
 

Title 1 

Spike burst–pause dynamics of Purkinje cells regulate 2 

sensorimotor adaptation 3 

Abbreviated title 4 

Burst-pause Purkinje dynamics regulate motor 5 

adaptation 6 

Niceto R. Luque1, Francisco Naveros2, Richard R. Carrillo2, Eduardo Ros2¶ and 7 

Angelo Arleo1¶ 8 

  9 

1 Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la 10 

Vision, Paris, France  11 

2 Department of Computer Architecture and Technology, CITIC-University of Granada, 12 

Granada, Spain 13 

* Corresponding authors: Niceto R. Luque, and Angelo Arleo  14 

E–mail: nluque@ugr.es, angelo.arleo@inserm.fr  15 

¶ AA and ER are Joint Senior Authors 16 

 17 

 18 

 19 

  20 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2018. ; https://doi.org/10.1101/347252doi: bioRxiv preprint 

https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/


Page 2 of 48 

Abstract 21 

Cerebellar Purkinje cells mediate accurate eye movement coordination. However, it 22 

remains unclear how oculomotor adaptation depends on the interplay between the 23 

characteristic Purkinje cell response patterns, namely tonic, bursting, and spike pauses. 24 

Here, a spiking cerebellar model assesses the role of Purkinje cell firing patterns in 25 

vestibular ocular reflex (VOR) adaptation. The model captures the cerebellar 26 

microcircuit properties and it incorporates spike-based synaptic plasticity at multiple 27 

cerebellar sites. A detailed Purkinje cell model reproduces the three spike-firing patterns 28 

that are shown to regulate the cerebellar output. Our results suggest that pauses following 29 

Purkinje complex spikes (bursts) encode transient disinhibition of targeted medial 30 

vestibular nuclei, critically gating the vestibular signals conveyed by mossy fibres. This 31 

gating mechanism accounts for early and coarse VOR acquisition, prior to the late reflex 32 

consolidation. In addition, properly timed and sized Purkinje cell bursts allow the ratio 33 

between long-term depression and potentiation (LTD/LTP) to be finely shaped at mossy 34 

fibre-medial vestibular nuclei synapses, which optimises VOR consolidation. Tonic 35 

Purkinje cell firing maintains the consolidated VOR through time. Importantly, pauses 36 

are crucial to facilitate VOR phase-reversal learning, by reshaping previously learnt 37 

synaptic weight distributions. Altogether, these results predict that Purkinje spike burst-38 

pause dynamics are instrumental to VOR learning and reversal adaptation. 39 

  40 
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Author Summary 41 

Cerebellar Purkinje cells regulate accurate eye movement coordination. However, it 42 

remains unclear how cerebellar-dependent oculomotor adaptation depends on the 43 

interplay between Purkinje cell characteristic response patterns: tonic, high-frequency 44 

bursting, and post-complex spike pauses. We explore the role of Purkinje spike burst-45 

pause dynamics in VOR adaptation. A biophysical model of Purkinje cell is at the core 46 

of a spiking network model, which captures the cerebellar microcircuit properties and 47 

incorporates spike-based synaptic plasticity mechanisms at different cerebellar sites. We 48 

show that Purkinje spike burst-pause dynamics are critical for (1) gating the vestibular-49 

motor response association during VOR acquisition; (2) mediating the LTD/LTP 50 

balance for VOR consolidation; (3) reshaping synaptic efficacy distributions for VOR 51 

phase-reversal adaptation; (4) explaining the reversal VOR gain discontinuities during 52 

sleeping. 53 

  54 
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Introduction 55 

The cerebellum controls fine motor coordination including online adjustments of eye 56 

movements [1]. Within the cerebellar cortex, the inhibitory projections of Purkinje cells 57 

to medial vestibular nuclei (MVN) mediate the acquisition of accurate oculomotor 58 

control [2, 3]. Here, we consider the role of cerebellar Purkinje cells in the adaptation of 59 

the vestibular ocular reflex (VOR), which generates rapid contralateral eye movements 60 

that maintain images in the fovea during head rotations (Fig 1A). The VOR is crucial to 61 

preserve clear vision (e.g., whilst reading) and maintain balance by stabilising gaze 62 

during head movements. The VOR is mediated by the three-neuron reflex arc comprised 63 

of connections from the vestibular organ via the medial vestibular nuclei (MVN) to the 64 

eye motor neurons  [3-5]. VOR control is purely feed-forward [6] and it relies on several 65 

cerebellar-dependent adaptive mechanisms driven by sensory errors (Fig 1B). Because 66 

of its dependence upon cerebellar adaptation, VOR has become one of the most 67 

intensively used paradigms to assess cerebellar learning [6]. However, very few studies 68 

have focused on the relation between the characteristics spike response patterns of 69 

Purkinje cells and VOR adaptation, which is the main focus of this study. 70 

 71 

Figure 1. Vestibular Ocular Reflex (VOR) and cerebellar control loop. (A) Horizontal 72 

VOR (h-VOR) protocols compare head rotational movements (input) against the induced 73 

contralateral eye movements (output) via two measurements: the VOR gain, i.e. the ratio 74 

between eye and head speeds (Ev and Hv, respectively); and the VOR phase, i.e. the 75 

temporal lag between eye and head velocity signals. (B) Cerebellar feed-forward control 76 

system comparing a known reference (head velocity or input variable) to the actual 77 

output (eye velocity) to quantify an error signal driving adaptation. The cerebellum 78 
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compensates for the difference between actual eye (represented as an inverter logic gate 79 

in this scheme) and head velocity profiles. The head velocity consists of a 1 Hz sinusoidal 80 

function iteratively presented to the cerebellar model, mimicking the sinusoidal 81 

frequency of the head rotation in experimental protocols [7]. (C) Schematic 82 

representation of the main neural layers, cells, connections and plasticity sites 83 

considered in the cerebellar model. Mossy fibres (MFs) convey the sensory signals from 84 

the vestibular organ and they provide the input to the cerebellar network. MFs project 85 

sensorimotor information onto granular cells (GCs) and medial vestibular nuclei 86 

(MVN). GCs, in turn, project onto Purkinje cells through parallel fibres (PFs). Purkinje 87 

cells also receive excitatory inputs from the climbing fibres (CFs). CFs deliver the error 88 

signals encoding instructive terms that drive motor control learning. Purkinje cells 89 

integrate CF and PF inputs, thus transmitting the difference between head and eye 90 

movements. Finally, MVN are inhibited by Purkinje cells and provide the main 91 

cerebellar output. The cerebellar model implements different spike timing dependent 92 

plasticity mechanisms at multiple sites: PF-Purkinje cell, MF-MVN, and Purkinje cell-93 

MVN synapses. 94 

 95 

Purkinje cells provide the major output of the cerebellum through MVN. Purkinje 96 

cells receive two main excitatory (glutamatergic) afferent currents (Fig 1C). The first 97 

excitatory input originates from the parallel fibres (PFs), i.e. the axons of the granule 98 

cells (GCs). The second comes from the climbing fibres (CFs), i.e. the projections of the 99 

inferior olive (IO) cells. These excitatory inputs drive Purkinje cell simple or complex 100 

spike patterns, respectively [8, 9]. Simple spikes of Purkinje cells are elicited topically 101 

at high frequencies [10, 11]. Complex spikes consist of a fast initial large-amplitude 102 

spike followed by a high-frequency burst [12]. This burst is made of several slower 103 
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spikelets of smaller amplitude separated from one another by 2-3 ms [12-14]. Complex 104 

spikes are caused by the activation of a single IO neuron that produces a large electrical 105 

event in the soma of the post-synaptic Purkinje cell. This electrical event generates 106 

calcium-mediated action potentials in the Purkinje cell dendrites that, in turn, shape the 107 

complex spike. Simple spike activity is, in fact, mostly suppressed during complex 108 

spiking [14]. After each CF-evoked burst, a spike pause prevents Purkinje cells from 109 

either resuming their tonic or bursting firing for a period that depends on the length of 110 

the complex spike [15]. The CF-evoked spike burst-pause sequences of Purkinje cell 111 

responses critically regulate the inhibitory (GABAergic) drive of MVN synapses, which 112 

determines the cerebellar output during sensorimotor adaptation. Therefore, 113 

understanding the dynamics of the characteristic Purkinje cell spike patterns is relevant 114 

to linking cerebellar cell properties to cerebellar-dependent behavioural adaptation. 115 

Recent studies have paved the road in gaining knowledge on the behavioural implication 116 

of Purkinje cell spike modes [2, 14, 16]. In particular, Herzfeld and colleagues have 117 

demonstrated that the cerebellum encodes real-time motion of the eye through the 118 

organisation of Purkinje cells into clusters that share similar CF projections from the IO 119 

[2]. The combined activity of bursting and silent Purkinje cell populations can predict 120 

both the actual speed and direction of rapid accurate eye movements (saccades). 121 

