.52 (d, *J* = 8.3 Hz, 1H), 4.07 (t, *J* = 6.5 Hz, 2H), 3.76 (t, *J* = 6.7 Hz, 2H), 2.10-1.96 (m, 4H).
- ¹³C NMR (125 MHz, CDCl₃): δ 146.76, 144.26, 133.20, 132.53, 130.94, 129.66, 127.68, 125.02, 120.75, 50.29, 49.06, 26.53, 23.90. HRMS (*m*/*z*): calcd. for C₁₉H₁₈N₄O₂ [M+H]⁺: 335.1503;
- 1087 found, 335.1505.
- 1088
- 1089 **KK031 (14)**: pyrrolidin-1-yl(4-(4-(trifluoromethoxy)phenyl)-1*H*-1,2,3-triazol-1-yl)methanone.
- 1090 The mixture of 1-pyrrolidinecarbonyl chloride (432 mg, 3.2 mmol), 4-(4-
- 1091 (trifluoromethoxy)phenyl)-1*H*-1,2,3-triazole (494 mg, 2.2 mmol) and DMAP (cat.) in THF/NEt₃
- 1092 (5:1, 2 mL) was stired overnight at 60 $^{\circ}$ C. The solvent was removed under vacuum and the
- resulting residue was purified on a silica gel column (Hexane/EtOAc 7:3 to 6:4) giving KK031
- 1094 (**14**) (264 mg, 38%) as a white solid.
- ¹⁰⁹⁵ ¹H NMR (500 MHz, CDCl₃): δ 8.50 (s, 1H), 7.94-7.90 (m, 2H), 7.34-7.28 (m, 2H), 4.08 (t, *J* = 6.6
- 1096 Hz, 2H), 3.76 (t, J = 6.6 Hz, 2H), 2.10-1.97 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 149.29,
- 1097 146.92, 145.14, 128.41, 127.34, 121.43, 120.42, 119.39, 50.30, 49.03, 26.54, 23.90. HRMS (m/z): 1098 calcd. for C₁₄H₁₃N₄O₂F₃, [M+H]⁺: 327.1063, found, 327.1068.
- 1099
- 1100 **KK032 (15)**: (4-(3,5-difluorophenyl)-1*H*-1,2,3-triazol-1-yl)(pyrrolidin-1-yl)methanone.
- 1101 The mixture of 1-pyrrolidinecarbonyl chloride (817 mg, 6.1 mmol), 4-(3,5-difluorophenyl)-1*H*-
- 1102 1,2,3-triazole (739 mg, 4.1 mmol) and DMAP (cat.) in THF/NEt₃ (5:1, 2 mL) was stired overnight
- at 60 °C. The solvent was removed under vacuum and the resulting residue was purified on a

- silica gel column (Hexane/EtOAc 7:3 to 6:4) giving KK032 (15) (264 mg, 38%) as a white solid.
- ¹H NMR (500 MHz, CDCl₃): δ 8.54 (s, 1H), 7.45-7.39 (m, 2H), 6.82 (tt, *J* = 8.8, 2.3 Hz, 1H), 4.07
- 1106 (t, J = 6.6 Hz, 2H), 3.76 (t, J = 6.6 Hz, 2H), 2.10-1.97 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ
- 1107 164.38, 162.40, 146.73, 144.45, 132.76, 121.15, 108.80, 103.84, 50.30, 49.07, 26.52, 23.89.
- 1108 HRMS (m/z): calcd. for C₁₃H₁₂N₄OF₂ [M+Na]⁺: 279.1052; found, 279.1054;
- 1109
- 1110
- 1111 **KK052 (16)**: The mixture of (4-phenylpiperazin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone (N1-
- isomer) and (4-phenylpiperazin-1-yl)(2*H*-1,2,3-triazol-2-yl)methanone (N2-isomer).
- 1113 The mixture of 4-phenylpiperazine-1-carbonyl chloride(191mg, 0.9mmol), 4-(3,5-
- difluorophenyl)-NH-1,2,3-triazole (70 mg, 1.0 mmol) and DMAP (cat.) in THF/NEt₃ (5:1, 2 mL)
- 1115 was stired overnight at 60 °C. The solvent was removed under vacuum and the resulting residue
- 1116 was purified on a silica gel column (Hexane/EtOAc 7:3 to 6:4) giving KK052 (16) (215 mg, 98%,
- 1117 NMR ratio N1-isomer:N2-isomer=2:1) as a white solid.
- 1118 **KK052-N1**: ¹H NMR (500 MHz, CDCl₃): δ 8.21 (d, J = 1.1 Hz, 1H), 7.75 (d, J = 1.1 Hz, 1H),
- 1119 7.33-7.28 (m, 2H), 6.98-6.91 (m, 3H), 4.25-3.85 (m, 4H), 3.43-3.24 (m, 4H). ¹³C NMR (125 MHz,
- 1120 CDCl₃): δ 150.58, 148.05, 132.99, 129.30, 125.44, 120.86, 116.75, 49.61, 49.31, 47.81, 45.47.
- 1121 HRMS (m/z): calcd. for C₁₃H₁₅N₅O [M+H]⁺: 258.1349; found, 258.1347.
- 1122 **KK052-N1**: ¹H NMR (500 MHz, CDCl₃) δ 7.85 (s, 2H), 7.33-7.28 (m, 2H), 6.97-6.91 (m, 3H),
- 1123 4.03-3.83 (m, 4H), 3.44-3.19 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 150.69, 148.93, 136.17,
- 1124 129.28, 120.79, 116.76, 49.43, 47.56, 45.29. HRMS (m/z): calcd. for C₁₃H₁₅N₅O [M+H]⁺:
- 1125 258.1349; found, 258.1348.
- 1126
- 1127 **KK053-N1 (17)**: (4-(2-chlorophenyl)piperazin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone.
- 1128 1-(2-chlorophenyl)piperazine (150 mg, 0.8 mmol) and N,N-diisopropylethylamine (296 mg, 2.3
- 1129 mmol) were added to the triphosgene (113 mg, 0.4 mmol) solution in THF (5 mL) keeping the
- 1130 tempareture inside <10 °C and cooled to 0 °C. The reaction was stirrer for 15 min on ice. After
- adding iced water, the reaction solution was extracted with EtOAc twice. The EtOAc layer was
- 1132 combined, dehydrated with Na_2SO_4 and the solvent was removed under vacuum and the
- 1133 carbamoyl chloride intermediate was obtained. The resulting residue was dissolved in THF (5
- mL) and *N*,*N*-diisopropylethylamine (713 mg, 5.5 mmol), 1*H*-1,2,3-triazole (63 mg, 0.9 mmol)
- and DMAP (cat.) were added on ice and stirred overnight at room temperature (rt). Then the
- solvent was removed under vacuum and the resulting residue was dissolved and extracted with
- 1137 EtOAc and water twice. The EtOAc layer was combined and the solvent was removed under

