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Abstract  
  
Type 2 diabetes (T2D) is a global health burden that will benefit from personalised risk 
prediction. We aimed to identify longitudinal predictors of glycaemic traits relevant for T2D 
by applying machine learning (ML) to multi-omics data from the Northern Finland Birth Cohort 
1966 at 31 (T1) and 46 (T2) years old. We predicted fasting glucose/insulin (FG/FI), glycated 
haemoglobin (HbA1c) and 2-hour glucose/insulin from oral glucose tolerance test 
(2hGlu/2hIns) at T2 in 595 individuals from 1,010 variables at T1 and T2: body-mass-index 
(BMI), waist-hip-ratio, sex; nine blood plasma measurements; 454 NMR-based metabolites 
(228 at T1 and 226 at T2); 542 methylation probes established for 
BMI/FG/FI/HbA1c/T2D/2hGlu/2hIns (277 at T1 and 264 at T2). Metabolic and methylation 
data were used in their raw form (Mb-R, Mh-R) or in scores (Mb-S, Mh-S). We used six ML 
approaches: random forest (RF), boosted trees (BT) and support vector regression (SVR) with 
the kernels of linear/linear with L2 regularization/polynomial/radial-basis function. RF and 
BT showed consistent performance while most SVRs struggled with high-dimensional data. 
The predictions worked best for FG and FI (average R2 values of six ML models: 0.47 and 0.30 
for Mb-S). With Mb-S/Mb-R data, sex, branched-chain and aromatic amino acids, HDL-
cholesterol, VLDL, glycoprotein acetyls, glycerol, ketone bodies at T2 and measurements of 
obesity already at T1 were amongst the top predictors. Addition of methylation data, did not 
improve the predictions (P>0.3, model comparison); however, 15/17 markers were amongst 
the top 25 predictors of FI/FG when using Mb-S+Mh-R data. With ML we could narrow down 
hundreds of variables into a clinically relevant set of predictors and demonstrate the 
importance of longitudinal changes in prediction.    
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Introduction 
Diabetes accounts for the yearly deaths of about four million people between 20 and 79 years 
old (2017) world-wide. Prevalence of diabetes is expected to increase from 8.8% to 9.9% by 
2045. The main challenge of diabetes health care is its growing burden in low and middle 
income countries. Besides, glucose tolerance impairment is progressing in young individuals, 
leading to high risk of developing Type 2 diabetes (T2D) later in life1. T2D is defined by insulin 
resistance and deficiency of insulin secretion in the pancreas. The T2D diagnosis criteria 
encompass fasting plasma glucose (FG) levels≥7.0mmol/L or two-hours post-prandial plasma 
glucose (2hGluc)≥11.1mmol/L or glycated Hemoglobin (HbA1c) ≥48mmol/L. HbA1c is an 
indicator for long-term control of glycemic state in diabetes patients.  
 
Classical risk factors for T2D encompass sex, age, obesity, family history, hypertension, 
lifestyle factors, and are sometimes extended to cholesterol and blood pressure levels. Recent 
advances in omics technologies have allowed to explore diabetes risk factors in more detail. 
Large genome-wide association studies (GWAS) have estimated that genetics accounts for <15 
% of diabetes heritability2. Currently, 128 distinct signals at 113 loci associated with T2D have 
been reported by GWAS meta-analyses3,4. GWAS also unveiled DNA loci associated with 
quantitative glycaemic traits in individuals without diabetes, including FG5,  fasting insulin 
(FI)5, FG adjusted for body-mass-index (BMI)5,  FI adjusted for BMI5, 2hGluc6 and HbA1c7. 
These studies are based on the hypothesis that quantitative glycaemic traits may reflect 
mechanisms involved in diabetes pathogenesis. A weak correlation between genetic effects 
on glycaemic traits and T2D has been found by previous studies; however, the overlap may 
shine light on the mechanisms influencing glucose homeostasis and its dysregulation in 
diabetes8.  
 
Environment and lifestyle are likely to contribute to a large part of the T2D onset9. 
Environmental cues can affect gene expression by addition of a methyl group on a CpG-
dinucleotides sites of DNA. This is called DNA methylation and is the most widely studied type 
of epigenetic modification. Studies in peripheral blood have found a mean absolute difference 
of 0.5%-1.1% in methylation levels between individuals with and without T2D10. Epigenome-
wide association studies reported associations at 65 methylation markers for T2D10,11 and 
provided support for overlap in epigenetic effects between T2D and glycaemic traits11,12. The 
epigenetic effect on glycaemic traits was smaller upon BMI adjustment12. The investigation of 
the link between BMI and methylation levels demonstrates that methylation at the majority 
of CpG sites in blood is consequential to higher BMI13.  Weighted methylation risk scores have 
stronger contribution to incident T2D than traditional risk factors including overweight, 
obesity, central obesity, impaired fasting glucose and hyperinsulinaemia10,13. 
 
The metabolomic alterations underlying T2D have also emerged as a promising area of 
investigation. A large number of metabolites, including amino acids, especially branched-chain 
amino acids (BRACA)  and aromatic amino acids, fatty acids, glycerophospholipids, ketone 
bodies and mannose have been associated with T2D incidence14–16 and are risk factors. 
However, whether metabolites can be effective and reliable T2D predictors, remains unclear. 
From 2011, T2D prediction has been investigated and a small number of metabolic 
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compounds, which overlapped with the ones identified in association analyses, were 
highlighted17–20. 
 