However, these studies have not assessed the interplay between the different Purkinje 122 

cell spike patterns and the plasticity mechanisms at stake at MVN synapses in shaping 123 

sensorimotor adaptation. MVN neurons, in addition to receiving the inhibitory inputs 124 

from Purkinje cells, are also innervated by the excitatory afferents from the mossy fibres 125 

(MFs), which convey vestibular signals about head movements (Fig 1C). This vestibular 126 

information also converges onto Purkinje cells through the mossy fibre-granule cell-127 

parallel fibre pathway (MF-GC-PF; Fig 1C). Therefore, the characteristics firing patterns 128 
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of Purkinje cells are likely to play a key role in driving the associative plasticity 129 

mechanisms operating at MF-MVN excitatory synapses [17-19] and at Purkinje cells-130 

MVN inhibitory synapses [20-23]. The CF-evoked spike burst-pause sequences of 131 

Purkinje cells depend indeed upon the activation of CFs, which are assumed to convey 132 

a ‘teaching’ signal encoding sensory error information [6, 14, 24]. Therefore, the 133 

properties of the CF-evoked spike burst-pause patterns (e.g., the relative duration of the 134 

bursts versus the pauses) reflect sensory error related information [14, 16]. The 135 

activation of CFs is critical for inducing different forms of plasticity at PF-Purkinje cell 136 

synapses and, indirectly, at Purkinje cell-MVN synapses [25, 26]. Importantly, plasticity 137 

at MF-MVN synapses also seems to be dependent on Purkinje cell signals [27-29], 138 

generated through the MF-GC-PF pathway and through CF activation. Some 139 

computational studies have proposed that plasticity mechanisms at MF-MVN and 140 

Purkinje cell-MVN synapses are key factors in determining cerebellar adaptive gain 141 

control [27, 28, 30]. These models support the hypothesis of a two-state cerebellar 142 

adaptation process [31, 32], with a fast adaptive phase mediated by the cerebellar cortex 143 

(involving plasticity at Purkinje cell synapses) and a slow adaptive process occurring in 144 

deeper structures, involving plasticity at MVN synapses [29, 31-35]. However, these 145 

computational studies do not account for the interaction between the different spiking 146 

modes of Purkinje cells (in particular CF-evoked spike burst-pause dynamics) and the 147 

distributed plasticity mechanisms underpinning cerebellar adaptive control [30].  148 

The spiking cerebellar model presented here addresses these issues within a VOR 149 

adaptation framework (Figs 1A,B). We simulate horizontal VOR (h-VOR) experiments 150 

with mice undertaking sinusoidal (~1 Hz) whole body rotations in the dark [36]. The 151 

model incorporates the main anatomo-functional properties of the cerebellar 152 
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microcircuit, with synaptic plasticity mechanisms at multiple cerebellar sites (Fig 1C; 153 

see Materials & Methods). 154 

Results 155 

Spike burst–pause properties of model Purkinje cell responses 156 

The detailed Purkinje cell model reproduces the characteristic response patterns 157 

observed experimentally: tonic simple spiking (20-200 Hz), complex spiking (bursts 158 

with high-frequency spikelet components up to 600 Hz), and post-complex spike pauses 159 

(Fig 2A). In the model, CF discharges trigger transitions between the Purkinje cell Na+ 160 

spike output, CF-evoked bursts, and post-complex spike pauses. As evidenced in [37], 161 

in in-vitro slice preparations at normal physiological conditions, 70% of Purkinje cells 162 

spontaneously express a trimodal oscillation: a Na+ tonic spike phase, a Ca-Na+ bursting 163 

phase, and a hyperpolarised quiescent phase. On the other hand, Purkinje cells also show 164 

spontaneous firing consisting of a tonic Na+ spike output without Ca- Na+ bursts [37-165 

39]. McKay et al. [37] report Purkinje cell recordings exhibiting a tonic Na+ phase 166 

sequence followed by CF-evoked bursts (via complex spikes) and the subsequent pause 167 

(Fig 2A). The frequency of Purkinje cell Na+ spike output decreases with no correlation 168 

with the intervals between CF discharges. The model mimics this behaviour under 169 

similar CF discharge conditions (Fig 2B).  170 

The duration of model post-complex spike pauses increases linearly with burst 171 

duration (Fig 2C; R2=0.82, p<0.0001). To assess the relation between burst and pause 172 

duration, the depolarisation current injected through PF was maintained constant whilst 173 

progressively increasing the intensity of CF stimulation. Only inter-spike intervals (ISIs) 174 

immediately following complex spikes were considered for this analysis. The model 175 

replicates the linear relation between spike pause duration and pre-complex spike ISI 176 
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duration observed through electrophysiological recordings [40] (Fig 2D; R2=0.9879; 177 

p<0.0001). This relation was measured by maintaining the CF stimulation constant 178 

whilst incrementally increasing the amplitude of the PF input current. The probability 179 

distribution of post-complex spike ISIs is also consistent with experimental data [40] 180 

(Fig 2E). The kurtosis (‘peakedness’) of the ISI distribution is 4.24, which is in the range 181 

of kurtosis values measured after tetanisation of mouse Purkinje cells [40]. Finally, 182 

model post-complex spike ISI values are skewed rightward (positive skewness value of 183 

0.6463), consistently with the asymmetric distribution shape observed experimentally 184 

[40]. 185 

 186 

Figure 2. Spike burst–pause properties of model Purkinje cell responses. (A) Simulated 187 

(left) and electrophysiological (right) recordings of Purkinje cell spike outputs in 188 

response to CF spike excitatory postsynaptic potentials occurring at physiological 189 

frequencies (arrows) (data from [37]). CF discharges trigger transitions between 190 

Purkinje cell Na+ spike output and CF-evoked bursts and pauses via complex spikes. 191 

Here, the Purkinje cell model was run on the EDLUT simulator (see Methods). (B) 192 

Simulated (left) and experimental (right) Purkinje cell tonic spike frequency during CF 193 

discharges aligned with spike-grams in A (data from [37]). N=10 Purkinje cells were 194 

simulated to compute the tonic spike frequency. (C) In the model, CF signals modulate 195 

both the burst size (i.e., the number of spikes within the burst) and the duration of post-196 

complex spike pauses, which are linearly correlated. Here, the Purkinje cell model was 197 

run on the Neuron simulator (see Methods). (D) Relation between pause duration and 198 

pre-complex spike (pre–CS) inter spike intervals (ISIs) when increasing the amplitude 199 

of the injected current: model data (red circles, n=1000) vs. experimental data [40] 200 

(grey to black dots). Grey-to-black lines represent individual cells (n=10). The blue 201 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2018. ; https://doi.org/10.1101/347252doi: bioRxiv preprint 

https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/


Page 10 of 48 

dashed line is the linear regression curve fitting model data. The model captures the 202 

linear relation between spike pause duration and pre-complex spike ISI duration 203 

observed electrophysiologically [40]. (E) Distribution of ISI values following the 204 

complex spike (post-CS). The ISI duration is normalised to pre-CS ISI values. The 205 

Kurtosis for the distribution of post-CS ISI values is 4.24. The skewness is positive 206 

(0.6463), thus indicating an asymmetric post-CS ISI distribution. Kurtosis and skewness 207 

values were consistent with Purkinje cell data [40]. 208 

 209 

Role of cerebellar Purkinje spike burst-pause dynamics in VOR adaptation 210 

We assessed h-VOR adaptation by simulating a 1 Hz horizontal head rotation to be 211 

compensated by contralateral eye movements (Fig 1A). First, we tested the role of 212 

Purkinje spike burst-pause dynamics in the absence of cerebellar learning, i.e. by 213 

blocking synaptic plasticity across all model projections (i.e., MF-MVN, PF-Purkinje 214 

cell, Purkinje cell-MVN). Synaptic weights were initialised randomly and equally within 215 

each projection set. The CF input driving Purkinje cells was taken as to signal large 216 

retina slips, which generated sequences of complex spikes made of 4 to 6 burst spikelets 217 

[14] (Fig 3A, top). The elicited Purkinje spike burst-pause sequences shaped the 218 

temporal disinhibition of targeted VN neurons, allowing the incoming input from MFs 219 

to drive MVN responses (Fig 3A, middle). This facilitated a coarse baseline eye motion 220 

(Fig 3A, bottom). Blocking complex spiking in the Purkinje cell model (through the 221 

blockade of muscarinic voltage-dependent channels, see Methods) prevented MF 222 

activity from eliciting any baseline MVN compensatory output (Fig 3B). These results 223 

suggest that the gating mechanism mediated by Purkinje spike burst-pause sequences, 224 

which encode transient disinhibition of MVN neurons, is useful for early and coarse 225 

VOR, prior to the adaptive consolidation of the reflex through cerebellar learning.  226 
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 227 