- vacuum and the resulting residue was purified on a silica gel column (Hexane:AcOEt=7:3 to 1:1)
- 1139 giving KK053-N1 (17) (88 mg, 40%) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.21 (d, J =
- 1140 1.3 Hz, 1H), 7.75 (d, *J* = 1.3 Hz, 1H), 7.40 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.27-7.23 (m, 1H), 7.08-7.01
- 1141 (m, 2H), 4.27-3.86 (m, 4H), 3.28-3.13 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 148.24, 132.97,
- 1142 130.75, 128.97, 127.74, 125.40, 124.54, 120.61, 51.26, 50.94, 48.22, 45.82. HRMS (*m/z*): calcd.
- 1143 for $C_{13}H_{14}N_5OCl [M+H]^+$: 292.0960; found, 292.0958.
- 1144
- 1145 **KK054-N1 (18)**: (4-(4-chlorophenyl)piperazin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone.
- 1146 KK054-N1 (18) was synthesized as the same method as compound 17. The carbamoyl chloride
- intermediate was obtained with 1-(4-chlorophenyl)piperazine (150 mg, 0.8 mmol), N,N-
- diisopropylethylamine (296 mg, 2.3 mmol), triphosgene (113 mg, 0.4 mmol) and THF (5 mL).
- 1149 Then KK054-N1 (18) (86 mg, 39%) was obtained as a white solid with the carbamoyl chloride
- intermediate, THF (5 mL), *N*,*N*-diisopropylethylamine (713 mg, 5.5 mmol), 1*H*-1,2,3-triazole (63
- 1151 mg, 0.9 mmol) and DMAP (cat.). ¹H NMR (500 MHz, CDCl₃): δ 8.21 (d, J = 1.3 Hz, 1H), 7.75 (d,
- 1152 J = 1.3 Hz, 1H), 7.26-7.22 (m, 2H), 6.89-6.85 (m, 2H), 4.26-3.85 (m, 4H), 3.41-3.19 (m, 4H). ¹³C
- 1153 NMR (125 MHz, CDCl₃): δ 149.21, 148.00, 133.00, 129.16, 125.76, 125.43, 117.93, 49.58, 49.28,
- 1154 47.67, 45.33. HRMS (m/z): calcd. for C₁₃H₁₄N₅OCl [M+H]⁺: 292.0960; found, 292.0960.
- 1155

1156 **KK055-N1 (19)**: (4-(pyridin-2-yl)piperazin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone.

- 1157 KK055-N1 (19) was synthesized as the same method as compound 17. The carbamoyl chloride
- intermediate was obtained with 1-(2-pyridyl)piperazine (150 mg, 0.9 mmol), N,N-
- diisopropylethylamine (356 mg, 2.8 mmol), triphosgene (136 mg, 0.5 mmol) and THF (5 mL).
- 1160 Then KK055-N1 (**19**) (61 mg, 26%) was obtained as a white solid with the carbamoyl chloride
- intermediate, THF (5 mL), *N*,*N*-diisopropylethylamine (356 mg, 2.8 mmol), 1*H*-1,2,3-triazole (76
- 1162 mg, 1.1 mmol) and DMAP (cat.). ¹H NMR (500 MHz, CDCl₃): δ 8.27-8.15 (m, 2H), 7.75 (d, J =
- 1163 1.1 Hz, 1H), 7.57-7.51 (m, 1H), 6.73-6.65 (m, 2H), 4.25-3.83 (m, 4H), 3.83-3.61 (m, 4H). ¹³C
- 1164 NMR (125 MHz, CDCl₃): δ 158.79, 148.19, 148.03, 137.78, 133.00, 125.42, 114.21, 107.21,
- 1165 47.53, 45.27, 44.73. HRMS (m/z): calcd. for C₁₂H₁₄N₆O [M+H]⁺: 259.1302; found, 259.1304.
- 1166
- 1167 **KK067** (20): The mixture of (4-(4-nitrophenyl)piperazin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone
- 1168 (N1 isomer) and (4-(4-nitrophenyl)piperazin-1-yl)(2*H*-1,2,3-triazol-2-yl)methanone (N1 isomer).
- 1169 KK067 (20) was synthesized as the same method as compound 17. The carbamoyl chloride
- 1170 intermediate was obtained with 1-(4-nitrophenyl)piperazine (100 mg, 0.5 mmol), N,N-
- diisopropylethylamine (187 mg, 1.5 mmol), triphosgene (72 mg, 0.2 mmol) and THF (5 mL).

- 1172 Then the KK067-N1, N2 mixture (20) (97 mg, 66%; NMR ratio N1-isomer:N2-isomer = 6:4) was
- obtained as a yellow solid with the carbamoyl chloride intermediate, THF (5 mL), N,N-
- diisopropylethylamine (187 mg, 1.5 mmol), 1*H*-1,2,3-triazole (40 mg, 0.6 mmol) and DMAP (cat.).
- 1176 **KK067-N1**: ¹H NMR (500 MHz, CDCl₃): δ 8.24 (d, J = 1.3 Hz, 1H), 8.22-8.12 (m, 2H), 7.77 (d, J
- 1177 = 1.3 Hz, 1H), 6.92-6.82 (m, 2H), 4.32-3.91 (m, 4H), 3.69-3.53 (m, 4H).
- 1178 **KK067-N2**: ¹H-NMR (500 MHz, CDCl₃): δ 8.22-8.12 (m, 2H), 7.87 (s, 2H), 6.92-6.82 (m, 2H),
- 1179 4.32-3.91 (m, 4H), 3.69-3.53 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 154.26, 154.19, 148.86,
- 1180 148.06, 139.40, 139.32, 136.46, 133.12, 125.94, 125.49, 113.15, 113.12, 106.46, 47.01. HRMS
- 1181 (*m*/*z*): calcd. for $C_{13}H_{14}N_6O_3$ [M+H]⁺: 303.1200; found, 303.1201.
- 1182
- 1183 **KK070** (21): The mixture of 4-(4-(1*H*-1,2,3-triazole-1-carbonyl)piperazin-1-yl)benzonitrile (N1-
- isomer) and 4-(4-(2H-1,2,3-triazole-2-carbonyl)piperazin-1-yl)benzonitrile (N2-isomer).
- 1185 KK070 (21) was synthesized as the same method as compound 17. The carbamoyl chloride
- intermediate was obtained with 4-(1-piperazinyl)benzonitrile (150 mg, 0.8 mmol), N,N-
- diisopropylethylamine (311 mg, 2.4 mmol), triphosgene (119 mg, 0.4 mmol) and THF (5 mL).
- 1188 Then the KK070-N1, N2 mixture (**21**) (117mg, 52%; NMR ratio N1-isomer:N2-isomer = 87:12)
- 1189 was obtained as a white solid with the carbamoyl chloride intermediate, THF (5 mL), N,N-
- diisopropylethylamine (311 mg, 2.4 mmol), 1*H*-1,2,3-triazole (66 mg, 1.0 mmol) and DMAP(cat.).
- 1192 **KK070-N1**: ¹H NMR (500 MHz, CDCl₃): δ 8.23 (d, J = 1.3 Hz, 1H), 7.76 (d, J = 1.3 Hz, 1H),
- 1193 7.59-7.51 (2H, m), 6.94-6.87 (m, 2H), 4.30-3.88 (m, 4H), 3.59-3.43 (m, 4H).
- 1194 **KK070-N2**: ¹H-NMR (500 MHz, CDCl₃): δ 7.86 (s, 2H), 7.59-7.51 (m, 2H), 6.94-6.87 (m, 2H),
- 1195 4.30-3.88 (m, 4H), 3.59-3.43 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 152.69, 148.00, 136.37,
- 1196 133.60, 133.06, 125.45, 119.57, 114.64, 101.61, 47.22, 44.88. HRMS (*m/z*): calcd. for C₁₄H₁₄N₆O
- 1197 $[M+H]^+$: 283.1302; found, 283.1303.
- 1198
- 1199 **KK071** (22): The mixture of (4-cyclohexylpiperazin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone (N1-
- isomer) and (4-cyclohexylpiperazin-1-yl)(2H-1,2,3-triazol-2-yl)methanone (N2-isomer).
- 1201 KK071 (22) was synthesized as the same method as compound 17. The carbamoyl chloride
- 1202 intermediate was obtained with 1-cyclohexylpiperazine (150 mg, 0.9 mmol), N,N-
- diisopropylethylamine (346 mg, 2.7 mmol), triphosgene (132 mg, 0.5 mmol) and THF (5 mL).
- 1204 Then the KK071-N1, N2 mixture (22) (169 mg, 72%, NMR ratio N1-isomer:N2-isomer = 64:36)
- 1205 was obtained as colorless oil with the carbamoyl chloride intermediate, THF (5 mL), N,N-