Recently, the studies of T2D risk leveraged association analyses as well as machine learning 
algorithms (ML) for prediction of binary T2D phenotypes. ML used so far for T2D classification 
include: logistic regression with and without Lasso regularization10,13,18,19,21–23, Regularized 
least-squares (RLS)20, Cox regression22, naive Bayes18 and J48-decision tree18. Machine 
learning, unlike traditional statistical modelling, aims at optimizing the parameters of a model 
rather than estimating parameters from a given distribution.  “Supervised” machine learning 
is designed to make a prediction about classes or continuous values of unseen data points 
(“target values”/”labels”/”outcomes”), based on training on an example dataset 
(“variables”/”predictors”). The strength of ML relies in the optimization process as well as the 
ability to use a relatively high-dimensional set of predictor variables without knowledge of the 
joint distribution of these variables24.  
 
In predictive studies using ML models classical risk factors, genetic risk scores (GRS)21, 
methylation risk scores (MRS)10,13 and metabolomic data18–20,23, have been used as predictors 
of T2D incidence after a follow-up window of two to fourteen years. A few studies have 
suggested that metabolites improve prediction performance18–20,22, while others have 
reported negligible or no improvement in prediction23. GRS have been shown to bring no 
incremental value over classical non-invasive factors and metabolic markers21. MRS combining 
CpG loci have been found to be associated with future type 2 diabetes incidence10,13. 
 
In this study we aimed to identify longitudinal predictors of glycaemic traits relevant for T2D 
by applying machine learning approaches to multi-omics data. We focused on epigenetic and 
metabolomic markers, from the Northern Finland Birth Cohort 1966 (NFBC1966), at 31 (T1) 
and 46 (T2) years for prediction of HbA1c, FG, 2hGluc, FI and 2hIns (two-hours insulin) at T2.  
We implement and compare three machine learning approaches: Boosted trees (BT), Random 
forest (RF) and support vector regression (SVR) with different combination of input variables.  
 

Methods 
 
Study Population 
NFBC1966 is a birth cohort (N=12,058 births in 1966) with participants from northern 
Finland25. From the medical examination at 31 (T1, N=6,007) and 46 years (T2, N=5,861) we 
included participants with demographic, medication, epidemiological, blood biochemistry, 
metabolomics and epigenetic information available at both time points (N=626). Consent was 
obtained and the study was approved by the ethical committees of the University of Oulu and 
Imperial College London (Approval:18IC4421).  
 
Data Collection  
The biochemical assays26,27,  oral glucose28, and HbA1c measurements29 are detailed 
elsewhere. Metabolites were quantified by a high-throughput serum nuclear magnetic 
resonance (NMR) platform30–33. DNA methylation was measured in whole blood from samples 
from 807 randomly selected individuals after overnight fasting.  
IlluminaInfiniumHumanMethylation450 Beadchip and EPIC arrays were used at T1 and T2, 
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respectively. Methylation data was pre-processed on genome build CGCh37/hg19. Prior to 
any analysis, 25 individuals pregnant at T1 were excluded. 
 
Quality Control and Imputation of Epidemiological, Blood Biochemistry and Metabolomics 
Data   
Imputation of epidemiological, biochemical and metabolomics variables was performed 
jointly with random forest (MisForest in R34). Type 1 diabetes (T1D), T2D, gender, blood 
pressure, lipid and diabetes medication were included as factors. Each gender was imputed 
separately. Post-imputation, FI was log transformed to reduce skewness. All measures of 
fasting/post-prandial glucose and insulin at T2 were removed from the set of predictor 
variables. Pyruvate, which exhibited a high correlation with glucose, was removed as well.   
 
Quality Control and Imputation of Epigenomic Data 
For methylation array data, duplicate samples (N=9 at T1, N=8 at T2), gender mismatches 
(N=7/1 at T1/T2), and samples with <95% call rate (a detection P-value threshold of P<10-16) 
(N=67/40 at T1/T2) were removed. Probes with <95% call rate were removed 
(N=14,486/14,586 at T1/T2). Intensity values were normalized with subset quantile 
normalization within array (SWAN in Minfi R34), and beta values were computed from 
methylated and unmethylated normalized probes intensities. Probes further than 4SD from 
the mean were removed. Batch and sex effect were corrected by including the principal 
components of the control probes intensities and the gender as linear predictors in the 
regression analysis of the samples35. Blood cell composition was corrected by using the 
Houseman estimates36 of blood cell type in the regression. Imputation of methylation data 
was performed using the methylation residuals corrected for sex, and blood cell type.  
 
Study Variables 
HbA1c, 2hGluc, 2hIns, FG, FI levels were used as continuous outcomes to predict. A total of 
1,010 variables from T1 and T2 were used as predictors in the current study. “Metabolic” 
predictors included: epidemiological data - sex, measures of obesity (BMI and waist-to-hip 
ratio), biochemical data - nine blood measurements of triglycerides, total cholesterol, high 
and low-density lipoprotein cholesterol (HDL-C and LDL-C), metabolomics data - 454 
metabolites (228 at T1 and 226 at T2). The methylation dataset included 541 probes, including 
277 at T1 and 264 at T2. The selection of methylation probes was based on previous 
association of the probes with seven phenotypes: 187 probes associated with BMI13, 21 with 
FG11, 11 with HbA1c11 and 67 with T2D11, one with 2hGluc12, eight with FI12, 21 with 2hIns12. 
Thirty-one of the 626 individuals, who had missingness rate≥50% in the selected methylation 
probes, were excluded. In total, 595 individuals were included in ML analysis.  
 
Association Analysis of Selected Methylation Probes with continuous phenotypes 
The association between selected methylation probes and continuous phenotypes was 
assessed in the NFBC using regression analysis, including relationships between T1-
methylation and T1-phenotype (FG, FI or BMI available), T1-methylation and T2-phenotype 
(BMI, FG, HbA1c, T2D, 2hGluc, FI or 2hIns); and T2-methylation and T2-phenotype (Table 1). 
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For the ML analysis, we used all probes to compute scores in order to get the most powerful 
scores possible.  
 