Figure 3. Purkinje post–complex spike pauses act as a gating mechanism for early 228 

coarse VOR in the absence of cerebellar adaptation. Only half of h-VOR cycle is 229 

represented. Two equal cerebellar network configurations except for the Purkinje cell 230 

dynamics were compared under equal stimulation. (A) The first model accounts for CF-231 

evoked Purkinje spike burst-pause dynamics. CF stimulation generates complex spikes 232 

and subsequent post–complex spike pauses. The latter allows MFs to drive directly the 233 

immediate activation of MVN, which facilitates an early but rough eye movement 234 

compensation for head velocity. (B) The second model only exhibits Purkinje tonic firing 235 

(i.e., complex spiking is blocked through the blockade of muscarinic voltage-dependent 236 

channels, see Methods), which prevents MFs from eliciting any baseline MVN 237 

compensatory output. See S3-1 and S3-2 Figs for a sensitivity analysis of parameters 238 

regulating the LTD/LTP balance at PF-Purkinje cell and MF-MVN synapses. See also 239 

S3-3 Fig for the same parameter sensitivity analysis in the absence of Purkinje spike 240 

burst-pause dynamics. 241 

 242 

We then activated the LTD/LTP plasticity mechanisms at MF-MVN, PF-Purkinje 243 

cell, and Purkinje cell-MVN synapses (see Materials & Methods). During 10000 s, the 244 

model faced a 1 Hz horizontal head rotation, and cerebellar h-VOR learning took place 245 

to generate compensatory contralateral eye movements. A sensitivity analysis identified 246 

the critical LTD/LTP balance at MF-MVN and PF-Purkinje cell synapses in order to 247 

achieve VOR adaptation (in terms of both gain and phase). This analysis predicts a very 248 

narrow range of values for which LTP slightly exceeding LTD at MF-MVN synapses 249 

ensures learning stability through time. By contrast, PF-Purkinje cell synapses admitted 250 

a significantly broader range for the LTD/LTP ratio (S3-1 and S3-2 Figs). The same 251 
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parameter sensitivity analysis for the cerebellar model with no bursting and pause 252 

dynamics shows a much wider range of values for the LTD/LTP balance at both PF-253 

Purkinje cell and MF-MVN synapses (S3-3 Fig). 254 

A comparison of VOR adaptation accuracy in the presence vs. absence of CF-255 

evoked Purkinje spike burst-pause dynamics shows that VOR gain plateaued three times 256 

faster in the presence of Purkinje complex spikes (Fig 4A, left). Also, the VOR gain 257 

converged to [0.8-0.9], which is consistent with experimental recordings in mice [36], 258 

monkeys [41], and humans [42]. Conversely, without Purkinje bursting-pause dynamics 259 

the VOR gain saturated to a value >1 (i.e., over learning) at the end of the adaptation 260 

process. In terms of VOR phase, convergence to 180° (i.e., well synchronised counter-261 

phase eye movements) was reached after approximately 1000 s under both conditions 262 

(Fig 4A, right).  263 

A more accurate VOR gain adaptation in the presence of Purkinje complex spiking 264 

reflected a more selective synaptic modulation across learning (Figs 4B-D). In particular, 265 

Purkinje spike burst-pause dynamics facilitated a sparser weight distribution at MF-266 

MVN synapses (Fig 4B), which ultimately shaped VOR adaptation [18]. Indeed, 267 

Purkinje burst sizes reflected the sensed errors [14], thus regulating the inhibitory action 268 

of Purkinje cells on MVN, and inducing error-dependent LTD at MF-MVN synapses 269 

(see Materials & Methods). On the other hand, post-complex spike pauses (disinhibiting 270 

MVN) induced error-dependent LTP at MF-MVN synapses (the larger the error, the 271 

larger the burst size, and the wider the post-complex spike pause, Fig 2B). At the 272 

beginning of VOR adaptation, the error was larger, and so were the burst and pause 273 

durations. Because the durations of pauses remained always larger than bursts (Fig 2B), 274 

LTP dominated over LTD at MF-MVN synapses, increasing the learning rate. Therefore, 275 

the spike burst-pause dynamics enhanced the precision of cerebellar adaptation at MVN 276 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2018. ; https://doi.org/10.1101/347252doi: bioRxiv preprint 

https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/


Page 13 of 48 

cells, by (i) recruiting the strictly necessary MF-MVN projections (i.e., higher kurtosis 277 

value of the synaptic weight distribution, Fig 4B), (ii) making a better use of the synaptic 278 

range of selected projections (larger standard deviations with lower overall gains; Fig 279 

4C), and the rate by (iii) varying synaptic weights selectively (lower averaged synaptic 280 

weight variations; Fig 4D). 281 

 282 

Figure 4. Role of Purkinje spike burst-pause dynamics in VOR cerebellar adaptation. 283 

(A) VOR gain and phase adaptation with (purple curve) and without (green curve) CF-284 

evoked Purkinje spike burst-pause dynamics.VOR cerebellar adaptation starts with zero 285 

gain owing to the initial synaptic weights at PF and MVN afferents (Table 5). Purkinje 286 

spike burst-pause dynamics provides better VOR gain adaptation (in terms of both rate 287 

and precision) converging to values within [0.8-0.9], which is consistent with 288 

experimental data [36, 41, 42] . (B) Purkinje complex spiking allows a sparser weight 289 

distribution (with higher Kurtosis) to be learnt at MF-MVN synapses, with significantly 290 

lesser MF afferents needed for learning consolidation. (C) The model endowed with 291 

Purkinje complex spiking updates less MF afferents during learning consolidation but 292 

their synaptic range is fully exploited. (D) The averaged synaptic weight variations are 293 

more selective during the adaptive process in the presence of Purkinje spike burst-pause 294 

dynamics, yet the standard deviation remains equal.  295 

 296 

Purkinje spike burst-pause dynamics facilitates VOR phase-reversal learning 297 

Phase-reversal VOR is induced when a visual stimulus is given simultaneously in phase 298 

to the vestibular stimulation but at greater amplitude (10% more) [25]. This creates a 299 

mismatch between visual and vestibular stimulation making retinal slips to reverse 300 
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direction[43]. Cerebellar learning is deeply affected by VOR phase reversal since the 301 

synaptic weight distribution at both PF-Purkinje cell and MF-MVN synapses must be 302 

reversed. Here, we first simulated an h-VOR adaptation protocol (1 Hz) during 10000 s 303 

(as before). Then, h-VOR phase reversal took place during the next 12000 s. Finally, the 304 

normal h-VOR had to be restored during the last 12000 s (Fig 5). Our results suggest 305 

that Purkinje spike burst-pause dynamics were instrumental to phase-reversal VOR gain 306 

adaptation (Fig 5A), allowing for fast VOR learning reversibility consistently with 307 

experimental recordings [3] (Fig 5B). Conversely, the absence of Purkinje complex 308 

spiking led to impaired VOR phase-reversal learning with significant interference (Figs 309 

5A,B). The two models (i.e., with and without Purkinje complex spiking) behaved 310 

similarly in terms of VOR phase adaptation during the same reversal learning protocol 311 

(S5-1 Fig). 312 

 313 

Figure 5. Purkinje spike burst-pause dynamics facilitates VOR phase-reversal 314 

learning. (A) VOR gain adaptation with (red curve) and without (green curve) Purkinje 315 

spike burst-pause dynamics during: VOR adaptation (first 10000 s), phase-reversal 316 

learning (subsequent 12000 s), and normal VOR restoration (remaining 12000 s). (B) 317 

Purkinje spike burst-pause dynamics provides fast learning reversibility, consistently 318 

with experimental recordings [3]. By contrast, phase-reversal VOR learning is impaired 319 

in the absence of Purkinje complex spiking. See S5-1 Fig for the time course of VOR 320 

phase-reversal learning. 321 

 322 

VOR phase-reversal learning demanded first the reduction of the VOR gain, which 323 

can be regarded as a ‘forgetting phase’ (Fig 5B, days 1&2). Then, a ‘synchronisation 324 
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phase’ took place with a reverse adaptive action that gradually increased the VOR gain 325 

(Fig 5B, days 3&4). During the forgetting phase, LTD dominated over LTP at MF-MVN 326 

synapses (Purkinje burst sizes were maximal), thus erasing the memorised weight 327 

patterns. During the synchronisation phase, Purkinje post-complex spike pauses led to a 328 

dominant LTP at MF-MVN synapses, reversing the learnt configuration. The interplay 329 

between bursts and post-complex spike pauses allowed synaptic adaptation at MF-MVN 330 

projections to be highly selective, which resulted in a sparser weight distribution as 331 

compared to the case without Purkinje complex spiking (Fig 6A).  Therefore, VOR 332 

reverse learning required the adjustment of fewer MF-MVN synapses, thus facilitating 333 

the eye counteraction of the head velocity movement (S6-1 Fig), and the weight 334 

distribution was reshaped more efficiently with negligible interferences from the 335 

previously learnt patterns (Figs 6B, C).   336 

 337 

Figure 6. Evolution of synaptic weight distributions during VOR phase-reversal 338 

learning. (A) Only the sparser and more selective distribution of MF-MVN synaptic 339 

weights resulting from the interplay between bursts and post-complex spike pauses 340 

facilitates an efficient reshaping of the learnt patterns (B), allowing phase-reversal 341 

learning to be achieved (C). 342 

 343 

LTP blockades (by dominant LTD) during REMs explain reversal VOR gain 344 

discontinuities between training sessions 345 

VOR phase-reversal learning can take place across several days [3] (Fig 5). Dark periods 346 

in-between training sessions cause reversal VOR gain discontinuities (Fig 7). This 347 

phenomenon has been assumed to result from the decaying of synaptic weights back to 348 
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their initial values during sleep [3]. However, the mechanisms underlying this decaying 349 

process remain unknown. We explored possible cerebellar LTD/LTP balance 350 

modulation scenarios occurring during sleep as a consequence of changes in cerebellar 351 

activity. During rapid eye movement sleep (REMs), the mean firing activity of Purkinje 352 

cells shows increased tonic firing and decreased bursting in both frequency and size [44]. 353 