- diisopropylethylamine (346 mg, 2.7 mmol), 1*H*-1,2,3-triazole (74 mg, 1.1 mmol) and DMAP(cat.).
- 1208 **KK071-N1**: ¹H-NMR (500 MHz, CDCl₃): δ 8.17 (d, *J* = 1.3 Hz, 1H), 7.73 (d, *J* = 1.3 Hz, 1H),
- 4.01-3.61 (m, 4H), 2.81-2.59 (m, 4H), 2.43-2.25 (m, 2H), 1.93-1.75 (m, 4H), 1.70-1.56 (m, 1H),
- 1210 1.36-0.99 (m, 4H).
- 1211 **KK071-N2**: ¹H-NMR (500 MHz, CDCl₃): δ 7.82 (s, 2H), 4.01-3.61 (m, 4H), 2.81-2.59 (m, 4H),
- 1212 2.43-2.25 (m, 2H), 1.93-1.75 (m, 4H), 1.70-1.56 (m, 1H), 1.36-0.99 (m, 4H). ¹³C NMR (125 MHz,
- 1213 CDCl₃): δ 148.88, 147.96, 135.87, 132.84, 125.27, 63.46, 49.06, 48.39, 45.97, 28.81, 26.16, 25.73.
- 1214 HRMS (m/z): calcd. for C₁₃H₂₁N₅O [M+H]⁺: 264.1819; found, 264.1830.
- 1215
- 1216 **KK072** (23): The mixture of (4-(p-tolyl)piperazin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone (N1-
- isomer) and (4-(p-tolyl)piperazin-1-yl)(2H-1,2,3-triazol-2-yl)methanone (N2-isomer)
- 1218 KK072 (23) was synthesized as the same method as compound 17. The carbamoyl chloride
- intermediate was obtained with 1-(4-methylphenyl)piperazine (150 mg, 0.9 mmol), N,N-
- diisopropylethylamine (330 mg, 2.6 mmol), triphosgene (71 mg, 1.0 mmol) and THF (5 mL).
- 1221 Then the KK072-N1, N2 mixture (23) (231 mg, quant, NMR ratio N1-isomer:N2-isomer = 69:31)
- 1222 was obtained as a white solid with the carbamoyl chloride intermediate, THF (5 mL), N,N-
- diisopropylethylamine (330 mg, 2.6 mmol), 1*H*-1,2,3-triazole (71 mg, 1.0 mmol) and DMAP (cat.).
- 1225 **KK072-N1**: ¹H NMR (500 MHz, CDCl₃): δ 8.20 (d, J = 1.1 Hz, 1H), 7.74 (d, J = 1.1 Hz, 1H),
- 1226 7.13-7.09 (m, 2H), 6.90-6.84 (m, 2H), 4.25-3.80 (m, 4H), 3.45-3.10 (m, 4H), 2.29 (s, 3H).
- 1227 **KK072-N2**: ¹H NMR (500 MHz, CDCl₃): δ 7.84 (s, 1H), 7.13-7.09 (m, 2H), 6.90-6.84 (m, 2H),
- 4.25-3.80 (m, 4H), 3.45-3.10 (m, 4H), 2.29 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 148.57,
- 1229 148.47, 148.04, 136.11, 132.95, 130.48, 130.42, 129.80, 125.41, 117.09, 49.92, 47.74, 45.47,
- 1230 20.42. HRMS (m/z): calcd. for C₁₄H₁₇N₅O [M+H]⁺: 272.1506; found, 272.1517.
- 1231
- 1232 **KK073** (24): The mixture of (1*H*-1,2,3-triazol-1-yl)(4-(4-(trifluoromethyl)phenyl)piperazin-1-
- yl)methanone (N1-isomer) and (2*H*-1,2,3-triazol-2-yl)(4-(4-(trifluoromethyl)phenyl)piperazin-1yl)methanone (N2-isomer).
- 1235 KK073 (24) was synthesized as the same method as compound 17. The carbamoyl chloride
- intermediate was obtained with 1-(4-trifluoromethylphenyl)piperazine (150 mg, 0.7 mmol), N,N-
- diisopropylethylamine (253 mg, 2.0 mmol), triphosgene (97 mg, 0.3 mmol) and THF (5 mL).
- 1238 Then the KK073-N1, N2 mixture (24) (188 mg, 89%, NMR ratio N1-isomer:N2-isomer = 73:17)
- 1239 was obtained as a white solid with the carbamoyl chloride intermediate, THF (5 mL), N,N-

