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Abstract

Precision medicine brings the promise of more precise diagnosis and individual-
ized therapeutic strategies from analyzing a cancer’s genomic signature. Tech-
nologies such as high-throughput sequencing enable cheaper data collection at
higher speed, but rely on modern data analysis platforms to extract knowledge
from these high dimensional datasets. Since this is a rapidly advancing field, new
diagnoses and therapies often require tailoring of the analysis. These pipelines
are therefore developed iteratively, continuously modifying analysis parameters
before arriving at the final results. To enable reproducible results it is impor-
tant to record all these modifications and decisions made during the analysis
process.

We built a system, walrus, to support reproducible analyses for iteratively
developed analysis pipelines. The approach is based on our experiences develop-
ing and using deep analysis pipelines to provide insights and recommendations
for treatment in an actual breast cancer case. We designed walrus for the single
servers or small compute clusters typically available for novel treatments in the
clinical setting. walrus leverages software containers to provide reproducible
execution environments, and integrates with modern version control systems to
capture provenance of data and pipeline parameters.

We have used walrus to analyze a patient’s primary tumor and adjacent
normal tissue, including subsequent metastatic lesions. Although we have used
walrus for specialized analyses of whole-exome sequencing datasets, it is a gen-
eral data analysis tool that can be applied in a variety of scientific disciplines.
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We have open sourced walrus along with example data analysis pipelines at
github.com/uit-bdps/walrus.

1 Introduction

Precision medicine uses patient-specific molecular information to diagnose and
categorize disease to tailor treatment to improve health outcome.[1] Important
goals in precision medicine are to learn about the variability of the molecular
characteristics of individual tumors, their relationship to outcome, and to im-
prove diagnosis and therapy.[2] International cancer institutions are therefore
offering dedicated personalized medicine programs.

For cancer, high throughput sequencing is an emerging technology to facili-
tate personalized diagnosis and treatment since it enables collecting high quality
genomic data from patients at a low cost. Data collection is becoming cheaper,
but the downstream computational analysis is still time consuming and thereby
a costly part of the experiment. This is because of the manual efforts to set up,
analyze, and maintain the analysis pipelines. These pipelines consist of a large
number of steps that transform raw data into interpretable results.[3] These
pipelines often consists of in-house or third party tools and scripts that each
transform input files and produce some output. Although different tools exist,
it is necessary to carefully explore different tools and parameters to choose the
most efficient to apply for a dedicated question.[4] The complexity of the tools
vary from toolkits such as the Genome Analysis Toolkit (GATK) to small cus-
tom bash or R scripts. In addition some tools interface with databases whose
versions and content will impact the overall result.[5]

Improperly developed analysis pipelines for precision medicine may generate
inaccurate results, which may have negative consequences for patient care.[6]
When developing analysis pipelines for use in precision medicine it is therefore
necessary to track pipeline tool versions, their input parameters, and data. Both
to thoroughly document what produced the final clinical reports, but also for
iteratively improving the quality of the pipeline during development. Because
of the iterative process of developing the analysis pipeline, it is necessary to use
analysis tools that facilitate modifying pipeline steps and adding new ones with
little developer effort.

1.1 Breast Cancer Diagnosis and Treatment

We have previously analyzed DNA sequence data from a breast cancer patient’s
primary tumor and adjacent normal cells to identify the molecular signature of
the patient’s tumor and germline. When the patient later relapsed we analyzed
sequence data from the patient’s metastasis to provide an extensive comparison
against the primary and to identify the molecular drivers of the patient’s tumor.

We used Whole-Genome Sequencing (WGS) to sequence the primary tumor
and adjacent normal cells at an average depth of 20, and Whole-Exome Sequenc-
ing (WES) at an average depth of 300. The biological samples were sequenced
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at the Genome Quebec Innovation Centre and we stored the raw datasets on
our in-house server. From the analysis pipelines we generated reports with end
results, such as detected somatic mutations, that was distributed to both the
patient and the treating oncologists. These could be used to guide diagnosis and
treatment, and give more detailed insight into both the primary and metasta-
sis. When the patient relapsed we analyzed WES data using our own pipeline
manager, walrus, to investigate the metastasis and compare it to the primary
tumor.