The CF average activity during REMs remains constant at a low frequency regime, 354 

showing a tendency in many IO neurons to diminish their overall frequency [45]. The 355 

activation of MFs varies during REMs, unrelatedly to any apparent behavioural changes, 356 

up to 60 MF/s on average [45].  357 

We modelled Purkinje cell, CF and MF activities during REMs. CFs were 358 

stochastically activated at 1 Hz [44, 45] following a Poisson distribution (S7-1 Fig). CF 359 

activations were also modulated to generate a large event in the Purkinje soma able to 360 

elicit bursts of 3 spikes on average [44]. MFs were stochastically activated by mimicking 361 

their activity during REMs (with an upper bound firing rate of 8-13 Hz). We tested three 362 

hypotheses, based on different levels of cerebellar activity during 6 REMs stages of 3000 363 

s each (i.e., 18000 s of simulation) between days 1 and 2. In the first scenario, we 364 

considered high levels of MF activity (average firing rate 10 Hz), which led to a 365 

dominance of LTP at both PF-Purkinje cell and MF-MVN synapses during REMs. 366 

Consequently, the cerebellar model kept ‘forgetting’ the memory traces as during the 367 

reversal VOR learning of day 1 (Fig 7, blue curve). In the second scenario, we considered 368 

an average MF activity of 2.5 Hz, which made the LTP driven by vestibular activity to 369 

counterbalance the LTD driven by the CFs. Under this condition, the cerebellar model 370 

consolidated reversal VOR adaptation thus maintaining the synaptic weights at PF-371 

Purkinje and MF-MVN synapses (Fig 7, green curve). Finally, we considered a low level 372 

of MF activity (average 1 Hz), which made LTD to block the LTP action driven by the 373 
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vestibular (MF) activity. Under this third scenario, the cerebellar model showed a 374 

consistent tendency for weights at PF-Purkinje and MF-MVN synapses to decay back 375 

towards their initial value (Fig 7, red curve). Therefore, the model predicts that LTP 376 

blockade during REMs stages might underlie the reversal VOR gain discontinuities in-377 

between training sessions, in agreement with experimental data [3] (Fig 7, black curve). 378 

 379 

Figure 7. LTP blockades (due to dominant LTD) during REMs explain reversal VOR 380 

gain discontinuities between training sessions. We simulated 6 REMs stages (for a total 381 

of 18000 s of simulation) between day 1 and 2 of VOR phase-reversal learning. High 382 

levels of MF activity (10 Hz) leads to a dominance of LTP at both PF-Purkinje cell and 383 

MF-MVN synapses during REMs. Hence, during REMs the cerebellar model keeps 384 

‘forgetting’ the memory traces as during day 1 (blue curve). A smaller MF activity (2.5 385 

Hz) leads to a balance of LTP (driven by vestibular activity) and LTD (driven by the 386 

CFs). Thus, the model tends to maintain the synaptic weights learnt during day 1 (orange 387 

curve). A very low MF activity (1 Hz) makes LTD to block LTP at PF-Purkinje and MF-388 

MVN synapses. Under this third hypothesis, the synaptic weights tend to decay back 389 

towards their initial value (purple curve) in accordance with experimental data [3]. See 390 

S7-1 Fig for the modelled probabilistic Poisson process underpinning CF activation. 391 

 392 

Purkinje complex spike-pause dynamics under stationary VOR conditions 393 

During transient VOR adaptation and phase reversal learning, retina slips were large 394 

causing vigorous CF discharges (up to 10 Hz) to encode the sensed errors. Consequently, 395 

Purkinje cell complex spike-pauses were elicited at high frequency during adaptation 396 

(Fig 8A). As the VOR error decreased, the frequency of CF-evoked Purkinje bursts 397 
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decayed to ~1 Hz upon completion of adaptation (Fig 8B). Therefore, during post (and 398 

pre) VOR adaptation, model Purkinje tonic Na+ spike output dominated and Purkinje 399 

cells tended to fire steadily (similar to spontaneous activity) with only rare complex 400 

spike-pause firing. Under stationary VOR conditions, (i.e., during pre/post VOR 401 

adaptation) model CFs were stochastically activated at ~1 Hz (S7-1 Fig shows the 402 

Poisson-based generative model for the IO firing). Such a CF baseline discharge at ~1 403 

Hz allowed non-supervised LTP to be counterbalanced at PF-Purkinje cell synapses (see 404 

Materials & Methods), thus preserving pre/post cerebellar adaptation. 405 

Luebke and Robinson [46] found that directly stimulating CFs at 7 Hz during 30 406 

min after 3 days of VOR adaptation would impair the reflex. Model CFs discharged at 407 

frequencies larger than 1 Hz only to signal retina slips (i.e., during VOR adaptation). 408 

However, a direct (and error independent) high-frequency stochastic stimulation of CFs 409 

would lead to VOR impairment. To illustrate this, we simulated a protocol similar to the 410 

one used by [46]. As expected, the number of CF-evoked Purkinje burst-pauses 411 

increased as the CF frequency was artificially incremented through a 7 Hz direct 412 

stimulation (Fig 8A).Therefore, the VOR gain error tended to increase indicating an 413 

impairment/blockade of the acquired reflex (Fig 8B) and a decrease in VOR gain even 414 

with similar CFs discharges observed during VOR adaptation. 415 

 416 

Figure 8. Purkinje complex spike-pause frequency and VOR gain error during 417 

adaptation and post/pre adaptation. (A) The frequency of Purkinje complex spike-418 

pauses diminishes through VOR adaptation from 8-9 Hz to 1-2 Hz under a sinusoidal 419 

vestibular stimulus of ~1 Hz. After VOR adaptation, a direct random stimulation of CFs 420 

at 7 Hz during 30 min as in [46] impairs the VOR reflex. (B) Evolution of the VOR gain 421 
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error (Mean Absolute Error) during adaptation, post-adaptation, and artificial random 422 

stimulation of CFs.  423 

 424 

Discussion 425 

Marr and Albus theory [47, 48] elicited a large body of research on the link between the 426 

cellular and network properties of the cerebellum and behavioural adaptation. This 427 

extensive effort crystallised into a broad range of cerebellar models based on divergent 428 

premises. On the one hand, detailed models were grounded on cellular and synaptic 429 

properties observed experimentally [49-54]. Most of these biophysical models did not 430 

aim at driving behavioural adaptation explicitly through network-level dynamics. On the 431 

other hand, numerous large-scale solutions were engineered to be computationally 432 

efficient for learning sensorimotor tasks, regardless of the anatomo-functional 433 

constraints governing cellular and network cerebellar processes [55-58]. The approach 434 

presented here conjugates these two vantage points and focuses on the role of the 435 

multiple spiking patterns of Purkinje cells in cerebellar adaptation. It is well known that 436 

Purkinje cells can express fast tonic firing as well as a characteristic burst-pause spiking 437 

pattern in response to excitatory parallel fibre (PF) and climbing fibre (CF) inputs [40]. 438 

Nevertheless, we address the still uncovered question of how these different spiking 439 

patterns regulate the inhibitory action of Purkinje cells onto targeted medial vestibular 440 

nuclei (MVN) and ultimately shape the adaptive behavioural control mediated by the 441 

cerebellum.   442 

We model cerebellar-dependent adaptation of the rotational vestibulo-ocular 443 

reflex (VOR) (Fig 1A). For natural head rotation frequencies (0.5–5.0 Hz), the VOR 444 

gain (i.e., eye velocity divided by head velocity) and the VOR phase shift (i.e., the time 445 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2018. ; https://doi.org/10.1101/347252doi: bioRxiv preprint 

https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/


Page 20 of 48 

lag between eye and velocity profiles) are close to 1 and 180°, respectively [7]. Thus, 446 

synchronised counter-phased eye and head movements stabilise visual targets on the 447 

fovea, minimising retina slips and improving visual acuity [59]. Cerebellar learning, and 448 

particularly Purkinje cell response adaptation, is necessary to mediate online changes in 449 