Predictors Combination and Prediction Frameworks 
Metabolic (Mb) and Methylation (Mh) data were combined under their raw (R) form or 
transformed into scores (S) (see below). The following combinations were tested: Mb-R/ Mb-
S/ Mh-R / Mh-S/ Mb-R + Mh-R/ Mb-R + Mh-S/ Mb-S + Mh-R/ Mb-S + Mh-S (Figure 1). 
Methylation and Metabolic data were either adjusted for BMI and waist-hip-ratio at T1 and 
T2, or kept unadjusted. 
 
Calculation of The Scores  
Unweighted methylation risk scores were used. Scores at T1 and T2 were based on the 
established associations with seven phenotypes, including BMI, FG, HbA1c, T2D, 2hGluc, FI, 
2hIns. Metabolic risk scores at T1 and T2 grouped variables based on the following 
biochemical classes: lipoparticules, lipids, blood proteins, carbohydrates and insulin, keton-
bodies, BRACA, other amino acids.  
 
ML Approaches  
Three ML methods were used for regression analysis: Boosted trees (BT), Random Forest (RF) 
and Support Vector Regression (SVR). SVR was implemented with Linear Kernel with and 
without L2 regularization (SVR-Linear, SVR-L2Linear, respectively), with Polynomial Kernel 
(SVR-Polynomial) and with Radial Basis function Kernel (SVR-RBF) (Figure 1). The algorithms 
were chosen for their ability to handle a large number of predictors, to account for non-linear 
relationships, the absence of the assumption regarding data distribution, and for their 
computational times. 
 
The decision tree unit (in BT and RF) is a hierarchical framework. At each step the sample is 
split based on some threshold in one of the variables (feature). At each level, the feature 
examined must lead to the best possible prediction at the “leaves” level. Overfitting is avoided 
by a stopping criterion and recursive pruning of the tree. “Boosting” methods seek to 
construct iteratively predictors (e.g. trees, in BT) by focusing mis-predicted examples at the 
previous step24. Random forests are an ensemble of decision trees. Each tree is grown on a 
bootstrapped sample of the data. The subset of features examined is generated randomly. 
The final prediction is based on the voting majority or averaging the predictions24. Support 
vector regression, aims at fitting the data in a “regression” hyperplane by minimizing a margin. 
Linear separation is made possible by mapping the data to a high dimensional space via a 
Kernel function24.  
 
Optimization of the ML Algorithms  
Nested cross validation was implemented. The data set was split into a training (80%) and 
testing set (20%) with a 5-fold cross validation. The performance of the ML models was 
estimated on the testing set, while parameter tuning was implemented on the training set by 
splitting it further into a 5-fold cross validation (nested). Random search method was used to 
find the model parameter combination which minimized the error of the model. The Root 
Mean Square Error (RMSE) was used to assess model performance during training. Both 
Rsquared (R2) and RMSE were computed in the testing set to estimate performance. The 
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packages KernelLab, LibLinear, RandomForest and Xboost in R34 were used with Caret as a 
wrapper. 
 
Variable Importance in the ML Models  
In boosted trees, the information gain was used as a measure of importance. Gain is based on 
the decrease in entropy after a dataset is split on a feature j at a branch of the tree. Random 
forest variables were ranked with the Increase in Mean Square Error (MSE). It estimates the 
increase of prediction error when the values of the feature j are randomly permuted. For SVR, 
each feature is evaluated based on its independent association with the outcome. The slope 
of the regression is used to rank the features. 
 
Statistical Analysis 
The performance of each model was computed as the average R2 over the 5 testing folds of 
the cross validation. In result section, we report the R2 pooled for the six ML algorithms. 
Comparison of the models was performed with a one-way ANOVA and post-hoc Tukey HSD 
test.  
 

Results 
 
We analyzed metabolic and methylation data from 595 individuals to predict the levels of 
five glycaemic traits: HbA1c, FG, 2hGluc, FI and 2hIns at T2 from metabolic and methylation 
variables at T1 and T2 (Figure 1). 

 

ML Model Performance and Input Dataset 

We first evaluated the performance of all ML models for each of the datatypes. We found that 
models with metabolic data (“Mb-R and Mb-S”) had a performance that reached a maximum 
R2 of 0.47 R2 (Figure 2a). In contrast, models with methylation data only (“Mh-R and Mh-S”), 
reached up to 0.12 R2. Thus, metabolic models performed significantly better than epigenomic 
models (P-valueTukeyHSD<5×10-8) (Table 2, Comparison 1-4). Then we assessed the performance 
of models combining both data types. We did not observe any significant difference (P-
valueTukeyHSD>0.30) between “Mb-R” and “Mh-R + Mb-R, “Mb-R” and “Mh-S + Mb-R” (Table 2, 
Comparison 5-6). This result suggested that addition of methylation information does not 
increase the predictive ability of tested models. Next, we explored the effect of variables 
transformation to scores (Table 2, comparison 7-8). The Metabolic model “Mb-S” performed 
significantly better than “Mb-R” in the prediction of HbA1c, FG, 2hGluc (P-valueTukeyHSD<0.050) 
but showed no difference in the case of FI and 2hIns prediction, whereas the methylation 
model “Mh-R” performed better than “Mh-S” (P-valueTukeyHSD<0.050) for FI and 2hGluc and 
exhibited no difference for prediction of the other phenotypes. Therefore, our findings do not 
allow us to generalize over the power “scored” data compared to “raw” data.  Finally, we 
found that “Mh-S + Mb-S” model performed significantly better than model with “Mh-R + Mb-
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S” (P-valueTukeyHSD<0.050). This observation reflects the decrease in performance of the 
models upon inclusion of a large number of predictors.  