For the initial WGS analysis we developed a pipeline to investigate somatic
and germline mutations based on Broad Institute’s best practices. We developed
the analysis pipeline on our in-house compute server using a bash script version
controlled with git to track changes as we developed the analysis pipeline. The
pipeline consisted of tools including picard,1 fastqc,2 trimmomatic,3 and the
GATK.4 While the analysis tools themselves provide the necessary function-
ality to give insights in the disease, ensuring that the analyses could be fully
reproduced later left areas in need of improvement.

We chose a command-line script over more complex pipelining tools or work-
benches such as Galaxy[7] because of its fast setup time on our available compute
infrastructure, and familiar interface. More complex systems could be beneficial
in larger research groups with more resources to compute infrastructure main-
tenance, whereas command-line scripting languages require little infrastructure
maintenance over normal use. In addition, while there are off-site solutions for
executing scientific workflows, analyzing sensitive data often put hard restric-
tions on where the data can be stored and analyzed.

After we completed the first round of analyses we summarized our efforts
and noted some lessons learned.

∙ Datasets and databases should be version controlled and stored along with
the pipeline description. In the analysis script we referenced to datasets
and databases by their physical location on a storage system, but these
were later moved without updating the pipeline description causing extra
work. A solution would be to add the data to the same version control
repository hosting the pipeline description.

∙ The specific pipeline tools should also be kept available for later use. Since
installing many bioinformatics tools require a long list of dependencies, it
is beneficial to store the pipeline tools to reduce the time to start analyzing
new data or re-run analyses.

∙ It should be easy to add new tools to an existing pipeline and execu-
tion environment. This includes installing the specific tool and adding to
an existing pipeline. Bundling tools within software containers, such as

1broadinstitute.github.io/picard
2bioinformatics.babraham.ac.uk/projects/fastqc
3usadellab.org/cms/?page=trimmomatic
4software.broadinstitute.com/gatk

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 25, 2018. ; https://doi.org/10.1101/354811doi: bioRxiv preprint 

broadinstitute.github.io/picard
bioinformatics.babraham.ac.uk/projects/fastqc
usadellab.org/cms/?page=trimmomatic
software.broadinstitute.com/gatk
https://doi.org/10.1101/354811
http://creativecommons.org/licenses/by-nc-nd/4.0/


Docker, and hosting them on an online registry simplifies the tool instal-
lation process since the only requirement is the container runtime.

∙ While bash scripts have their limitations, using a well-known format that
closely resembles the normal command-line use clearly have its advantages.
It is easy to understand what tools were used, their input parameters, and
the data flow. However, from our experience when these analysis scripts
grow too large they become too complex to modify and maintain.

∙ While there are new and promising state-of-the art pipeline managers,
many of these also require state-of-the-art computing infrastructure to
run. This may not be the case for the current research and hospital envi-
ronments.

The above problem areas are not just applicable to our research group, but
common to other research and precision medicine projects as well. Especially
when hospitals and research groups aim to apply personalized medicine efforts to
guide therapeutic strategies and diagnosis, the analyses will have to be able to be
easily reproducible later. We used the lessons learned to design and implement
walrus, a command line tool for developing and running data analysis pipelines.
It automatically orchestrates the execution of different tools, and tracks tool
versions and parameters, as well as datasets through the analysis pipeline. It
provides users a simple interface to inspect differences in pipeline runs, and
retrieve previous analysis results and configurations. In the remainder of the
paper we describe the design and implementation of walrus, its clinical use, its
performance, and how it relates to other pipeline managers.