VOR gain control [60, 61]. The cerebellar model presented here mimics the main 450 

properties of the cerebellar microcircuit, and it embodies spike-based LTP/LTD 451 

plasticity mechanisms at multiple synaptic sites (Fig 1C). At the core of the spiking 452 

cerebellar network, a detailed single-compartment model of Purkinje cell reproduces the 453 

characteristic tonic, complex spike, and post-complex spike pause patterns [62, 63]. In 454 

order to focus on how CF-evoked spike burst-pause dynamics of Purkinje cell responses 455 

can regulate the adaptive output of the cerebellum, we also use a Purkinje neuron model 456 

that cannot express complex spike firing (i.e., it can only operate in tonic mode). The 457 

main finding of this study is that the CF-evoked spike burst-pause dynamics of the 458 

Purkinje cell is a key feature for supporting both early and consolidated VOR learning. 459 

The model predicts that properly timed and sized Purkinje spike burst-pause sequences 460 

are critical to: (1) gating the contingent association between vestibular inputs (about 461 

head rotational velocity) and MVN motor outputs (to determine counter-rotational eye 462 

movements), mediating an otherwise impaired VOR coarse acquisition; (2) allowing the 463 

LTD/LTP balance at MF-MVN synapses to be accurately shaped for optimal VOR 464 

consolidation; (3) reshaping previously learnt synaptic efficacy distributions for VOR 465 

phase-reversal adaptation. Finally, the model predicts that the reversal VOR gain 466 

discontinuities observed after sleeping periods in-between training sessions [3] are due 467 

to LTD/LTP balance modulations (and in particular LTP blockades) occurring during 468 

REM sleep as a consequence of changes in cerebellar activity. 469 
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This work assumes a gradually modulated CF activity capable of instructing a 470 

‘teaching’ signal to Purkinje cells [64]. The type of information conveyed by CFs onto 471 

Purkinje cells (and its potential role in sensorimotor adaptation) is under debate. On the 472 

one hand, CFs have been hypothesised to carry a binary feedback-error signal computed 473 

by IO [65]. On the other hand, recent studies have questioned the hypothesis of a binary 474 

CF signal by demonstrating that the duration of Purkinje cell complex spikes (evoked 475 

by CF afferents) can be accurately adjusted based on information that a binary teaching 476 

signal could not support [14, 15, 66-68]. Our model embraces this second hypothesis. It 477 

must also be noted that the overall assumption about IO-mediated feedback-error 478 

learning has been contrasted by a body of research that focused on the periodic nature 479 

of CF activity. These works put the CF signalling in relation to the timing aspects of 480 

motion [69, 70] and, in particular, to the onset of motion [71]. The controversy about the 481 

nature of CF activity has been further roused by the fact that IO functional properties 482 

have so far not been univocally identified [60, 72-74].  483 

The model presented here captures the fact that similar CF discharges occur during 484 

both VOR gain increase and decrease adaptation [75, 76]. CFs encode the retinal slips 485 

that drive VOR adaptation [77]. The direction of retinal slips relative to the vestibular 486 

stimulus induces either an increase or a decrease in VOR gain [78]. Interestingly, the 487 

relation between CF activity and the induction of plasticity at Purkinje cell synapses is 488 

described as a gating mechanism that varies under these two VOR adaptation paradigms 489 

[76]. Furthermore, optogenetic CF stimulation in VOR gain-decrease paradigms suggest 490 

that changes in Purkinje cell complex spike responses do not only depend upon CF 491 

activation [76]. Our cerebellar model accounts for these observations by means of the 492 

mechanism that balances LTD/LTP plasticity at PF-Purkinje cell synapses. During VOR 493 

gain–increase adaptation, LTD predominantly blocks LTP at modelled PF-Purkinje cell 494 
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synapses. This results in a synaptic efficacy decrease as a CF spike reaches the target 495 

Purkinje cell (error-related signal). In particular, a CF spike is more likely to depress a 496 

PF-Purkinje cell synapse if the PF has been active within 50-150 ms of the CF spike 497 

arrival [79-81]. Increasing LTD at PF-Purkinje cell synapses reduces the inhibitory 498 

action of Purkinje cells on MVN activity, which in turn increases the VOR gain. During 499 

VOR gain–decrease adaptation [25, 75], LTP dominates at PF–Purkinje cell synapses, 500 

despite the fact that CF inputs are similar to those occurring during gain-increase phases. 501 

A raise in synaptic efficacy at PF-Purkinje cell synapses increases the inhibition of MVN 502 

neurons, which in turn reduces the VOR gain. LTP at modelled PF-Purkinje cell 503 

synapses is non-supervised and it strengthens a connection upon each PF spike arrival at 504 

the target Purkinje cell. This plasticity mechanism does not need to modulate the input 505 

provided by CFs (and then the CF-evoked spike burst-pause dynamics of Purkinje cells) 506 

to counter LTD and decrease the VOR gain, in accordance to in-vitro experiments [82-507 

84].  508 

The model suggests that CF-evoked Purkinje cell spike burst-pause dynamics are 509 

critical to shape MF-MVN synapses, as to optimise the accuracy and consolidation rate 510 

of VOR adaptation. We show that burst and spike pause sequences facilitate sparser MF-511 

MVN connections, which increases coding specificity during the adaptation process. 512 

The results predict that the spike burst-pause dynamics should be central to retune MF-513 

MVN synapses during VOR phase-reversal adaptation. First, it is shown that blocking 514 

complex spike responses (and post-complex spike pauses) in Purkinje cells impairs 515 

reverse VOR adaptation. More strikingly, the results indicate that Purkinje cell bursting 516 

and spike pauses ensure the reversibility of the adaptation process at MF-MVN synapses. 517 

Bursts selectively facilitate LTD at MF-MVN connections, which rapidly erases 518 

previously learnt memory traces at these synapses. Subsequently, post-complex spike 519 
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pauses induce strong LTP at MF-MVN synapses, which allows the cerebellar output to 520 

become rapidly reverse-correlated to the sensed error. In addition, the memory 521 

consolidation of VOR adaptation during sleeping [3, 85, 86] is also supported by the CF-522 

evoked Purkinje cell spike burst-pause dynamics. CF stochastically activations at a low 523 

frequency (0.9 Hz) during REMs stages maintain a base Purkinje bursting that ultimately 524 

facilitates LTP blockades at PF-Purkinje cell and MF-MVN synapses, and it preserves 525 

the on-going learning process.  526 

The cerebellar model endowed with CF-evoked Purkinje cell spike burst-pause 527 

dynamics performs better, in terms of adaptation accuracy and consolidation rate, than 528 

a model with Purkinje cells expressing tonic firing only. CF-evoked spike burst-pause 529 

patterns appear particularly useful in a disruptive task such as VOR phase-reversal 530 

adaptation. Nevertheless, our results indicate that complex spikes, post-complex spike 531 

pauses, and their relative modulation, are not essential for VOR control learning and 532 

adaptation. This is in agreement with recent experimental findings challenging the 533 

hypothesis that Purkinje cell complex spikes are necessarily required in cerebellar 534 

adaptation, and suggesting that their role in motor learning is paradigm dependent [74, 535 

87]. Overall, this work provides insights on how the signals provided by the CFs may 536 

instruct, either directly or indirectly, plasticity at different cerebellar synaptic sites [64]. 537 

The results point towards a key role of CF-evoked Purkinje cell spike burst-pause 538 

dynamics in driving adaptation at downstream neural stages. This testable prediction 539 

may help to better understanding the cellular-to-network principles underlying 540 

cerebellar-dependent sensorimotor adaptation.  541 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2018. ; https://doi.org/10.1101/347252doi: bioRxiv preprint 

https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/


Page 24 of 48 

Materials & Methods 542 

VOR Analysis and Assessment 543 

We simulated horizontal VOR (h-VOR) experiments with mice undertaking sinusoidal 544 

(~1 Hz) whole body rotations in the dark [36]. The periodic functions representing eye 545 

and head velocities (Fig 1A) were analysed through a discrete time Fourier transform. 546 

The VOR gain was calculated as the ratio between the first harmonic amplitudes of the 547 

forward Fourier eye– and head–velocity transforms: 548 

eye velocity
1
head velocity
1

AVOR GAIN G
A

-

-=       (1) 549 

In order to assess the VOR shift phase, the cross-correlation of the eye and head 550 

velocity time series was computed: 551 

( )[ ] ( ) ( )
def

n
xcorr x y x n y ng g

+¥
*

=-¥

= * = +å     (2) 552 

where x* is the complex conjugate of x, and g  the lag  (i.e. shift phase). The ideal eye 553 

and head velocity lag is ±0.5 after normalisation, with cross-correlation values ranged 554 

within [–1, 1], which is equivalent to a phase shift interval of [–360º 360º]. 555 