 

ML Model Performance and Predicted Outcome 

We compared the performance of the models for each of the outcomes (HbA1c, FG, 2hGluc, 
FI and 2hIns) (Figure 2a). In the context of the model with metabolic data as input we observed 
that performance was the best for FI (Figure 2a). Models with different outcomes were ranked 
as following: FI > FG > 2hIns > 2hGlc > HBA1c (P-valueTukeyHSD<5.0x10-3). The average coefficient 
of determination R2 over all machine learning algorithm was 0.47, 0.30, 0.21, 0.16, 0.11 (“Mb-
S”) // 0.43, 0.24, 0.19, 0.13, 0.06 (“Mb-R”) for FI, FG, 2hIns, 2hGlc, HBA1c respectively. 

 

ML Model Performance and Algorithm 

Finally, we compared the prediction performance of each of the ML models (Figure 2a). In the 
context of the models including at least metabolic data as input (“Mb-R or -S + X”), we found 
that RF and BT and performed similarly for all phenotypes (P-valueTukeyHSD>0.18). Besides, no 
significant difference was found between SVR-L2Linear and the two previous models (P-
valueTukeyHSD>0.050). Among SVR models, we found that SVR-L2Linear either performed 
equally or outperformed the other SVRs, depending on the input dataset. In particular, for 
datasets with a large number of predictors SVR-L2Linear was the best performing SVR (P-
valueTukeyHSD<0.050). 

 

ML Models and Variable Importance 

We investigated the contribution of metabolic and epigenomic variables to the prediction of 
glycaemic traits. We discuss predictors importance only in the context of FG and FI outcomes, 
for which prediction algorithms reached the best R2 (Figure 2a). On the one hand, we found 
that FG prediction was mostly explained by metabolic variables: leucine, isoleucine, valine, 
tyrosine, BMI and WHR, HDLs and VLDL, Glycoprotein acetyls, glycerol at T2, WHR at T1 and 
sex (Figure 3).  

The metabolic models with “scored” variables were driven by variables which mirrored the 
top “raw” predictors. FI prediction, on the other hand, was explained by BMI, WHR, HDL, VLDL, 
BRACA, phenylalanine, tyrosine, glycoprotein acetyls, glycerol, lactate, several lipidic ratios at 
T2, BMI and FI at T1. Overall, the model with “scored” variables for FI supported the 
importance of the former variables, as well as ketones bodies (acetoacetate and 3-
hydroxybutyrate) at T2. 

Interestingly, the model combining metabolic scores and methylation raw variables showed 
the relative importance of a few methylation probes for prediction of FG and FI (Figure 3). In 
the context of FI prediction, one methylation probe was ranked above non BRACA-amino 
acids, six above ketone bodies and seven above lipids at T2. In FG prediction -one, two, four 
and six- methylation probes were respectively ranked above -blood protein, BRACA, 
carbohydrates and insulin, and non-BRACA amino acids- (Figure 3).  

 

ML and Prediction from Variables at T1 

To test whether variables at T1 only can provide information about glycaemic traits at T2, we 
restricted the dataset to the best ranked variables among those at T1 in the context of the 
“Mb-R” model. From the full model which predicted FI, FG, 2hIns, 2hGlc, HBA1c with a R2   of 
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0.43, 0.24, 0.19, 0.13, 0.06 (“Mb-R”), the restriction to T1 variables caused a drop in R2 to 0.23, 
0.19, 0.13, 0.04, 0.04 (Data not shown). Together it suggests that prediction from T1 variables 
only is not achievable in our dataset.  

 

ML and Body Measurement Adjustment 

We aimed at understanding the influence of the measures of obesity in the models. All Mb-R/ 
Mb-S/ Mh-R / Mh-S/ Mb-R + Mh-R/ Mb-R + Mh-S/ Mb-S + Mh-R/ Mb-S +Mh-S, models were 
adjusted for T1-BMI, T2-BMI, T1-WHR and T2-WHR. All adjusted models exhibited R2<0.060 
(Figure 2b), including models predicting FI and FG. Thus, the measures of obesity at T1 and T2 
appear to be the main drivers of prediction.  

 
Replication Analysis in the NFBC: Epigenomics Data and Methylation Probes Selected by ML 

Analysis of variable importance (Figure 3) showed that in the context of the “Mb-S + Mh-R” 
model, 15 and 17 methylation probes were amongst the top 25 predictors for FG and FI 
respectively. To better understand the link between these probes and the glycaemic 
phenotypes we looked at the traits which have been previously reported to be associated with 
them11–13. Among the probes selected by the model predicting FG, 11 methylation probes 
were reported to be associated with BMI, one probe with FG, one probe with FI, one probe 
with HbA1c, four probe with T2D, two probes with 2hIns. In the case of the model predicting 
FI, 11 of the methylation probes were reported to be associated with BMI, three with FG, four 
with T2D, two with 2hIns. Next, we tested whether these probes also passed the replication 
threshold in the NFBC cohort with a simple regression analysis. Interestingly, 3/3 and 5/8 of 
the T1 probes selected by ML respectively for FI and FG, did replicate the association in at 
least one of the three phenotype available at T1 (FI, FG, BMI). For probes at T2, association 
with at least one of the seven phenotypes at T2 (FI, FG, BMI, T2D, 2hGluc, 2hIns, HbA1c) was 
replicated in 12/14, 6/7 probes selected by ML for FI and FG prediction respectively.  

 

 

Discussion 
 
Our study is the first to implement machine learning for prediction of continuous glycaemic 
traits. In this work we have analysed metabolic and methylation data at 31 and 46 years old 
to predict five glycaemic traits indicative for diabetes diagnosis at 46 years old with six 
Machine learning approaches. We found that the models with the best predictive ability 
included raw or score metabolic data as input, BT, RF, or SVR-L2Linear as algorithms, FI and 
FG traits as outcomes. We identified metabolites and epidemiological variables which drove 
the prediction of the models. We showed that prediction exclusively from variables at T1 did 
not lead to good performance and that adjustment for measures of obesity reduced 
significantly the predictive capacity of the models. Finally, we found that methylation probes 
were selected among the top 25 predictors for FG and FI and demonstrated that 72% and 89% 
of these probes at T1 and T2 were associated with at least one of the traits tested for 
replication in NFBC.  
 