2 walrus

walrus is a tool for developing and executing data analysis pipelines. It stores
information about tool versions, tool parameters, input data, intermediate data,
output data, as well as execution environments to simplify the process of repro-
ducing data analyses. Users write descriptions of their analysis pipelines using
a familiar syntax and walrus uses this description to orchestrate the execution
of the pipeline. In walrus we package all tools in software containers to capture
the details of the different execution environments. While we have used walrus

to analyse high-throughput datasets in precision medicine, it is a general tool
that can analyze any type of data, e.g. image datasets for machine learning.
It has few dependencies and runs on on any platform that supports Docker
containers. While other popular pipeline managers require the use of cluster
computers or cloud environment, we focus on single compute nodes often found
in clinical environments such as hospitals.

walrus is implemented as a command-line tool in the Go programming lan-
guage. We use the popular software container implementation Docker5 to pro-
vide reproducible execution environments, and interface with git together with

5docker.com
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git-lfs6 to version control datasets and pipeline descriptions. By choosing Docker
and git we have built a tool that easily integrates with current bioinformatic
tools and workflows. It runs both natively or within its own Docker container
to simplify its installation process.

With walrus we target pipeline developers that use command-line tools and
scripting languages to build and run analysis pipelines. Users can use existing
Docker containers from sources such as BioContainers,[8] or build containers
with their own tools. We integrate with the current workflow using git to version
control analysis scripts, and use git-lfs for versioning of datasets as well. We have
designed the pipeline description format resembles the command line syntax as
much as possible. This is one of the major strengths of walrus. It uses a familiar
syntax and format, and does not require the users to explicitly declare which
files in the pipeline to version control.

2.1 Pipeline Configuration

Users configure analysis pipelines by writing pipeline description files in a human
readable format such as JavaScript Object Notation (JSON) or YAML Ain’t
Markup Language (YAML). A pipeline description contains a list of stages, each
with inputs and outputs, along with optional information such as comments or
configuration parameters such as caching rules for intermediate results. Listing
1 shows an example pipeline stage that uses MuTect[9] to detect somatic point
mutations. Users can also specify the tool versions by selecting a specific Docker
image, for example using MuTect version 1.1.7 as in Listing 1, line 3.

Users specify the flow of data in the pipeline within the pipeline description,
as well as the dependencies between the steps. Since pipeline configurations can
become complex, users can view their pipelines using an interactive web-based
tool, or export their pipeline as a DOT file for visualization in tools such as
Graphviz.7

Listing 1: Example pipeline stage for a tool that detects somatic point muta-
tions. It reads a reference sequence file together with both tumor and normal
sequences, and produces an output file with the detected mutations.

{
"Name": "mutect",
"Image": "fjukstad/mutect :1.1.7" ,
"Cmd": [

"--analysis_type ","MuTect",
"--reference_sequence ","/ walrus/input/reference.fasta",
"--input_file:normal ","/ walrus/input/normal.bam",
"--input_file:tumor","/ walrus/input/tumor.bam",
"-L","/ walrus/input/targets.bed",
"--out","/ walrus/mutect/mutect -stats -txt",
"--vcf","/ walrus/mutect/mutect.vcf"

],
"Inputs ":[

"input"
]

}

6git-lfs.github.com
7graphviz.org
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Users add data to an analysis pipeline by specifying the location of the
input data in the pipeline description, and walrus automatically mounts it to
the container running the analysis. The location of the input files can either be
local or remote locations such as an FTP server. When the pipeline is completed,
walrus will store all the input, intermediate and output data to a user-specified
location.

2.2 Pipeline Execution

When users have written a pipeline description for their analyses, they can use
the command-line interface of walrus to run the analysis pipeline. walrus

builds an execution plan from the pipeline description and runs it for the user.
It uses the input and output fields of each pipeline stage to construct a Di-
rected Acyclic Graph (DAG) where each node is a pipeline stage and the links
are input/output data to the stages. From this graph walrus can determine
parallelizable stages and coordinate the execution of the pipeline.