Cerebellar Spiking Neural Network Model 556 

The cerebellar circuit was modelled as a feed–forward loop capable of compensating 557 

head movements by producing contralateral eye movements (Fig 1B). The connectivity 558 

and the topology of the simulated cerebellar network involved five neural populations: 559 

mossy fibres (MFs), granule cells (GCs),  medial vestibular nuclei (MVN), Purkinje 560 

cells, and inferior olive (IO) cells [29, 88-91]. During simulated 1 Hz head rotations, 561 

sensorimotor activity was translated into MF activity patterns that encoded head 562 
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velocity. MFs transmitted this information to both MVN and GCs. The latter generated 563 

a sparse representation of head velocity signals, which was sent to Purkinje cells through 564 

the PFs. Purkinje cells were also driven by the CFs, which conveyed the teaching signal 565 

encoding sensory error information (i.e., retina slips due to the difference between actual 566 

and target eye movements, [77]). Finally, Purkinje cells’ output inhibited MVN neurons, 567 

which closed the loop by shaping cerebellar-dependent VOR control. The CF-Purkinje 568 

cell-MVN subcircuit was divided in two symmetric micro-complexes for left and right 569 

h-VOR, respectively. The input-output function of the cerebellar network model was 570 

made adaptive through spike-timing dependent plasticity (STDP) at stake at multiple 571 

sites (Fig 1C). These STDP mechanisms led to both long-term potentiation (LTP) and 572 

long-term depression (LTD) of the ~50000 synapses of the cerebellar model see [92]. 573 

This spiking neural network model was implemented in EDLUT [81, 93, 94]an efficient 574 

open source simulator mainly oriented to real time simulations. 575 

Purkinje cell model  576 

We considered a detailed Purkinje cell model [62, 63] consisting of a single compartment 577 

with five ionic currents:  578 

( ) [ ] ( )

( ) ( ) ( )

34
K Na 0

2
Ca L M

dV g n V 95 g m V h V 50
dt
g c V 125 g V 70 g M V 95

= - × × + - × × × - -

- × × - - × + - × × +
   (3) 579 

with Kg  denoting a delayed rectifier potassium current, Nag  a transient inactivating 580 

sodium current, Cag  a high-threshold non-inactivating calcium current, Lg  a leak 581 

current, and  Mg  a muscarinic receptor suppressed potassium current (see Table 1).   582 

 583 

 584 
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Table 1. Ionic conductance densities  585 

Conductance type Soma (mho/cm2) 

–delayed rectifier potassium current 0.01 

–transient inactivating sodium current 0.125 

– high threshold 0.001 

–muscarinic receptor 0.75 

– leak current (anomalous rectifier) 0.02 

 586 

The dynamics of each gating variable evolved as follows: 587 

!x =
x0 V⎡⎣ ⎤⎦− x

τ x V⎡⎣ ⎤⎦
      (4) 588 

 589 

where x indicates the variables n, h, c, and M. The implemented equilibrium function is 590 

determined by the term [ ]0x V  and time constant [ ]x Vt  (Table 2). 591 

Table 2. Ionic conductance kinetic parameters 592 

Conductance type 
Steady–state 

Activation/Inactivation 
Time constant (ms) 

Kg –delayed rectifier 

potassium current 
[ ]0 V 29.5

10

1x V
1 e

- -=
+

  [ ]
V 10
10

x V 10
10

0.25 4.35 e if V 10
V

0.25 4.35 e if V 10
t

+

- -

ì
+ × £ï= í

ï + × >î

  

Nag –transient 

inactivating sodium 
current 

 [ ]0 V 59.4
10.7

1x V
1 e

-=
+

 [ ]x V 33.5
15

1.15V 0.15
1 e

t += +
+

  

[ ]0m V   [ ]0 V 48
10

1m V m
1 e

- -= ×
+

   

Kg

Nag

Cag

Mg

Lg
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 Forward Rate Function ( )a  Backward Rate Function ( )b  

Cag –high threshold ( )0.0072 V 5

1.6
1 e

a
- × -

=
+

  
( )
V 8.9
5

0.02 V 8.9

e
b +

× +
=   

Mg –muscarinic 

receptor suppressed 
potassium current 

V 2
5

0.3

1 e
a - -=

+
  

 

V 70
180.001 eb

- -

= ×   

 
Steady–state 

Activation/Inactivation 
Time constant(ms) 

 [ ]0x V
a

a b
=

+
  [ ]x

1Vt
a b

=
+

  

 593 

The sodium activation variable was replaced and approximated by its equilibrium 594 

function [ ]0m V . M-current presents a temporal evolution significantly slower than the 595 

rest of the five variables thus provoking a slow-fast system able to reproduce the 596 

characteristic Purkinje cell spiking modes (Fig 2).  597 

The final voltage dynamics for the Purkinje [62, 63]cell model was given by:  598 

dV
dt

=

−gK ⋅ n
4 ⋅ V + 95( )− g Na ⋅m0 V⎡⎣ ⎤⎦

3
⋅ h ⋅ V − 50( )− gCa ⋅ c2 ⋅ V −125( )− gL ⋅ V +70( )− gM ⋅M ⋅ V + 95( )+ Injected CurrentMembrane Area

Membrane Capaci tance
599 

 600 

(5) 601 

where the parameters Membrane Area and Membrane Capacitance are provided in 602 

Table 3, and Injected Current is the sum of all contributions received through individual 603 

synapses (see Eqs. 6–8 below). 604 

 605 
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Table 3. Geometrical parameters: 606 

Geometrical parameters 

Cylinder length of the soma 15 mµ  

Radius of the soma 8 mµ  

Membrane Capacitance 1 2F cmµ  

Axial resistivity 100 cmW - (axom) 250 cmW - (dendrites) 

Number of segments 1 

 607 

First, we validated the detailed Purkinje cell model (Eqs. 3–5) in the Neuron 608 

simulator. Subsequently, we reduced the Purkinje cell model to make it compatible with 609 

an event-driven lookup table (EDLUT simulator 610 

https://github.com/EduardoRosLab/edlut) for fast spiking neural network simulation 611 

[81, 93]. In the reduced Purkinje cell model, IK and INa currents were implemented 612 

through a simple threshold process that triggers the generation of a triangular voltage 613 

function each time the neuron fires [95]. This triangular voltage depolarisation drives 614 

the state of ion channels similarly to the original voltage depolarisation during the spike 615 

generation. 616 

Other cerebellar neuron models  617 

The other cerebellar neurons (granule cells, MVN cells, …) were simulated as leaky 618 

integrate–and–fire (LIF) neurons, with excitatory (AMPA) and inhibitory (GABA) 619 

chemical synapses:  620 

( ) ( ) ( ) ( ) ( )m c
m AMPA AMPA m c GABA GABA m c rest rest m c
dVC g t E V g t E V G E V
dt

-
- - -× = × - + × - + × -  (6) 621 
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where Cm denotes the membrane capacitance, EAMPA and EGABA are the reversal potential 622 

of each synaptic conductance, Erest is the resting potential, and Grest indicates the 623 

conductance responsible for the passive decay term towards the resting potential. 624 

Conductances gAMPA and gGABA integrate all the contributions received by each receptor 625 

type (AMPA and GABA) through individual synapses and they are defined as decaying 626 

exponential functions [81, 96]: 627 

( )
( )

( )0
AMPA

0

t tAMPA

AMPA 0 0

0 , t t
g t

g t e , t tt
-

-

£ì
ï= í
ï × >î

    (7) 628 

 629 

( )
( )

( )0
GABA

0

t tGABA

GABA 0 0

0 , t t
g t

g t e , t tt
-

-

£ì
ï= í
ï × >î

    (8) 630 

with t representing the simulation time, t0 being the time arrival of an input spike, and 631 

τAMPA and τGABA denoting the decaying time constant for AMPA and GABA receptors, 632 

respectively.  633 

Note that we also used the LIF neuronal model (Eqs. 6–8) to simulate Purkinje 634 

cells that could express tonic spike firing only (Fig 3B). These Purkinje cells without 635 

CF-evoked spike burst-pause dynamics provided a coarse phenomenological model 636 

reminiscent of Kv3.3-deficient Purkinje neurons (as in Kcnc3 mutants, in which the 637 

absence of voltage-gated potassium channel Kv3.3 compromises spikelet generation 638 

within complex spikes of cerebellar Purkinje cells) [97]. Table 4 summarises the 639 

parameters used for each cell and synaptic receptor type. 640 

 641 

 642 

 643 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2018. ; https://doi.org/10.1101/347252doi: bioRxiv preprint 

https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/


Page 30 of 48 

Table 4.  Parameters of the LIF cell types 644 

Parameter Granule Cell Purkinje LIF Cell MVN Cell 

Refractory period 1ms 2ms 1ms 

Membrane capacitance 2pF 40pF 2pF 

*Total excitatory 

peak conductance 
1nS·100 

1.3nS· 

·175000·10%* 
1nS·7 

Total inhibitory 

peak conductance 
1nS·200 3nS·150 30nS·1 

Threshold –40mV –52mV –40mV 

Resting potential –70mV –70mV –70mV 

Resting conductance 0.2nS 1.6nS 0.2nS 

Resting 

time constant (τrest) 
10ms 25ms 10ms 

Excitatory–synapse 

time constant (τAMPA) 
0.5ms 0.5ms 0.5ms 

Inhibitory–synapse 

time constant (τGABA) 
10ms 1.6ms 10ms 

Parameters obtained from the following papers: 645 
Granule cell (GC) [98-102]. Only the rapidly decaying component of AMPA is modelled (τAMPA 646 