Power of the Methodology  
Very few prediction studies have stood out in the field of type 2 diabetes risk prediction largely 
dominated by association studies18,19,21–23. This fact is also known as so-called “missing 
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heritability issue” in genome-wide association studies37. However, all published studies 
targeted T2D onset prediction as a discrete value and rely on the categorization of patients 
based on diagnosis threshold for FG, 2hGluc, random glucose and HbA1c. Continuous 
phenotypes, on the contrary, have the potential to reflect the progressive onset of the disease 
and have better power. Moreover, prediction of continuous phenotypes allow removal of 
HbA1c, FG, FI, and OGTT-derived measures from the set of predictors which may hide more 
modest effects of other variables23. Indeed, FG18–20,22,23 and 2hGluc18,23 are good predictors of 
T2D.  
 
Overlap of Metabolic Variables with Other Studies 
Our study leverages machine learning ability to perform variable selection independently of a 
pre-filtering, with RF, BT and SVR-L2Linear algorithms. To date, RLS (a variant of  SVR-L2Linear 
algorithms)20 , J48-decision tree18, and logistic regression with regularization19,22 have 
highlighted importance of specific metabolites consistent with our findings. Indeed, branched-
chain amino acids (Leucine, Valine, Isoleucine)18,19, HDL, VLDL, glycerol, ApoA and Apo B, 3-
hydroxybutyrate19, aromatic amino acids (phenylalanine, tyrosine)19,22 are established as 
important predictors by machine learning algorithms. In this study, we report glycoprotein 
acetyls, acetoacetate as good predictors of glycaemic trait levels. Although these markers are 
associated with T2D38–40, for the first time here, we show that they are not only associated, 
but are also predictors of glycaemic health.  
 
Epigenetic Markers as Predictors of Glycaemic Health 
The machine learning algorithms assigned a high rank (first 25) to the established “metabolic 
health-associated” methylation probes in “Mh-R + Mb-S” model. Additionally, replication of 
associations for these probes in our study suggests that epigenetic variability may hold a 
predictive value in risk models for glycaemic health. Although the methylation markers did 
not improve the prediction of our model, weighting scores by the combined contribution of 
epigenetic regulation derived from established methylation marks might help accounting for 
their effect, and in building prediction models. 
 
Epigenomic and Metabolic Scores 
The metabolomics scores overperformed raw data for prediction of 3/5 outcomes, while the 
reverse pattern was found for methylation scores in 2/5 outcomes. This trend might be 
explained by the score computation, which has been performed from biochemical classes in 
metabolomics data and per traits previously reported to be associated with the probes11–13 in 
methylation data. 
 
Effect of BMI and WHR 
Measures of body adiposity and those of obesity are established risk factors for T2D41 and 
have a well-known impact on glycaemic trait variability42. In all six machine learning 
approaches and within all data combinations, we confirmed high predictive value of BMI and 
WHR at T1 in glycaemic trait levels change. On the one hand, outcome modelling with BMI 
and WHR at T1 and T2 adjustment has highlighted the primary role of obesity in the drive of 
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metabolic changes leading to T2D. On the other hand, this finding has helped us highlighting 
the modest predictive value of the metabolites and epigenetic variables available to us.   
 
Limitations and Challenges of the Study  
Our analysis has some limitations, such as relatively small sample size (595 subjects), which is 
a drawback for taking full advantage of machine learning prediction with high-dimensional 
data layers. Next, drawing of a threshold regarding variable importance in our machine 
learning models is not trivial. Indeed, depending on the algorithm, final variable importance 
will depend on the number of variables resampled by the algorithms or the regularization 
parameters chosen. Limitations inherent to the samples and the study design are the use of 
whole blood which is a heterogeneous tissue, and relatively young age of the participants (31 
years old) at T1. No study so far has estimated the best time point for prediction of T2D.  
 
In conclusion, we conducted the first study which aims at prediction of glycaemic trait levels 
with machine learning modelling from combined metabolic and methylation datasets from at 
least two time points. In the future, we expect that improvements in methylation scores 
computation, longer model tuning and replication in an external dataset will lead to stronger 
predictive ability of our models for glycaemic traits, and will unveil novel prognostic omics 
biomarkers for T2D endophenotypes.  
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Table 1. Association analysis between 541 probes (277 at T1 and 264 at T2) and seven phenotypes. 
The number of methylation probes at T1 associated with T1 phenotypes (FG, FI or BMI available) as 
well as the number of methylation probes at T1 associated with T2 phenotypes (BMI, FG, HbA1c, 
T2D, 2hGluc, FI or 2hIns) and the number of methylation probes at T2 associated with T2 phenotypes 
(BMI, FG, HbA1c, T2D, 2hGluc, FI or 2hIns) is displayed.  

 
 
FG/FI: Fasting glucose/insulin; HbA1c: glycated haemoglobin; 2hGlu/2hIns: 2-hour glucose/insulin; T1: 
data of participants at age 31 years; T2: data of participants at age 46 years. 
 

 

  

T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

0/11 81/187 70/187 0/21 4/21 0/8 0/8 0/1 5/21 2/67

0/11 133/187 2/21 1/8 1/1 9/21 6/67

Probes for which association with the outcome has been replicated with P-value < 0.05 in NFBC cohort

Phenotype Non Available 

Association Not Tested

T2D

Methylation data at T1

Methylation data at T2

HbA1c BMI FG FI 2hGluc 2hIns

 ~ Methylation T1 or T2

Outcome T2 or T1
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Table 2. Effect of the input dataset on the prediction performance of the five glycaemic traits. Mb-
R: Metabolic Raw Variables, Mb-S: Metabolic Scored Variables, Mh-R: Methylation Raw Variables, Mh-
S: Methylation Scored Variables. Metabolic predictors include epidemiological data, biochemical data 
and metabolomics data.  