- diisopropylethylamine (253 mg, 2.0 mmol), 1*H*-1,2,3-triazole (54 mg, 0.8 mmol) and DMAP (cat.).
- 1242 **KK073-N1**: ¹H NMR (500 MHz, CDCl₃): δ 8.22 (d, J = 1.4 Hz, 1H), 7.76 (d, J = 1.4 Hz, 1H),
- 1243 7.56-7.50 (m, 2H), 6.98-6.94 (m, 2H), 3.95-4.18 (m, 4H), 3.45-3.45 (m, 4H).
- 1244 **KK073-N2**: ¹H NMR (500 MHz, CDCl₃): δ 7.86 (s, 1H), 7.56-7.50 (m, 2H), 6.98-6.94 (m, 2H),
- 1245 4.18-3.95 (m, 4H), 3.56-3.32 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 152.72, 152.64, 148.90,
- 1246 148.06, 136.31, 133.07, 127.74, 126.59, 125.59, 125.48, 123.44, 121.87, 115.18, 77.28, 77.03,
- 1247 76.77, 48.31, 47.49, 45.12. HRMS (m/z): calcd. for C₁₄H₁₄N₅OF₃ [M+H]⁺: 326.1223; found,
- 1248 326.1233.
- 1249
- 1250 **KK075** (25): The mixture of (4-benzhydrylpiperazin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone (N1-
- isomer) and (4-benzhydrylpiperazin-1-yl)(2*H*-1,2,3-triazol-2-yl)methanone (N2-isomer).
- 1252 KK075 (25) was synthesized as the same method as compound 17. The carbamoyl chloride
- intermediate was obtained with 1-(diphenylmethyl)piperazine (150 mg, 0.6 mmol), N,N-
- diisopropylethylamine (230 mg, 1.8 mmol), triphosgene (97 mg, 0.3 mmol) and THF (5 mL).
- 1255 Then the KK075-N1, N2 mixture (25) (186 mg, 90%, NMR ratio N1-isomer:N2-isomer = 65:35)
- 1256 was obtained as a white solid with the carbamoyl chloride intermediate, THF (5 mL), N,N-
- diisopropylethylamine (230 mg, 1.8 mmol), 1*H*-1,2,3-triazole (49 mg, 0.7 mmol) and DMAP(cat.).
- 1259 **KK075-N1**: ¹H NMR (500 MHz, CDCl₃): δ 8.13 (d, J = 1.1 Hz, 1H), 7.69 (d, J = 1.1 Hz, 1H), 7
- .45-7.39 (m, 4H), 7.32-7.25 (m, 4H), 7.23-7.17 (2H), 4.31 (s, 1H), 4.07-3.55 (m, 4H), 2.69-2.36
 (m, 4H).
- 1262 **KK075-N2**: ¹H NMR (500 MHz, CDCl₃): δ 7.77 (s, 2H), 7.45-7.39 (m, 4H), 7.32-7.25 (m, 4H),
- 1263 7.23-7.17 (2H), 4.29 (s, 1H), 4.07-3.55 (m, 4H), 2.69-2.36 (m, 4H). ¹³C NMR (125 MHz, CDCl₃):
- δ 148.91, 148.01, 141.91, 141.76, 135.86, 132.84, 128.65, 127.83, 127.26, 127.22, 125.24, 75.84,
- 1265 75.77, 51.83, 51.28, 47.92, 45.48. HRMS (m/z): calcd. for C₂₀H₂₁N₅O [M+H]⁺: 348.1819; found, 1266 348.1834.
- 1267
- 1268 **KK094** (**26**): The mixture of indolin-1-yl(1H-1,2,3-triazol-1-yl)methanone (N1-isomer) and 1269 indolin-1-yl(2H-1,2,3-triazol-2-yl)methanone (N2-isomer).
- 1270 KK094 (26) was synthesized as the same method as compound 17. The carbamoyl chloride
- intermediate was obtained with indoline (400 mg, 3.4 mmol), *N*,*N*-diisopropylethylamine (1.301 g,
- 1272 10.1 mmol), triphosgene (498 mg, 1.7 mmol) and THF (5 mL). Then the KK094-N1, N2 mixture
- (26) (675 mg, 94%, NMR ratio N1-isomer:N2-isomer = 6:4) was obtained as a white solid with

- 1274 the carbamoyl chloride intermediate, THF (10 mL), *N*,*N*-diisopropylethylamine (1.301 g, 10.1
- 1275 mmol), 1*H*-1,2,3-triazole (49 mg, 0.7 mmol) and DMAP (cat.). Then the mixture was further
- 1276 purified on a silica gel column (Hexane:CH₂Cl₂:EtOAc = 1:4:0.4 to 0:4:0.4) giving KK094-N1
- 1277 (190 mg, 26%) as a white solid and KK094-N2 (97 mg, 14%) as a white solid.
- 1278 **KK094-N1**: ¹H NMR (500 MHz, CDCl₃): δ 8.36 (d, J = 1.1 Hz, 1H), 8.11 (br s, 1H), 7.78 (d, J =
- 1279 1.1 Hz, 1H), 7.33-7.27 (m, 2H), 7.16 (t, *J* = 7.4 Hz, 1H), 4.67 (t, J = 8.3 Hz, 2H), 3.26 (t, J = 8.3
- 1280 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 145.92, 141.88, 132.91, 132.19, 127.68, 125.45, 125.00,
- 1281 124.96, 117.49, 51.77, 28.55. HRMS (*m*/*z*): calcd. for C11H10N4O, [M+H]⁺: 215.0927; found,
 1282 215.0927.
- 1283 **KK094-N2**: ¹H NMR (500 MHz, CDCl₃): δ 8.10 (s, 1H), 7.88 (s, 2H), 7.35-7.20 (m, 2H), 7.13 (t,
- 1284 J = 7.4 Hz, 1H), 4.47 (t, J = 8.3 Hz, 2H), 3.22 (t, J = 8.3 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ
- 1285 146.35, 141.95, 136.27, 132.03, 127.67, 125.04, 124.84, 117.48, 51.39, 28.45. HRMS (m/z): calcd.
- 1286 for C11H10N4O [M+Na]⁺:237.0747; found,237.0757.
- 1287
- 1288 KK099 (27): The mixture of isoindolin-2-yl(1*H*-1,2,3-triazol-1-yl)methanone (N1-isomer) and
 1289 isoindolin-2-yl(2*H*-1,2,3-triazol-2-yl)methanone (N2-isomer).
- 1290 KK099 (27) was synthesized as the same method as compound 17. The carbamoyl chloride
- intermediate was obtained with isoindoline (200 mg, 1.7 mmol), *N*,*N*-diisopropylethylamine (651
- 1292 mg, 5.0 mmol), triphosgene (249 mg, 0.9 mmol) and THF (5 mL). Then the KK099-N1, N2
- mixture (27) (675 mg, 94%, NMR ratio N1-isomer:N2-isomer = 6:4) was obtained as a white
- solid with the carbamoyl chloride intermediate, THF (10 mL), *N*,*N*-diisopropylethylamine (651
- 1295 mg, 5.0 mmol), 1*H*-1,2,3-triazole (116 mg, 2.0 mmol) and DMAP (cat.). Then the mixture was
- further purified on a silica gel column (Hexane: CH_2Cl_2 :EtOAc = 1:4:0.4 to 0:4:0.4) giving
- 1297 KK099-N1 (93 mg, 26%) as a white solid an099-N2 (86 mg, 24%) as a white solid.
- 1298 **KK099-N1**: ¹H NMR (500 MHz, CDCl₃): δ 8.36 (d, J = 1.1 Hz, 1H), 8.11 (br s, 1H), 7.78 (d, J =
- 1299 1.1 Hz, 1H), 7.33-7.27 (m, 2H), 7.16 (t, *J* = 7.4 Hz, 1H), 4.67 (t, J = 8.3 Hz, 2H), 3.26 (t, J = 8.3 Hz, 2H), 3.26
- 1300 Hz, 2H). ¹H NMR (500 MHz, CDCl₃): δ 8.40 (d, J = 1.3 Hz, 1H), 7.77 (d, J = 1.3 Hz, 1H), 7.38-
- 1301 7.28 (m, 4H), 5.47 (s, 2H), 5.11 (s, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 147.1, 136.4, 134.0,
- 1302 132.8, 128.0, 127.9, 124.9, 122.7, 122.6, 56.0, 55.1. HRMS (m/z): calcd. for C₁₁H₁₀N₄O, [M+H]⁺:
- 1303 215.0927; found, 215.0920.
- 1304 **KK099-N2**: ¹H NMR (500 MHz, CDCl₃): δ 7.89 (s, 2H), 7.37-7.24 (m, 5H), 5.31 (s, 2H), 5.13 (s,
- 1305 2H). ¹³C NMR (125 MHz, CDCl₃): δ 147.7, 136.4, 136.3, 134.6, 127.9, 127.8, 122.6, 122.5, 55.8, 1306 55.0. HRMS (*m/z*): calcd. for C₁₁H₁₀N₄O [M+Na]⁺: 237.0747; found, 237.0749.
- 1307