=0.5ms)[103], the presence of slowly decaying components in some GC caused by spillovers of glutamate was 647 
not taken into consideration (τAMPA =3ms)[104]   Purkinje cell (PC) [102, 105-107]. MVN data were extracted 648 

from unpublished material from Prof. D’Angelo’s lab. 649 
* Where 10% means the ratio of active connections PF–PC (out of the total 175000 PFs) 650 

 651 

Cerebellar neural population models 652 

Mossy fibres (MFs). N=100 MFs were modelled as LIF neurons (Eqs. 6-8). Consistently 653 

with the functional principles of  VOR models of cerebellar control [3], the ensemble 654 

MF activity was generated following a sinusoidal shape (1 Hz with a step size of 0.002 655 

ms) to encode head movements [3, 108, 109]. The overall MF activity was based on non-656 

overlapping and equally sized neural subpopulations that allowed a constant firing rate 657 

of the ensemble MFs to be maintained over time. Importantly, two different times always 658 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2018. ; https://doi.org/10.1101/347252doi: bioRxiv preprint 

https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/


Page 31 of 48 

corresponded to two different subgroups of active MFs ensuring to the overall constant 659 

activity. (Network connectivity parameters summarised in Table 5). 660 

Granular cells (GCs). The granular layer included N=2000 GCs and it was implemented 661 

as a state generator [110-113], i.e. its inner dynamics produced time–evolving states 662 

even in the presence of a constant MF input [56]. The granular layer generated non-663 

overlapped spatiotemporal patterns that were repeatedly activated in the same sequence 664 

during each learning trial (1 Hz rotation for 1 s)). 500 different states encoded each 665 

second of the 1 Hz learning trial, each state consisting of four non-recursively activated 666 

GCs. 667 

Climbing fibres (CFs). N=2 CFs carried the teaching signal (from the IO) to the 668 

population of Purkinje cells. The two CFs handled clockwise and counter–clockwise 669 

sensed errors. CF responses followed a probabilistic Poisson process. Given the 670 

normalised error signal 𝜀(𝑡) and a random number	𝜂(𝑡) between 0 and 1, a CF fired a 671 

spike if 𝜀(𝑡) > 𝜂(𝑡), otherwise it remained silent [79, 114, 115]. Thus, a single CF spike 672 

encoded well – timed information regarding the instantaneous error. Furthermore, the 673 

probabilistic spike sampling of the error ensured a proper representation of the whole 674 

error region over trials, while maintaining the CF activity below 10 Hz per fibre (similar 675 

to electrophysiological data; [116]. The evolution of the error could be sampled 676 

accurately even at such a low frequency [115, 117]. For the sake of computational 677 

efficiency, there are only 2 CFs (instead of 20 CFs). In the cerebellum, each PC  is 678 

innervated by a single CF  [118] coming from the associated IO at the olivary system. 679 

However, no olivary system is here considered and, consequently, CFs sensing 680 

clockwise and counter–clockwise errors are equally activated. It would suffice 1 CF 681 

sensing clockwise and 1 CF sensing anti-clockwise errors. 682 
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Purkinje cells. N=20 Purkinje cells were divided in two subpopulations of 10 neurons 683 

each. Each subpopulation received the inputs from one CF encoding the difference 684 

between (either rightward or leftward) eye and head movements. Each Purkinje cell also 685 

received 2000 PF inputs. Since real Purkinje cells are innervated by about 150000 PFs 686 

[119], the weights of the PF–Purkinje cells synapses of the model were scaled so as to 687 

obtain a biologically plausible amount of excitatory drive. Each of the two subgroups of 688 

10 Purkinje cells targeted (through inhibitory projections) one MVN cell, responsible 689 

for either clockwise or counter-clockwise compensatory motor actions (ultimately 690 

driving the activity of agonist/antagonist ocular muscles).  691 

Medial Vestibular Nuclei (MVN). The activity of N=2 MVN cells produced the output 692 

of the cerebellar model. The two MVN neurons handled clockwise and counter–693 

clockwise motor correction, respectively. Each MVN neuron received excitatory 694 

projections from all MFs (which determined the baseline MVN activity), and inhibitory 695 

afferents from the corresponding group of 10 Purkinje cells (i.e., the subcircuit IO–696 

Purkinje cell–MVN was organised in a single microcomplex). MVN spike trains were 697 

translated into analogue output signals through a Finite Impulse Response filter (FIR) 698 

[120]. Let ( ) ( )
M

j
j t

x t t td
=

= -å  denote a MVN spike train, with tj being the firing times 699 

of the corresponding neuron. If h(t) indicates the FIR kernel, then the translated MVN 700 

output is: 701 

( ) ( )( ) ( )
M

j
j t

Output t h x t h t t
=

= * = -å     (9) 702 

Note that a delay is introduced in the generated analogue signal. This delay is 703 

related to the number of filter coefficients and to the shape of the filter kernel h(t). In 704 

order to mitigate this effect, we used an exponentially decaying kernel: 705 
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( ) M

M

Kernel h t e t
-

= =      (10) 706 

where M is the number of filter taps (one per integration step) and τM is a decaying factor. 707 

At each time step, the output signal value only depends on its previous value and on the 708 

input spikes in the same time step. Therefore, this filter is implemented by recursively 709 

updating the last value of the output signal. Importantly, this kernel is similar to 710 

postsynaptic current functions [121, 122], thus facilitating a biological interpretation. 711 

Furthermore, this FIR filter is equivalent to an integrative neuron [123] .  712 

Table 5.  Summary of neurons and synapses. 713 

Neurons Synaptic weights (nS) 

Presynaptic 
cell number 

Postsynaptic 
cell 

Number of 
synapses 

Type Initial weight 
(Detailed/non Detailed PC) 

Weight range 

Mossy Fibres 
(100) 

Granular Cells 8000 AMPA 0.35/0.35*  

 
Medial 

Vestibular 
Nuclei 

200 AMPA 0.0/0.0 [0, 10] /[0, 10] 

Climbing 
Fibres (2) 

Purkinje Cells 20 AMPA 40/2.5  

Granular Cells 
(1000) 

Purkinje Cells 40000 AMPA 3.4/3.75 [0, 3.75] / [0, 5.5] 

Purkinje cell 
(20) 

Medial 
Vestibular 

Nuclei 
20 GABA 0.15/0.15 [0 10] / [0, 10] 

Medial 
Vestibular 
Nuclei (2) 

     

* Parameter used for generating the Granular layer activity. Since this activity remained invariant 714 
during VOR adaptation, it was stored offline in a file and then loaded in computation time. 715 

 716 

 717 

 718 
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Synaptic plasticity rules 719 

PF–Purkinje cell synaptic plasticity. The LTD/LTP balance at PF–Purkinje cell 720 

synapses was based on the following rule (S3-1 Fig shows sensitivity analysis 721 

accounting for LTD/LTP balance):  722 

( ) ( )

( ) ( )

spike
spike

j i spike

j i spike

IO
IO

PF PC GC j
LTD

PF PC GC

t t
LTD. w t k t dt if PF is activeat t

LTP. w t t const. otherwise

D d
t

D a d

-
-¥

-

-æ ö
= × ×ç ÷ç ÷

è ø
= ×

ò723 

 (11) 724 

where ∆WPFj–PCi(t) denotes the weight change between the jth PF and the target ith 725 

Purkinje cell;  is the time constant that compensates for the sensorimotor delay 726 

(100ms);  is the  Dirac delta function corresponding to an afferent spike from a PF 727 

(i.e., emitted by a GC); and the kernel function k(x) is defined as [92]: 728 

( ) ( )20xk x e sin x-= ×       (12) 729 

The convolution in Eq. 11 was computed on presynaptic PF spikes arriving 100 730 

ms before a CF spike arrival, accounting for the sensorimotor pathway delay [65, 114, 731 

115, 124]. Note that the kernel k(x) allows the computation to be run on an event–driven 732 

simulation scheme as EDLUT [81, 114, 115, 124], which avoids integrating the whole 733 

kernel upon each new spike arrival. Finally, as shown in Eq. 11, the amount of LTP at 734 

PF–Purkinje cell synapses was fixed, with an increase in synaptic efficacy equal to a 735 

each time a spike arrived through a PF to the targeted Purkinje cell.  736 

MF–MVN synaptic plasticity. The LTD/LTP dynamics at MF-MVN synapses was taken 737 

as (Fig. 3-1 shows sensitivity analysis accounting for LTD/LTP balance): 738 

LTDt

GRd
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( ) ( )