 
FG/FI: Fasting glucose/insulin; HbA1c: glycated haemoglobin; 2hGlu/2hIns: 2-hour glucose/insulin. 
The performance of all Machine learning (ML) algorithms upon inclusion of different datatypes was 
evaluated. Selected comparison of models in pairs are displayed on this figure to illustrate:  
(Comparison 1-4)-The comparison between models with metabolic or methylation data only. 
(Comparison 5-6)-The effect of combination of two data types.  
(Comparison 7-8)-The effect of variables transformation to scores.  
(Comparison 9) The decrease in performance of the models upon inclusion of a large number of 
predictors.  
For a given phenotype (FG, FI, HbA1c, 2hGlu or 2hIns), the effect of an input dataset was assessed. 
Column 4 shows which model performed the best, and the number of outcomes for which this pattern 
is observed. Column 5 lists the number of phenotypes in which no difference between “A” and “B” was 
observed.  
Models were compared with Tukey HSD test following a one-way ANOVA. To test the effect of a given 
dataset, we run all six ML algorithms in a nested cross validation framework (5 outer, 5 inner folds), 
thereby each group compared included six (ML algorithms) x five (testing errors) = 30 R2 measures.  
 
  

 
 

Comparison index Models 

Datasets included in the 
models 

Number of outcomes for which 
the model A/B performs the 

best 

Number of outcomes in which 
A and B perform equally 

Mb-R Mb-S Mh-R Mh-S 

1) Comparison of: 
Model A X    5/5 (P<5.0x10-8) 

0/5 
Model B   X  0/5 

2) Comparison of: 
Model A X    5/5 (P<5.0x10-13) 

0/5 
Model B    X 0/5 

3) Comparison of: 
Model A  X   5/5 (P<1.0x10-16) 

0/5 
Model B   X  0/5 

4) Comparison of: 
Model A  X   5/5 (P<5.0x10-13) 

0/5 
Model B    X 0/5 

5) Comparison of: 
Model A X    0/5 

5/5 (P>0.80) 
Model B X  X  0/5 

6) Comparison of: 
Model A X    0/5 

5/5 (P>0.30) 
Model B X   X 0/5 

7) Comparison of: 
Model A  X   3/5 (P<5.0x10-3) 

2/5 (P>0.050) 
Model B X    0/5 

8) Comparison of: 
Model A   X  2/5 (P<0.050) 

3/5 (P>0.50) 
Model B    X 0/5 

9) Comparison of: 
Model A  X  X 5/5 (P<5.0x10-2) 

0/5 
Model B   X X  0/5 
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Figure legends 
 
Figure 1.  Experimental set-up for Machine learning (ML) analysis. ML was applied to multi-omics 
data from the Northern Finland Birth Cohort 1966 at 31 and 46 years. Fasting glucose/insulin (FG/FI), 
glycated haemoglobin (HbA1c) and 2-hour glucose/insulin (2hGlu/2hIns) phenotypes at T2 were 
predicted in 595 individuals using up to 1,010 variables from T1 and T2: Body-mass-index (BMI), waist-
hip-ratio, sex; 10 plasma measurements; 453 NMR-based metabolites; 542 methylation probes 
established for BMI/FG/FI/HbA1c /2hGlu/2hIns/Type 2 diabetes. Six ML approaches were used, 
random forest, boosted trees and support vector regression (SVR) with the kernels of linear/linear 
with L2 regularization/polynomial/radial basis function.  
 
Figure 2. Performance in R2 of the different machine learning models. (a)  Unadjusted for 
measurements of obesity (Waist-to-hip-ratio and Body mass index) at T1 and T2; (b) Adjusted for 
measurements of obesity (Waist-to-hip-ratio and Body mass index) at T1 and T2. Training of the 
algorithm was performed with a nested cross validation (5-folds outer, and 5-folds inner cross 
validation) and the R2 of 5 outer testing folds is displayed for each machine learning model. “Metabolic 
predictors” include epidemiological data, biochemical data and metabolomics data. SVR: Support 
Vector Regression with linear/linear with L2 regularization/polynomial/radial basis function kernels. 
 