- 1308 **KK122** (28): (1*H*-imidazol-1-yl)(indolin-1-yl)methanone.
- 1309 1,1'-carbonyldiimidazole (180 mg, 1.1 mmol) was added to the solution of indoline (100 mg, 0.8
- 1310 mmol) in THF (5 mL) and strred overnight at rt. Then the solvent was removed under vacuum and
- the resulting residue was dissolved in EtOAc and water and pH wasadjusted to 7 with 0.5 M HCl,
- and extracted with EtOAc and water twice. The EtOAc layer was combined and the solvent was
- removed under vacuum and the resulting residue was purified on a silica gel column
- 1314 (EtOAc:MeOH = 1:0 to 9:1) giving KK122 (28) (147 mg, 82%) as a white solid.
- ¹315 ¹H NMR (500 MHz, CDCl₃): δ 8.02 (m, 1H), 7.41 (br s, 1H), 7.36 (m, 1H), 7.26 (d, *J* = 7.5 Hz,
- 1316 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.13-7.13 (m, 1H), 7.09 (td, *J* = 7.5, 0.8 Hz, 1H), 4.19 (t, *J* = 8.2 Hz,
- 1317 2H), 3.20 (t, J = 8.2 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 148.16, 141.30, 136.58, 131.91,
- 1318 129.81, 127.56, 125.07, 124.87, 117.45, 116.44, 50.97, 28.30.
- 1319

1320 **Compound 29:** (2-methylindolin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone.

- 1321 Compound **29** was synthesized as the same method as compound **17**. The carbamoyl chloride
- intermediate was obtained with 2-methylindoline (300 mg, 2.3 mmol), *N*,*N*-diisopropylethylamine
- 1323 (2.08 g, 16.1 mmol2.08g, 16.1 mmol), triphosgene (267 mg, 0.9 mmol) and THF (5 mL). Then the
- 1324 compound **29** (55 mg, 11%) was obtained as colorless oil with the carbamoyl chloride
- intermediate, THF (5 mL), N,N-diisopropylethylamine (873 mg, 6.8 mmol), 1H-1,2,3-triazole
- 1326 (187 mg, 2.7 mmol) and DMAP (cat.). ¹H NMR (500 MHz, CDCl₃): δ 8.35 (d, J = 1.1 Hz, 1H),
- 1327 8.09 (br s, 1H), 7.78 (d, *J* = 1.1 Hz, 1H), 7.38-7.27 (m, 2H), 7.17 (t, *J* = 7.2 Hz, 1H), 5.70 (m, 1H),
- 1328 3.53 (dd, J = 15.5, 9.2 Hz, 1H), 2.78 (d, J = 15.5 Hz, 1H), 1.27 (d, J = 6.3 Hz, 3H). ¹³C NMR
- 1329 (125 MHz, CDCl₃): δ 145.76, 140.88, 132.87, 131.29, 127.69, 125.54, 125.67, 125.13, 118.00,
- 1330 58.43, 36.47, 21.56. HRMS (*m*/*z*): calcd. for C12H12N4O [M+Na]⁺: 251.0903; found, 251.904.
- 1331
- 1332 **Compound 30:** (3-methylindolin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone.

1333 Compound **30** was synthesized as the same method as compound **17**. The carbamoyl chloride

- intermediate was obtained with 3-methylindoline (713 mg, 5.4 mmol), *N*,*N*-diisopropylethylamine
- 1335 (2.08 g, 16.1 mmol), triphosgene (635 mg, 2.1 mmol) and THF (5 mL). Then the compound 30
- 1336 (509 mg, 42%) was obtained as a white solid with the carbamoyl chloride intermediate, THF (5
- 1337 mL), *N*,*N*-diisopropylethylamine (2.08 g, 16.1 mmol), 1*H*-1,2,3-triazole (187 mg, 2.7 mmol) and
- 1338 DMAP (cat.). ¹H NMR (500 MHz, CDCl₃): δ 8.37 (d, J = 1.1 Hz, 1H), 8.09 (br s, 1H), 7.78 (d, J
- 1339 = 1.1 Hz, 1H), 7.35-7.22 (m, 2H), 7.19 (t, J = 7.4 Hz, 1H), 4.82 (dd, J = 11.5, 9.7 Hz, 1H), 4.22
- 1340 (dd, J = 11.5, 6.9 Hz, 1H), 3.62-3.51 (m, 1H), 1.39 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz,
- 1341 CDCl₃): δ 145.81, 141.43, 137.37, 132.92, 127.85, 125.60, 124.97, 123.81, 117.38, 59.55, 35.28,

1342 19.64. HRMS (*m/z*): calcd. for C12H12N4O [M+H]⁺: 229.1084; found, 229.1085.