( ) ( )

spike

j i spike

j i spike

PC
MF MVN MF j

MF MVN

MF MVN MF

t t
LTD. w t k t dt if PC is activeat t

LTP. w t t const. otherwise

D d
s

D a d

+¥

-
--¥

-

-æ ö
= × ×ç ÷ç ÷

è ø
= ×

ò  (13) 739 

with ∆WMFj–MVNi(t) denoting the weight change between the jth MF and the target ith MVN. 740 

MF DCNs -  standing for the temporal width of the kernel; MFd  representing the Dirac delta 741 

function that defines a MF spike; and the integrative kernel function k(x) defined as [92]: 742 

( ) ( )2xk x e cos x-= ×      (14) 743 

Note that there is no need to compensate the sensorimotor pathway delay at this 744 

site because it is already done at PF-Purkinje cell synapses ( LTDt  in Eq. 11). 745 

 The STDP rule defined by Eq. 13 produces a synaptic efficacy decrease (LTD) 746 

when a spike from the Purkinje cell reaches the targeted MVN neuron. The amount of 747 

synaptic decrement (LTD) depends on the activity arrived through the MFs. This activity 748 

is convolved with the integrative kernel defined in Eq. (14). This LTD mechanism 749 

considers those MF spikes that arrive after/before the Purkinje cell spike arrival within 750 

the time window defined by the kernel. The amount of LTP at MF-MVN synapses is 751 

fixed (Ito, 1982;[92, 125] , with an increase in synaptic efficacy each time a spike arrives 752 

through a MF to the targeted MVN. 753 

Purkinje cell–MVN synaptic plasticity. The STDP mechanism implemented at Purkinje 754 

cell-MVN synapses [92] consists of a traditional asymmetric Hebbian kernel  755 

( )

MVN _post MVN _pre

PC MVN

j i MVN _pre MVN _post

PC MVN

t t

MVN _post MVN _pre
PC MVN t t

LTP e if t t
w t

LTD e otherwise

s

s

D
+

-

-
-

-
-

- -
-

ì
ï × ³ï= í
ï

×ïî

   (15) 756 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2018. ; https://doi.org/10.1101/347252doi: bioRxiv preprint 

https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/


Page 36 of 48 

where ∆WPCj–MVNi(t) is the weight change between the jth PC and the target ith MVN, 757 

PC MVNs +
-   and PC MVNs -

-  are the  time  constants of the potentiation and depression 758 

components set to 5ms and 15ms respectively ; and LTDmax/LTPmax  (0.005/0.005 ) are 759 

the maximum weight depression/potentiation change per simulation step. The tmvn_post 760 

and tmvn_pre indicate the postsynaptic and presynaptic MVN spike time. This STDP rule 761 

is consistent with the fact that plasticity at Purkinje cell-MVN synapses depends on the 762 

intensity of MVN and Purkinje cell activities [20-23] and it provides a homeostatic 763 

mechanism in balancing the excitatory and inhibitory cell inputs to MVN [90, 126]. The 764 

source code is available at URL: http://www.ugr.es/~nluque/restringido/CODE.rar 765 

(user: REVIEWER, password: REVIEWER). 766 
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Supporting Information  1093 

Figure Captions 1094 

Figure S3-1. Critical LTD/LTP balance at PF-Purkinje cell and MF-MVN 1095 

synapses: sensitivity analysis. Cerebellar adaptation modulates PF-Purkinje cell 1096 

synaptic weights as well as MF-MVN synapses [6, 92]. For synaptic adaptation, the 1097 

model uses supervised STDP, which exploits the interaction amongst unsupervised and 1098 

supervised cell inputs to regulate and stabilise postsynaptic activity. Balancing 1099 

supervised STDP, and the resulting synaptic modification dynamics, is critical, given 1100 

the high sensitivity of the process that determines the LTD/LTP ratio [127, 128]. A 1101 

sensitivity analysis of the parameters governing LTD and LTP, shows that LTP 1102 

exceeding LTD values for a narrow range at MF-MVN synapses preserves VOR 1103 

learning stability. This holds independently for both VOR gain and phase (A) as well as 1104 

for the combination of the two (B). By contrast, PF-Purkinje cell synapses admit broader 1105 

limits for the LTD/LTP ratio (A, B).  1106 

More detailed description: we systematically simulated LTP/LTD ratio values at PF-1107 

Purkinje cell and MF-MVN synapses within a plausible range that may satisfy the 1108 

expected h-VOR outcome. As simulations ran, the solutions were iteratively checked 1109 

until finding the set of LTD/LTP ratio values that exhibited the better performance in 1110 

terms of h-VOR gain and phase. LTD/LTP balance at each site was modified by 1111 

systematically multiplying LTD by 1.5N where –11 ≤ N ≤ 12 for PF-Purkinje cell and 1112 

MF-MVN synapses. For each parameter setting, the cerebellar model underwent 10 000 1113 

sec of VOR learning (1Hz head rotation movement to be compensated by contralateral 1114 

eye movements. (A) Final VOR gain and phase plotted over the LTD/LTP range of 1115 

values that were tested. (B) Combined VOR gain and phase (normalised) as a function 1116 

of the LTD/LTP ratio. At PF-Purkinje cell synapses the LTD/LTP was well balanced for 1117 
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N values ranging between [–1, 7]. At MF-MVN the LTD/LTP balance was more critical 1118 

since N is within a narrower band range [–1, 0]. The reddish area within the last plot 1119 

indicates the optimal parameters range. LTP must exceed LTD at MF-MVN synapses 1120 

for optimal VOR performance. This result is consistent with the unsupervised nature of 1121 

the LTP for the kernel defined for MF-MVN STDP. Unsupervised LTP with larger 1122 

values than LTD takes the MF-MVN synaptic weights to the upper bound of their 1123 

synaptic efficacy, thus provoking more MVN activations. In the absence of LTD 1124 

counteraction, the cerebellar output is, therefore, upper saturated. LTD driven by 1125 

Purkinje cell activity blocks LTP at MF-MVN synapses, thus shaping the cerebellar 1126 

compensatory output. 1127 

Figure S3-2. LTD/LTP balance at MF-MVN synapses over time. Whilst LTD/LTP 1128 

balance was fixed at PF-PC synapses, we modified the LTD/LTP balance at MF-MVN 1129 

synapses by systematically varying the ratio by 1.5N where –11 ≤ N ≤ 12 during a 10000 1130 

sec simulation. (A) Final VOR gain and phase plotted as a function of the tested 1131 

LTD/LTP range across time. (B) Combined VOR gain and phase (normalised) over time. 1132 

A proper balance between LTD and LTP (ratio of approximately 0.4) makes the 1133 

cerebellum perform optimally after 750 sec.  1134 

Figure S3-3. Parameter sensitivity analysis for the LTD/LTP balance at PF-1135 

Purkinje cell and MF-MVN synapses in the absence of Purkinje spike burst-pause 1136 

dynamics. Similar to Fig. 3-1, the parameters regulating the LTD/LTP ratio were 1137 

exhaustively tested whilst the cerebellar model without Purkinje complex spiking 1138 

underwent h-VOR learning during a 10000 sec simulation. (A) Final VOR gain and 1139 

phase plotted over the LTD/LTP range of tested values. (B) Combined VOR gain and 1140 

phase (normalised) as a function of the LTD/LTP ratio. LTD/LTP at both PF-Purkinje 1141 
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cell synapses is well balanced for N values ranged between [–1, 7]. Thus, the absence of 1142 

bursting and pause dynamics leads to a wider range values for the LTD/LTP balance.  1143 

Figure S5-1. VOR phase-reversal learning: time course of the VOR phase. (A) VOR 1144 

phase adaptation with (red curve) and without (green curve) Purkinje spike burst-pause 1145 

dynamics. (B) Focus is on the phase-reversal period and comparison with experimental 1146 

data [3]. 1147 

Figure S6-1. Eye velocity evolution during VOR phase-reversal learning (A) Only 1148 

the eye velocity movement corresponding to the sparser and more selective distribution 1149 

of MF-MVN synaptic weights is able to counteract the head velocity movement in 1150 

counter phase (B), as phase-reversal learning is achieved (C). 1151 

Figure S7-1. Climbing fibre activation. In the model, CF responses follow a 1152 

probabilistic Poisson process. Given the normalised error signal ε(t) obtained from the 1153 

retina slip and a random number	η(t) between 0 and 1, the model CF fires a spike if 1154 

ε(t) > η(t); otherwise, it remains silent[79] A single spike is then able to report timed 1155 

information regarding the instantaneous error. Furthermore, the probabilistic spike 1156 

sampling of the error ensures that the entire error region is accurately represented over 1157 

trials with a constrained CF activity below 10 spikes per second, per fibre (CF activated 1158 

between 1-10 Hz). Hence, the error evolution is accurately sampled even at a low 1159 

frequency [115, 117]. This firing behaviour is consistent to those observed in 1160 

neurophysiological recordings [116]. 1161 

 1162 
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