Figure 3. Variable Importance for fasting glucose and fasting insulin prediction from two different 
datasets. For each Machine learning (ML) method, the normalized variable importance over five outer 
fold of cross validation was averaged into the "Variable-Model-Importance" (var.mod.Imp). Then for 
each of the six machine learning models, the variables were ranked based on the var.mod.Imp. The 
rank was averaged over the six models to obtain the “mean variable rank”. The latter was used to 
select top 25 variables for display.  For these variables, we display the variable importance after (1) 
weighting the var.mod.Imp by the R2 obtained for each of the individual ML algorithms (2) averaging 
variable importance across the six ML models.  
FI: Fasting Insulin; FG: Fasting Glucose; RF: random forest; BT: boosted trees, SVM: support vector 
regression models with linear/linear with L2 regularization/polynomial/radial basis function kernels. 
Metabolic predictors include epidemiological data, biochemical data and metabolomics data. T2: 46 
years old, T1: 31 years old. BMI: Body Mass Index according to clinical examination, postal 
questionnaire if missing; WHR: Waist-to-hip ratio; Glycerol: Glycerol, mmol/l; GlycoproteinAcetyls: 
Glycoprotein acetyls, mainly a1-acid glycoprotein, mmol/l; Isoleucine: Isoleucine, mmol/l; 
Large_HDL_TotChol: Total cholesterol in large HDL , mmol/l; Large_HDL_CholEsters: Cholesterol esters 
in large HDL , mmol/l; Large_HDL_CholEsters_%: Cholesterol esters to total lipids ratio in large HDL , 
%; Large_HDL_FreeChol: Free cholesterol in large HDL , mmol/l; Large_HDL_FreeChol_%: Free 
cholesterol to total lipids ratio in large HDL , %; Large_HDL_Lipids: Total lipids in large HDL , mmol/l; 
Large_HDL_Particules: Concentration of large HDL particles, mol/l; Large_HDL_PhosphoLipids_%: 
Phospholipids to total lipids ratio in large HDL , %; Large_HDL_Trigycerides_%: Triglycerides to total 
lipids ratio in large HDL , %; Large_VLDL_PhosphoLipids: Phospholipids in large VLDL , mmol/l; Lactate: 
Lactate, mmol/l; Leucine: Leucine, mmol/l; Medium_VLDL_TotChol_%: Total cholesterol to total lipids 
ratio in medium VLDL , %; Medium_VLDL_CholEsters_%: Cholesterol esters to total lipids ratio in 
medium VLDL , %; Medium_VLDL_Trigycerides: Triglycerides in medium VLDL , mmol/l; 
Medium_VLDL_Trigycerides_%: Triglycerides to total lipids ratio in medium VLDL, %; Phenylalanine: 
Phenylalanine, mmol/l; Small_VLDL_Lipids: Total lipids in small VLDL , mmol/l; Small_VLDL_Particules: 
Concentration of small VLDL particles, mol/l; TrigyceridestoPhosphoglycerides: Ratio of triglycerides 
to phosphoglycerides, NA; Tyrosine: Tyrosine, mmol/l; Valine: Valine, mmol/l; VLDL_D: Mean diameter 
for VLDL particles, nm; XL_HDL_FreeChol: Free cholesterol in very large HDL, mmol/l; 
XL_HDL_PhosphoLipids_%: Phospholipids to total lipds ratio in very large HDL, %; 
XL_HDL_Trigycerides_%: Triglycerides to total lipids ratio in very large HDL , %; XL_VLDL_Trigycerides: 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 29, 2018. ; https://doi.org/10.1101/358390doi: bioRxiv preprint 

https://doi.org/10.1101/358390
http://creativecommons.org/licenses/by-nc-nd/4.0/


Triglycerides in very large VLDL , mmol/l; XS_VLDL_FreeChol_%: Free cholesterol to total lipids ratio in 
very small VLDL , %; XXL_VLDL_FreeChol: Free cholesterol in chylomicrons and extremely large VLDL , 
mmol/l; XXL_VLDL_PhosphoLipids: Phospholipids in chylomicrons and extremely large VLDL , mmol/l; 
XXL_VLDL_Trigycerides: Triglycerides in chylomicrons and extremely large VLDL , mmol/l; BRACA: 
Branched-chain amino acids (Leucine, Valine, Isoleucine), MesuresOfAdiposity: Body Mass Index + 
BMI, OtherAminoAcids:  Alanine, Glutamine, Glycine, Histidine, Phenylalanine, Tyrosine, + Creatinine, 
T1_ CarbohydratesAndInsulin: Glucose from metabolomics platform, Lactate, Pyruvate, Citrate, 
Glycerol, Acetate, Fasting Plasma Glucose and Insulin from biochemical measurements. 
T2_Carbohydrates: Lactate, Citrate, Glycerol, Acetate. BloodProteins: Albumin, Glycoprotein Acetyls 
(mainly a1-acid glycoprotein) , KetonBodies: 3-hydroxybutyrate, Acetoacetate, Lipids: [Fasting Serum 
Triglycerides, Esterified cholesterol, Serum total triglycerides, Total phosphoglycerides, Ratio of 
triglycerides to Phosphoglycerides, Phosphatidylcholine and other Cholines, Sphingomyelins, Total 
fatty acids, Estimated degree of unsaturation in Lipids, 22:6, docosahexaenoic acid, 18:2, linoleic acid, 
Omega-3 fatty acids, Omega-6 fatty acids, Polyunsaturated fatty acids, Monounsaturated fatty acids; 
16:1,18:1, Saturated fatty acids, Ratio of 22:6 docosahexaenoic acid to total fatty acids, Ratio of 18:2 
linoleic acid to total fatty acids, Ratio of omega-3 fatty acids to total fatty acids, Ratio of omega-6 fatty 
acids, Ratio of polyunsaturated fatty acids to total fatty acids, Ratio of monounsaturated fatty acids to 
total fatty acids, Ratio of saturated fatty acids to total fatty acids.  
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Figures 