- 1343
- 1344 **Compound 31:** (4-nitroindolin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone.
- 1345 Compound **31** was synthesized as the same method as compound **17**. The carbamoyl chloride
- intermediate was obtained with 4-nitroindoline (837 mg, 5.1 mmol), *N*,*N*-diisopropylethylamine
- 1347 (1.98 g, 15.3 mmol), triphosgene (605 mg, 2.0 mmol) and THF (5 mL). Then the compound **31**
- 1348 (64 mg, 5%) was obtained as a yellow solid with the carbamoyl chloride intermediate, THF (5
- mL), *N*,*N*-diisopropylethylamine (1.98 g, 15.3 mmol), 1*H*-1,2,3-triazole (423 mg, 6.1 mmol) and
- 1350 DMAP (cat.). ¹H NMR (500 MHz, CDCl₃): δ 8.45 (br s, 1H), 8.39 (d, J = 1.1 Hz, 1H), 8.02 (d, J = 1.1
- 1351 = 8.3 Hz, 1H), 7.81 (d, J = 1.1 Hz, 1H), 7.51 (t, J = 8.3 Hz, 1H), 4.80 (t, J = 8.4 Hz, 2H), 3.77 (t, J = 8.4 Hz, 3.8
- 1352 = 8.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 146.34, 145.26, 144.67, 133.19, 129.57, 129.12,
- 1353 125.10, 122.82, 120.54, 52.08, 29.78. HRMS (m/z): calcd. for C11H9N5O3 [M+H]⁺: 260.0778;
- 1354 found, 260.0781.
- 1355

1356 **Compound 32:** (4-chloroindolin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone.

1357 Compound **32** was synthesized as the same method as compound **17**. The carbamoyl chloride intermediate was obtained with 4-chloroindoline (1.00 g, 6.5 mmol), N,N-diisopropylethylamine 1358 (2.52 g, 19.5 mmol), triphosgene (773 mg, 2.6 mmol) and THF (5 mL). Then the compound 32 1359 (47 mg, 3%) was obtained as a white solid with the carbamoyl chloride intermediate, THF (5 mL), 1360 1361 N,N-diisopropylethylamine (2.52 g, 19.5 mmol), 1H-1,2,3-triazole (540 mg, 7.8 mmol) and DMAP (cat.). ¹H NMR (500 MHz, CDCl₃): δ 8.36 (d, J = 1.1 Hz, 1H), 8.01 (br s, 1H), 7.78 (d, J =1362 1.1 Hz, 1H), 7.28-7.22 (m, 2H), 7.15 (d, J = 7.4 Hz, 1H), 4.72 (t, J = 8.3 Hz, 2H), 3.28 (t, J = 8.31363 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 146.03, 143.22, 136.51, 133.00, 130.88, 129.18, 125.34, 1364 125.02, 115.72, 51.63, 28.05. HRMS (*m/z*): calcd. for C11H9N4OCl [M+H]⁺: 249.0538; found, 1365 249.0538. 1366

1367

1368 **Compound 33:** (4-methylindolin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone.

1369 Compound **33** was synthesized as the same method as compound **17**. The carbamoyl chloride

- intermediate was obtained with 4-methylindoline (730 mg, 5.5 mmol), *N*,*N*-diisopropylethylamine
- 1371 (2.13 g, 16.4 mmol), triphosgene (651 mg, 2.2 mmol) and THF (5 mL). Then the compound **33**
- 1372 (423 mg, 34%) was obtained as a white solid with the carbamoyl chloride intermediate, THF (5
- 1373 mL), *N*,*N*-diisopropylethylamine (2.13g, 16.4mmol), 1*H*-1,2,3-triazole (454 mg, 6.6 mmol) and
- 1374 DMAP (cat.). ¹H NMR (500 MHz, CDCl₃): δ 8.36 (d, J = 1.1 Hz, 1H), 7.95 (br s, 1H), 7.77 (d, J =
- 1375 1.1 Hz, 1H), 7.21 (t, J = 7.7 Hz, 1H), 6.99 (d, J = 7.4 Hz, 1H), 4.68 (t, J = 8.2 Hz, 2H), 3.15 (t, J =

1376 8.2 Hz, 2H), 2.29 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 145.91, 141.60, 134.48, 132.87, 130.96,

1377 127.81, 126.40, 124.95, 114.90, 51.68, 27.46, 18.62. HRMS (*m/z*): calcd. for C12H12N4O,

- 1378 [M+Na]⁺: 251.0903; found, 251.0907.
- 1379
- 1380 **Compound 34:** (5-nitroindolin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone.
- 1381 Compound **34** was synthesized as the same method as compound **17**. The carbamoyl chloride 1382 intermediate was obtained with 5-nitroindoline (1.00 g, 6.1 mmol), *N*,*N*-diisopropylethylamine 1383 (2.36 g, 18.3 mmol), triphosgene (723 mg, 2.4 mmol) and THF (5 mL). Then the compound **34** 1384 (143 mg, 9%) was obtained as a yellow solid with the carbamoyl chloride intermediate, THF (5 1385 mL), *N*,*N*-diisopropylethylamine (2.36 g, 18.3 mmol), 1*H*-1,2,3-triazole (505 mg, 7.3 mmol) and 1386 DMAP (cat.). ¹H NMR (500 MHz, CDCl₃): δ 8.40 (d, *J* = 1.3 Hz, 1H), 8.26-8.19 (m, 2H), 8.16 (t,
- 1387 J = 1.4 Hz, 1H), 7.81 (d, J = 1.1 Hz, 1H), 4.84 (t, J = 8.5 Hz, 2H), 3.38 (t, J = 8.5 Hz, 2H). ¹³C
- 1388 NMR (125 MHz, CDCl₃): δ 147.65, 146.31, 145.04, 133.61, 133.26, 125.22, 124.44, 120.61,
- 1389 117.25, 52.64, 28.12. HRMS (*m*/*z*): calcd. for C11H9N5O3 [M+Na]⁺: 282.0598; found, 282.0596.
- 1390

1391 **Compound 35:** (5-chloroindolin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone.

- Compound **35** was synthesized as the same method as compound **17**. The carbamovl chloride 1392 intermediate was obtained with 5-chloroindoline (1.00 g, 6.5 mmol), N,N-diisopropylethylamine 1393 (2.52 g, 19.5 mmol), triphosgene (773 mg, 2.6 mmol) and THF (5 mL). Then the compound 35 1394 1395 (450 mg, 28%) was obtained as a white solid with the carbamoyl chloride intermediate, THF (5 mL), N,N-diisopropylethylamine (2.52 g, 19.5 mmol), 1H-1,2,3-triazole (540 mg, 7.8 mmol) and 1396 DMAP (cat.). ¹H NMR (500 MHz, CDCl₃): δ 8.36 (d, J = 1.1 Hz, 1H), 8.04 (br s, 1H), 7.77 (d, J =1397 1.1 Hz, 1H), 4.70 (t, J = 8.3 Hz, 2H), 3.25 (t, J = 8.3 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 1398 1399 145.88, 140.65, 134.03, 132.98, 130.51, 127.73, 125.17, 124.99, 118.39, 51.95, 28.37. HRMS (m/z): calcd. for C11H9N4OCl $[M+H]^+$: 249.0538; found, 249.0538. 1400
- 1401

1402 **Compound 35:** (5-chloroindolin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone.