In walrus, each pipeline stage is run in a separate container, and users can
specify container versions in the pipeline description to specify the correct ver-
sion of a tool. We treat a container as a single executable and users specify tool
input arguments in the pipeline description file using standard command line
syntax. walrus will automatically build or download the container images with
the analysis tools, and start these with the user-defined input parameters and
mount the appropriate input datasets. While the pipeline is running, walrus
monitors running stages and schedules the execution of subsequent pipeline
stages when their respective input data become available. We have designed
walrus to execute an analysis pipeline on a single large server, but since the
tools are run within containers, these can easily be orchestrated across a range
of servers in future versions.

Users can select from containers pre-installed with bioinformatics tools, or
build their own using a standard Dockerfile. Through software containers walrus
can provide a reproducible execution environment for the pipeline, and contain-
ers provide simple execution on a wide range of software and hardware plat-
forms. With initiatives such as BioContainers, researchers can make use of
already existing containers without having to re-write their own. Data in each
pipeline step is automatically mounted and made available within each Docker
container. By simply relying on Docker walrus requires little software setup to
run different bioinformatics tools.

While walrus executes a single pipeline on one physical server, it supports
both data and tool parallelism, as well as any parallelization strategies within
each tool, e.g. multi-threading. If users want to run the same analyses for a set
of samples, or for example per chromosome, they can simply list the samples in
the pipeline description and walrus will automatically run each sample through
the pipeline in parallel. While we can parallelize the independent pipeline steps,
the performance of an analysis pipeline relies on each of the independent tools
and available compute power. This also applies to the scalability of the analysis
pipeline.
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Upon successful completion of a pipeline run, walrus will write a verbose
pipeline description file to the output directory. This file contains information on
the runtime of each step, which steps were parallelized, and provenance related
information to the output data from each step. Users can investigate this file to
get a more detailed look on the completed pipeline. In addition to this output
file walrus will return a unique version ID for the pipeline run, which later can
be used to investigate a previous pipeline run.

2.3 Data Management

In walrus we provide an interface for users to track their analysis data through a
version control system. This allows users to inspect data from previous pipeline
runs without having to recompute all the data. walrus stores all intermediate
and output data in an output directory specified by the user, which is version
controlled automatically by walrus when new data is produced by the pipeline.
We track changes at file granularity.

In walrus we interface with git to track any output file from the analysis
pipeline. When users execute a pipeline, walrus will automatically add and
commit output data t a git repository using git-lfs. Users typically use a
single repository per pipeline, but can share the same repository to version
multiple pipelines as well. With git-lfs, instead of writing large blobs to a
repository it writes small pointer files that contains the hash of the original file,
the size of the file, and the version of git-lfs used. The files themselves are stored
separately which makes the size of the repository small and manageable with
git. The main reason why we chose git and git-lfs for version control is that
git is the de facto standard for versioning source code, and we want to include
versioning of datasets without altering the typical development workflow.

Since we are working with potentially sensitive datasets walrus is targeted
at users that use a local compute and storage servers. It is up to users to
configure a remote tracker for their repositories, but we provide command-line
functionality in walrus to run a git-lfs server that can store users’ contents.
They can use their default remotes, such as Github, for hosting source code but
they must themselves provide the remote server to host their data.

2.4 Pipeline Reconfiguration and Re-execution

Reconfiguring a pipeline is common practice in precision medicine, e.g. to en-
sure that genomic variants are called with a desired sensitivity and specificity.
To reconfigure an existing pipeline users make the applicable changes to the
pipeline description and re-run it using walrus. walrus will then recompute
the necessary steps and return a version ID for the newly run pipeline. This ID
can be used to compare pipeline runs, the changes made, and optionally restore
the data and configuration from a previous run. Reconfiguring the pipeline to
use updated tools or reference genomes will alter the pipeline configuration and
force walrus to recompute the applicable pipeline stages.
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Figure 1: Screenshot of the web-based visualization in walrus. The user has
zoomed in to inspect the pipeline step which marks duplicate reads in the tumor
sequence data.