 
Figure 1.  Experimental set-up for Machine learning (ML) analysis. ML was applied to multi-omics 
data from the Northern Finland Birth Cohort 1966 at 31 and 46 years. Fasting glucose/insulin (FG/FI), 
glycated haemoglobin (HbA1c) and 2-hour glucose/insulin (2hGlu/2hIns) phenotypes at T2 were 
predicted in 595 individuals using up to 1,010 variables from T1 and T2: Body-mass-index (BMI), waist-
hip-ratio, sex; 10 plasma measurements; 453 NMR-based metabolites; 542 methylation probes 
established for BMI/FG/FI/HbA1c /2hGlu/2hIns/Type 2 diabetes. Six ML approaches were used, 
random forest, boosted trees and support vector regression (SVR) with the kernels of linear/linear 
with L2 regularization/polynomial/radial basis function.  
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Figure 2. Performance in R2 of the different machine learning models. (a)  Unadjusted for 
measurements of obesity (Waist-to-hip-ratio and Body mass index) at T1 and T2; (b) Adjusted for 
measurements of obesity (Waist-to-hip-ratio and Body mass index) at T1 and T2. Training of the 
algorithm was performed with a nested cross validation (5-folds outer, and 5-folds inner cross 
validation) and the R2 of 5 outer testing folds is displayed for each machine learning model. “Metabolic 
predictors” include epidemiological data, biochemical data and metabolomics data. SVR: Support 
Vector Regression with linear/linear with L2 regularization/polynomial/radial basis function kernels. 
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Figure 3. Variable Importance for fasting glucose and fasting insulin prediction from two different 
datasets. For each Machine learning (ML) method, the normalized variable importance over five outer 
fold of cross validation was averaged into the "Variable-Model-Importance" (var.mod.Imp). Then for 
each of the six machine learning models, the variables were ranked based on the var.mod.Imp. The 
rank was averaged over the six models to obtain the “mean variable rank”. The latter was used to 
select top 25 variables for display.  For these variables, we display the variable importance after (1) 
weighting the var.mod.Imp by the R2 obtained for each of the individual ML algorithms (2) averaging 
variable importance across the six ML models.  
FI: Fasting Insulin; FG: Fasting Glucose; RF: random forest; BT: boosted trees, SVM: support vector 
regression models with linear/linear with L2 regularization/polynomial/radial basis function kernels. 
Metabolic predictors include epidemiological data, biochemical data and metabolomics data. T2: 46 
years old, T1: 31 years old. BMI: Body Mass Index according to clinical examination, postal 
questionnaire if missing; WHR: Waist-to-hip ratio; Glycerol: Glycerol, mmol/l; GlycoproteinAcetyls: 
Glycoprotein acetyls, mainly a1-acid glycoprotein, mmol/l; Isoleucine: Isoleucine, mmol/l; 
Large_HDL_TotChol: Total cholesterol in large HDL , mmol/l; Large_HDL_CholEsters: Cholesterol esters 
in large HDL , mmol/l; Large_HDL_CholEsters_%: Cholesterol esters to total lipids ratio in large HDL , 
%; Large_HDL_FreeChol: Free cholesterol in large HDL , mmol/l; Large_HDL_FreeChol_%: Free 
cholesterol to total lipids ratio in large HDL , %; Large_HDL_Lipids: Total lipids in large HDL , mmol/l; 
Large_HDL_Particules: Concentration of large HDL particles, mol/l; Large_HDL_PhosphoLipids_%: 
Phospholipids to total lipids ratio in large HDL , %; Large_HDL_Trigycerides_%: Triglycerides to total 
lipids ratio in large HDL , %; Large_VLDL_PhosphoLipids: Phospholipids in large VLDL , mmol/l; Lactate: 
Lactate, mmol/l; Leucine: Leucine, mmol/l; Medium_VLDL_TotChol_%: Total cholesterol to total lipids 
ratio in medium VLDL , %; Medium_VLDL_CholEsters_%: Cholesterol esters to total lipids ratio in 
medium VLDL , %; Medium_VLDL_Trigycerides: Triglycerides in medium VLDL, mmol/l; 
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Medium_VLDL_Trigycerides_%: Triglycerides to total lipids ratio in medium VLDL , %; Phenylalanine: 
Phenylalanine, mmol/l; Small_VLDL_Lipids: Total lipids in small VLDL , mmol/l; Small_VLDL_Particules: 
Concentration of small VLDL particles, mol/l; TrigyceridestoPhosphoglycerides: Ratio of triglycerides 
to phosphoglycerides, NA; Tyrosine: Tyrosine, mmol/l; Valine: Valine, mmol/l; VLDL_D: Mean diameter 
for VLDL particles, nm; XL_HDL_FreeChol: Free cholesterol in very large HDL, mmol/l; 
XL_HDL_PhosphoLipids_%: Phospholipids to total lipds ratio in very large HDL, %; 
XL_HDL_Trigycerides_%: Triglycerides to total lipids ratio in very large HDL , %; XL_VLDL_Trigycerides: 
Triglycerides in very large VLDL , mmol/l; XS_VLDL_FreeChol_%: Free cholesterol to total lipids ratio in 
very small VLDL , %; XXL_VLDL_FreeChol: Free cholesterol in chylomicrons and extremely large VLDL , 
mmol/l; XXL_VLDL_PhosphoLipids: Phospholipids in chylomicrons and extremely large VLDL , mmol/l; 
XXL_VLDL_Trigycerides: Triglycerides in chylomicrons and extremely large VLDL , mmol/l; BRACA: 
Branched-chain amino acids (Leucine, Valine, Isoleucine), MesuresOfAdiposity: Body Mass Index + 
BMI, OtherAminoAcids:  Alanine, Glutamine, Glycine, Histidine, Phenylalanine, Tyrosine, + Creatinine, 
T1_ CarbohydratesAndInsulin: Glucose from metabolomics platform, Lactate, Pyruvate, Citrate, 
Glycerol, Acetate, Fasting Plasma Glucose and Insulin from biochemical measurements. 
T2_Carbohydrates: Lactate, Citrate, Glycerol, Acetate. BloodProteins: Albumin, Glycoprotein Acetyls 
(mainly a1-acid glycoprotein) , KetonBodies: 3-hydroxybutyrate, Acetoacetate, Lipids: [Fasting Serum 
Triglycerides, Esterified cholesterol, Serum total triglycerides, Total phosphoglycerides, Ratio of 
triglycerides to Phosphoglycerides, Phosphatidylcholine and other Cholines, Sphingomyelins, Total 
fatty acids, Estimated degree of unsaturation in Lipids, 22:6, docosahexaenoic acid, 18:2, linoleic acid, 
Omega-3 fatty acids, Omega-6 fatty acids, Polyunsaturated fatty acids, Monounsaturated fatty acids; 
16:1,18:1, Saturated fatty acids, Ratio of 22:6 docosahexaenoic acid to total fatty acids, Ratio of 18:2 
linoleic acid to total fatty acids, Ratio of omega-3 fatty acids to total fatty acids, Ratio of omega-6 fatty 
acids, Ratio of polyunsaturated fatty acids to total fatty acids, Ratio of monounsaturated fatty acids to 
total fatty acids, Ratio of saturated fatty acids to total fatty acids.  
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