Compound **35** was synthesized as the same method as compound **17**. The carbamoyl chloride intermediate was obtained with 5-chloroindoline (1.00 g, 6.5 mmol), *N*,*N*-diisopropylethylamine (2.52 g, 19.5 mmol), triphosgene (773 mg, 2.6 mmol) and THF (5 mL). Then the compound **35** (450 mg, 28%) was obtained as a white solid with the carbamoyl chloride intermediate, THF (5 mL), *N*,*N*-diisopropylethylamine (2.52 g, 19.5 mmol), 1*H*-1,2,3-triazole (540 mg, 7.8 mmol) and DMAP (cat.). ¹H NMR (500 MHz, CDCl₃): δ 8.36 (d, *J* = 1.1 Hz, 1H), 8.04 (br s, 1H), 7.77 (d, *J* =

1409 1.1 Hz, 1H), 4.70 (t, J = 8.3 Hz, 2H), 3.25 (t, J = 8.3 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ

1410 145.88, 140.65, 134.03, 132.98, 130.51, 127.73, 125.17, 124.99, 118.39, 51.95, 28.37. HRMS

1411 (m/z): calcd. for C11H9N4OCl $[M+H]^+$: 249.0538; found, 249.0538.

1412

1413 **Compound 36:** (5-methylindolin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone.

1414 Compound **36** was synthesized as the same method as compound **17**. The carbamoyl chloride

intermediate was obtained with 5-methylindoline (300 mg, 2.3 mmol), *N*,*N*-diisopropylethylamine

1416 (873 mg, 6.8 mmol), triphosgene (334 mg, 1.1 mmol) and THF (5 mL). Then the compound **35**

1417 (90 mg, 18%) was obtained as a white solid with the carbamoyl chloride intermediate, THF (5

1418 mL), N,N-diisopropylethylamine (873 mg, 6.8 mmol), 1H-1,2,3-triazole (187 mg, 2.7 mmol) and

1419 DMAP (cat.). ¹H NMR (500 MHz, CDCl₃): δ 8.35 (d, J = 1.1 Hz, 1H), 7.99 (br s, 1H), 7.76 (d, J =

1420 1.1 Hz, 1H), 7.14-7.05 (m, 2H), 4.65 (t, J = 8.3 Hz, 2H), 3.21 (t, J = 8.3 Hz, 2H), 2.36 (s, 3H). ¹³C

1421 NMR (125 MHz, CDCl₃): δ 145.72, 139.54, 135.32, 132.84, 132.25, 128.18, 125.60, 124.90,

1422 117.15, 51.84, 28.50, 21.04. HRMS (*m/z*): calcd. for C12H12N4O [M+Na]⁺: 251.0903; found,

1423 251.0910.

1424

1425 **Compound 37:** (6-nitroindolin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone.

1426 Compound **37** was synthesized as the same method as compound **17**. The carbamoyl chloride

intermediate was obtained with 6-nitroindoline (1.00 g, 6.1 mmol), *N*,*N*-diisopropylethylamine

1428 (2.36 g, 18.3 mmol), triphosgene (723 mg, 2.4 mmol) and THF (5 mL). Then the compound **37**

1429 (531 mg, 34%) was obtained as a yellow solid with the carbamoyl chloride intermediate, THF (5

1430 mL), N,N-diisopropylethylamine (2.36 g, 18.3 mmol), 1H-1,2,3-triazole (505 mg, 7.3 mmol) and

1431 DMAP (cat.). ¹H NMR (500 MHz, CDCl₃): δ 8.94 (br s, 1H), 8.42 (d, J = 1.1 Hz, 1H), 8.06 (dd, J

1432 = 8.2, 2.0 Hz, 1H), 7.80 (d, J = 1.1 Hz, 1H), 7.42 (d, J = 8.2 Hz, 1H), 4.85 (t, J = 8.3 Hz, 2H),

1433 3.38 (t, J = 8.3 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 148.03, 146.07, 143.21, 139.34, 133.17,

1434 125.20, 125.12, 120.91, 112.74, 52.38, 28.62. HRMS (m/z): calcd. for C11H9N5O3 $[M+H]^+$:

1435 260.0778; found, 260.0780.

1436

1437 **Compound 38:** (6-chloroindolin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone.

1438 Compound **38** was synthesized as the same method as compound **17**. The carbamoyl chloride

intermediate was obtained with 6-chloro-2,3-dihydro-1h-indole (376 mg, 2.5 mmol), *N*,*N*-

1440 diisopropylethylamine (949mg, 7.3mmol), triphosgene (291 mg, 1.0 mmol) and THF (5 mL).

1441 Then the compound **38** (164 mg, 27%) was obtained as a white solid with the carbamoyl chloride

intermediate, THF (5 mL), *N*,*N*-diisopropylethylamine (949mg, 7.3mmol), 1*H*-1,2,3-triazole (203

1443 mg, 2.9 mmol) and DMAP (cat.). ¹H NMR (500 MHz, CDCl₃): δ 8.37 (d, *J* = 1.3 Hz, 1H), 8.14

1444 (br s, 1H), 7.78 (d, J = 1.3 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 7.13 (dd, J = 8.0, 1.7 Hz, 1H), 4.72

1445 (t, J = 8.3 Hz, 2H), 3.23 (t, J = 8.3 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 145.92, 143.09,

1446 133.34, 133.01, 130.60, 125.60, 125.46, 125.07, 117.93, 52.37, 28.14. HRMS (*m/z*): calcd. for

- 1447 C11H9N4OCl [M+H]⁺: 249.0538; found, 249.0541.
- 1448
- 1449 **Compound 39:** (6-methylindolin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone.
- 1450 Compound **39** was synthesized as the same method as compound **17**. The carbamoyl chloride
- intermediate was obtained with 6-methylindoline (149 mg, 1.1 mmol), *N*,*N*-diisopropylethylamine
- 1452 (434 mg, 3.4 mmol), triphosgene (133 mg, 0.4 mmol) and THF (5 mL). Then the compound **38**
- 1453 (164 mg, 27%) was obtained as a white solid with the carbamoyl chloride intermediate, THF (5
- 1454 mL), N,N-diisopropylethylamine (434 mg, 3.4 mmol), 1H-1,2,3-triazole (93 mg, 1.3 mmol) and
- 1455 DMAP (cat.). ¹H NMR (500 MHz, CDCl₃): δ 8.35 (d J = 1.1 Hz, 1H), 7.94 (br s, 1H), 7.70 (d, J =
- 1456 1.1 Hz, 1H), 7.16 (d, J = 7.5 Hz, 1H), 6.97 (d, J = 7.5 Hz, 1H), 4.65 (t, J = 8.5 Hz, 2H), 3.16 (t, J
- 1457 = 8.5 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 145.88, 141.99, 137.70, 132.88,
- 1458 129.23, 126.21, 124.92, 124.58, 118.09, 52.13, 28.21, 21.62. HRMS (*m/z*): calcd. for
- 1459 C12H12N4O [M+Na]⁺: 251.0903; found, 251.0907.
- 1460

1461 **Compound 40:** (7-nitroindolin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone.