The command-line interface of walrus provides functionality to restore re-
sults from a previous run, as well as printing information about a completed
pipeline. To restore a previous pipeline run, users use the restore command
line flag in walrus together with the version ID of the respective pipeline run.
walrus will interface with git to restore the files to their state at the necessary
point in time.

3 Results

To evaluate the usefulness of walrus we demonstrate its use in a clinical setting,
and the low computational time and storage overhead to support reproducible
analyses.

3.1 Clinical Application

We have used walrus to analyze a whole-exome data from a sample in the
McGill Genome Quebec [MGGQ] dataset (GSE58644)[10] to discover Single
Nucleotide Polymorphisms (SNPs), genomic variants and somatic mutations.
We interactively developed a pipeline description that follows the best-practices
of The Broad Institute8 and generated reports that summarized the findings to
share the results. Figure 1 shows a screenshot from the web-based visualization
in walrus of the pipeline.

From the analyses we discovered inherited germline mutations that are rec-
ognized to be among the top 50 mutations associated with an increased risk of
familial breast cancer. We also discovered a germline deletion which has been
associated with an increased risk of breast cancer. We also discovered mutations
in a specific gene that might explain why specific drug had not been effective in
the treatment of the primary tumor. From the profile of the primary tumor we

8software.broadinstitute.org/gatk/best-practices
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discovered many somatic events (around 30 000) across the whole genome with
about 1000 in coding regions, and 500 of these were coding for non-synonymous
mutations. We did not see amplification or constituent activation of growth
factors like HER2, EGFR or other players in breast cancer. Because of the
germline mutation, early recurrence, and lack of DNA events, we suspect that
the patient’s primary tumor was highly immunogenic. We have also identified
several mutations and copy number changes in key driver genes. This includes
a mutation in a gene that creates a premature stop codon, truncating one copy
of the gene.

While we cannot share the results in details or the sensitive dataset, we have
made the pipeline description available at github.com/uit-bdps/walrus along
with other example pipelines.

3.2 Example Dataset

To demonstrate the performance of walrus and the ability to track and detect
changes in an analysis pipeline, we have implemented one of the variant call-
ing pipelines from [11] using tools from picard and the GATK. We show the
storage and computational overhead of our approach, and the benefit of captur-
ing the pipeline specification using a pipeline manager rather than a methods
section in a paper. The pipeline description and code is available along with
walrus at github.com/uit-bdps/walrus. Figure 2 shows a simple graphical
representation of the pipeline.

3.2.1 Performance and Resource Usage

We first run the variant calling pipeline without any additional provenance
tracking or storing of output or intermediate datasets. This is to get a baseline
performance measurement for how long we expect the pipeline to run. We then
run a second experiment to measure the overhead of versioning output and
intermediate data. Then we introduce a parameter change in one of the pipeline
steps which results in new intermediate and output datasets. Specifically we
change the --maxReadsForRealignment parameter in the indel realigner step
back to its default (See the online pipeline description for more details). This
forces walrus to recompute the indel realigner step and any subsequent steps.
We then use the restore flag in walrus to illustrate what the parameter change
had on the pipeline output. To illustrate how walrus can restore old pipeline
configurations and results, we restore the pipeline to the initial configuration
and results. We show the computational overhead and storage usage of restoring
a previous pipeline configuration.

Reproducing results from a scientific publication can be a difficult task.
For example, troublesome formatting of the online version of [11] led to some
pipeline tools failing. The parameters prefixed with two consecutive hypens
(--) are converted to single em dashes (—). PDF versions of the paper lists the
parameters correctly. In addition, the input filenames in the variant calling step
do not correspond to any output files in previous steps, but because of their
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Figure 2: In addition to the web-based inteactive pipeline visualization, walrus
can also generate DOT representations of pipelines. The figure shows the ex-
ample variant calling pipeline.

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 25, 2018. ; https://doi.org/10.1101/354811doi: bioRxiv preprint 

https://doi.org/10.1101/354811
http://creativecommons.org/licenses/by-nc-nd/4.0/


similarity to previous output files we assume that this is just a typo. These
issues in addition to missing commands for e.g. the filtering step highlights the
clear benefit of writing and reporting the analysis pipeline using a tool such as
walrus.

Table 1 shows the runtime and storage use of the different experiments.
In the second experiment we can see the added overhead of adding version
control to the dataset. In total, an hour is added to the runtime and the data
size is doubled. The doubling comes from git-lfs hard copying the data into a
subdirectory of the .git folder in the repository. With git-lfs users can move
all datasets to a remote server reducing the local storage requirements. In the
third experiment we can see that only the downstream analyses from configuring
the indel realignment parameter is executed. It generates 30GB of additional
data, but the execution time is limited to the applicable stages. Restoring the
pipeline to a previous configuration is almost instantaneous since the data is
already available locally and git only has to modify the pointers to the correct
files in the .git subdirectory.

Table 1: Runtime and storage use of a the typical workflow of developing a
variant-calling pipeline with walrus.

Experiment Task Runtime Storage
Use

1 Run pipeline
with default
configuration

21 hours 50
minutes

235
GB

2 Run the default
pipeline with
version control
of data

23 hours 9
minutes

470
GB

3 Re-run the
pipeline with
modified indel
realignment
parameter

13 hours 500
GB

4 Restoring
pipeline back
to the default
configuration

< 1 second 500GB

4 Related Work

There are a wealth of pipeline specification formats and workflow managers
available. Some are targeted at users with programming experience while oth-
ers provide simple Graphical User Interfaces (GUIs). Here we describe the most
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popular systems for building data analysis pipelines. While most provide vi-
able options for genomic analyses, we have found most to complex to install
and maintain in clinical settings. We discuss tools that use the common Com-
mon Workflow Language (CWL) pipeline specification and systems that provide
versioning of data.

CWL is a specification for describing analysis workflows and tools.[12] A
pipeline is written as a JSON or YAML file, or a mix of the two, and describes
each step in detail, e.g. what tool to run, its input parameters, input data
and output data. The pipeline descriptions are text files that can be version
controlled and shared between projects. There are multiple implementations
of CWL workflow platforms, e.g. the reference implementation cwl runner,9

Arvados,[13] Rabix,[14] Toil,[15] Galaxy,[7] and AWE.[16] It is no requirement
to run tools within containers, but implementations can support it. There are
few of these tools that support versioning of the data. Galaxy is an open web-
based platform for reproducible analysis of large high-throughput datasets.[7]
It is possible to run Galaxy on local compute clusters, in the cloud, or using
the online Galaxy site.10 In Galaxy users set up an analysis pipeline using a
web-based graphical interface, and it is also possible to export or import an
existing workflow to an Extensible Markup Language (XML) file.11 We chose
not to use Galaxy because of missing command-line and scripting support, along
with little support for running workflows with different configurations.[17] Rabix
provides checksums of output data to verify it against the actual output from
the pipeline. This is similar to the checksums found in the git-lfs pointer files,
but they do not store the original files for later. Arvados stores the data in a
distributed storage system, Keep, that provides both storage and versioning of
data. We chose not to use CWL and its implementations because of its relaxed
restrictions on having to use containers, its verbose pipeline descriptions, and
the complex compute architecture required for some of the runners. We are
however experimenting with an extension to walrus that translates pipeline
descriptions written in walrus to CWL pipeline descriptions.