- Compound **40** was synthesized as the same method as compound **17**. The carbamoyl chloride intermediate was obtained with 7-nitroindoline (929 mg, 5.7 mmol), *N*,*N*-diisopropylethylamine (2.19 g, 17.0 mmol), triphosgene (672 mg, 2.3 mmol) and THF (15 mL). Then the compound **40** (51 mg, 3%) was obtained as a white solid with the carbamoyl chloride intermediate, THF (15 mL), *N*,*N*-diisopropylethylamine (2.19 g, 17.0 mmol), 1*H*-1,2,3-triazole (469 mg, 6.8 mmol) and
- 1467 DMAP (cat.). ¹H NMR (500 MHz, CDCl₃): δ 8.31 (d, J = 1.1 Hz, 1H), 7.82 (dd, J = 7.7, 1.1 Hz,
- 1468 1H), 7.77 (d, *J* = 1.1 Hz, 1H), 7.55 (dd, *J* = 7.4, 1.1 Hz, 1H), 7.30 (t, *J* = 7.7 Hz, 1H), 4.68 (t, *J* =
- 1469 8.0 Hz, 2H), 3.31 (t, J = 8.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 147.36, 140.40, 136.95,
- 1470 134.62, 133.47, 129.59, 126.03, 124.79, 123.36, 54.26, 29.42. HRMS (*m/z*): calcd. for
- 1471 C11H9N5O3 [M+Na]⁺: 282.0598; found, 282.0602.
- 1472
- 1473 **Compound 41:** (7-chloroindolin-1-yl)(1*H*-1,2,3-triazol-1-yl)methanone.

1474 Compound **41** was synthesized as the same method as compound **17**. The carbamoyl chloride 1475 intermediate was obtained with 7-chloroindoline (713 mg, 4.6 mmol), *N*,*N*-diisopropylethylamine 1476 (1.80 g, 13.9 mmol), triphosgene (551 mg, 1.9 mmol) and THF (5 mL). Then the compound **40**

1477 (587 mg, 51%) was obtained as a white solid with the carbamoyl chloride intermediate, THF (5

- 1478 mL), *N*,*N*-diisopropylethylamine (1.80 g, 13.9 mmol), 1*H*-1,2,3-triazole (385 mg, 5.6 mmol) and
- 1479 DMAP (cat.). ¹H NMR (500 MHz, CDCl₃): δ 8.34 (d, J = 1.1 Hz, 1H), 7.78 (d, J = 1.1 Hz, 1H),
- 1480 7.28 (d, J = 7.4 Hz, 1H), 7.22 (dd, J = 7.4, 1.1 Hz, 1H), 7.14 (t, J = 7.7 Hz, 1H), 4.46 (t
- 1481 Hz, 2H), 3.20 (t, J = 7.7 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 146.32, 139.04, 136.70, 133.40,
- 1482 129.30, 127.11, 124.48, 124.29, 123.26, 54.94, 30.50. HRMS (*m/z*): calcd. for C11H9N4OCl
- 1483 $[M+Na]^+$: 271.0357; found, 271.0362.
- 1484
- 1485 **KK182 (42):** The mixture of (1*H*-1,2,3-triazol-1-yl)(4-(4-(trifluoromethyl)benzyl)piperazin-1-
- 1486 yl)methanone (N1-isomer) and (2*H*-1,2,3-triazol-1-yl)(4-(4-(trifluoromethyl)benzyl)piperazin-1-
- 1487 yl)methanone (N2-isomer).
- 1488 KK182 (42) was synthesized as the same method as compound 17. The carbamoyl chloride
- intermediate was obtained with 1-(4-trifluoromethylbenzyl)piperazine (1 g, 4.1 mmol), N,N-
- diisopropylethylamine (1.59 g, 12.3 mmol), triphosgene (486 mg, 1.6 mmol) and THF (5 mL).
- 1491 Then the compound **42** with the carbamoyl chloride intermediate, THF (5 mL), *N*,*N*-
- diisopropylethylamine (1.59 g, 12.3 mmol), 1H-1,2,3-triazole (339 mg, 4.9 mmol) and DMAP
- 1493 (cat.). Then the mixture was further purified on a silica gel column (Hexane: CH_2Cl_2 :EtOAc =
- 1494 1:4:0.4 to 0:4:0.4) giving KK182-N1 (260 mg, 19%) as a white solid and KK094-N2 (97 mg,
- 1495 14%) as a white solid.
- 1496 **KK 182-N1**:¹H -NMR (500 MHz, CDCl₃) δ 8.18 (d, J = 1.3 Hz, 1H), 7.73 (d, J = 1.3 Hz, 1H),
- 1497 7.60 (d, J = 8.1 Hz, 2H), 7.47 (d, J = 8.1 Hz, 2H), 4.10-3.71 (m, 4H), 3.62 (d, J = 5.3 Hz, 2H),
- 1498 2.71-2.49 (m, 4H). ¹³C -NMR (126 MHz, CDCl₃) δ 148.05, 141.61, 132.91, 129.67(q, J = 32.4
- Hz), 129.16, 125.36, 125.32, 124.11(q, J = 271.8 Hz), 62.07, 52.98, 52.39, 47.86, 45.53. HRMS (m/z): calcd. for C₁₅H₁₆N₅OF₃ [M+H]⁺: 340.1380; found, 340.1392.
- 1501 **KK 182-N2**: ¹H -NMR (500 MHz, CDCl₃) δ 7.81 (s, 2H), 7.59 (d, J = 8.0 Hz, 2H), 7.47 (d, J =
- 1502 8.0 Hz, 2H), 3.95-3.64 (4H), 3.61 (s, 2H), 2.72-2.37 (m, 4H). ¹³C -NMR (126 MHz, CDCl₃) δ
- 1503 148.95, 141.77, 136.01, 129.64 (q, *J* = 32.4 Hz), 129.13, 125.32 (q, *J* = 3.8 Hz), 124.13 (q, *J* =
- 1504 272.8 Hz), 62.11, 52.74, 47.67, 45.28. HRMS (*m*/*z*): calcd. for C₁₅H₁₆N₅OF₃ [M+H]⁺: 340.1380;
 1505 found, 340.1390.
- 1506
- 1507