Pachyderm is a system for running big data analysis pipelines. It provides
complete version control for data and leverages the container ecosystem to pro-
vide reproducible data processing.12 Pachyderm consists of a file system (Pachy-
derm File System (PFS)) and a processing system (Pachyderm Processing Sys-
tem (PPS)). PFS is a file system with git-like semantics for storing data used in
data analysis pipelines. Pachyderm ensures complete analysis reproducibility by
providing version control for datasets in addition to the containerized execution
environments. Both PFS and PPS is implemented on top of Kubernetes.13 We
believe that the approach in Pachyderm with version controlling datasets and
containerizing each pipeline step is the correct approach to truly reproducible

9github.com/common-workflow-language/cwltool
10Available at usegalaxy.org.
11An alpha version of Galaxy with CWL support is available at github.com/

common-workflow-language/galaxy.
12pachyderm.io
13kubernetes.io
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data analysis pipelines. The reason we did not use Kubernetes and Pachyderm
was because our compute infrastructure did not support it. In addition we did
not want to use a separate tool, PFS, for data versioning, we wanted to integrate
it with the current pratice of using git for versioning.

The BioContainers[8] and Bioboxes[18] projects address the challenge of in-
stalling bioinformatics data analysis tools by maintaining a repository of Docker
containers for commonly used data analysis tools. Docker containers are shown
to have better than, or equal performance as VMs.[19] Both forms of virtu-
alization techniques introduce overhead in I/O-intensive workloads, especially
in VMs, but introduce negligible CPU and memory overhead. For precision
medicine pipelines the overhead of Docker containers will be negligible since
these tend to be compute intensive and they typically run for several hours.
[19] Containers have also been proposed as a solution to improve experiment
reproducibility, by ensuring that the data analysis tools are installed with the
same responsibilities.[20]

5 Discussion

Precision medicine requires flexible analysis pipelines that allow researchers to
explore different tools and parameters to analyze their data. While there are
best practices to develop analysis pipelines for genomic datasets, e.g. to discover
genomic variants, there is still no de-facto standard for sharing the detailed de-
scriptions to simplify re-using and reproducing existing work. Pipelines typically
need to be tailored to fit each project and patient, and different patients will
typically elicit different molecular patterns that require individual investigation.
While we could follow best practices to develop our pipeline we explored differ-
ent tools and parameters before we arrived at the final analysis pipeline. For
example, in our WES pipeline we ran several rounds of preprocessing (trimming
reads and quality control) before we were sure that the data was ready for anal-
ysis. Having a pipeline system that could keep track of different intermediate
datasets, along with the pipeline specification, simplifies the task of comparing
the results from pipeline tools and input parameters. While we have developed
one approach to version control genomic datasets in an analysis pipeline, we
believe that there is still room for improvement.

While we provide one approach to version control datasets, there are still
some drawbacks. git-lfs supports large files, but in our results it added an
additional 5% in runtime. This makes the entire analysis pipeline slower, but
we argue that having the files version controlled outweigh the runtime. In
addition, there are only a few public gif-lfs hosting platforms for datasets larger
than a few gigabytes, making it necessary to host these in house.

We aim to investigate the performance of running analysis pipelines with
walrus, and the potential benefit of its built-in data parallelism. While our
WES analysis pipeline successfully run steps in parallel for the tumor and ad-
jacent normal tissue, we have not demonstrated the benefit of doing so. This
includes benchmarking and analyzing the system requirements for doing preci-

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 25, 2018. ; https://doi.org/10.1101/354811doi: bioRxiv preprint 

https://doi.org/10.1101/354811
http://creativecommons.org/licenses/by-nc-nd/4.0/


sion medicine analyses. We are also planning on exploring parallelism strategies
where we can split an input dataset into chromosomes and run some steps in
parallel for each chromosome, before merging the data again.

6 Conclusions

We have designed and implemented walrus, a tool for developing reproducible
data analysis pipelines for use in precision medicine. Precision medicine requires
that analyses are run on hospital compute infrastructures and results are fully
reproducible. By packaging analysis tools in software containers, and tracking
both intermediate and output data, walrus provides the foundation for repro-
ducible data analyses in the clinical setting. We have used walrus to analyze a
patient’s metastatic lesions and adjacent normal tissue to provide insights and
recommendations for cancer treatment.
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