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Abstract 

 

The neural mechanisms mediating sensory-guided decision making have received considerable 
attention but animals often pursue behaviors for which there is currently no sensory evidence. Such 
behaviors are guided by internal representations of choice values that have to be maintained even 
when these choices are unavailable. We investigated how four macaque monkeys maintained 
representations of the value of counterfactual choices – choices that could not be taken at the 
current moment but which could be taken in the future. Using functional magnetic resonance 
imaging, we found two different patterns of activity co-varying with values of counterfactual choices 
in a circuit spanning hippocampus, anterior lateral prefrontal cortex, and anterior cingulate cortex 
(ACC). ACC activity also reflected whether the internal value representations would be translated 
into actual behavioral change. To establish the causal importance of ACC for this translation process, 
we used a novel technique, Transcranial Focused Ultrasound Stimulation, to reversibly disrupt ACC 
activity. 
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Introduction 

 

Every day, chacma baboons, an old world primate, navigate in their environment from the safety of 
their sleeping post, such as a cliff-top, to distant foraging or watering sites1. The decision to move 
towards one of those high valued locations is not simply guided by the accumulation of sensory 
evidence for that choice but by an internal representation or memory of the choices’ value. The same 
is true when they move back towards the sleeping post in the evening. While sensory and associative 
decision making have been well-studied2, we still lack an understanding of learning and decision 
making when currently unavailable options need to be held in memory and how those representations 
interact with current choices to guide behavior. Here we introduce a simple paradigm allowing 
investigation of the neural mechanisms mediating future decisions guided by information held in 
memory in macaques. In addition, the paradigm allows examination of how information held in 
memory modulates current on-going decisions.  

Four macaques were trained to choose between pairs of abstract visual stimuli while in the 
MRI scanner (fig.1a, b). On each trial, the two stimuli available for choice (available options) were 
drawn from a set of three that were each associated with distinct reward probabilities (fig.1a).  The 
probabilities drifted over trials and each stimulus’ reward probability was uncorrelated from that of 
the others (<22% mean shared variance). On each trial one of the two available options was chosen 
by the monkey, the other was unchosen, and a third option was invisible and unavailable for choice. 
Both the unchosen option and the unavailable option can be considered counterfactual choices – 
although these choices were not made on the current trial, they might be made on a future occasion.   

Behavioral analyses demonstrated that animals maintained representations of counterfactual 
choice values to guide future behavior on subsequent trials. We therefore used fMRI to test whether 
neural activity reflected counterfactual choice values according to one of several possible schemes. 
First, neural activity might simply represent the value of the unavailable option (Hypothesis 1). 
Alternatively, it might reflect the value of any counterfactual option – options that are currently 
unavailable for choosing, and options that are available on the current trial but which are unchosen. 
In such a scheme, it may not be important whether a counterfactual choice is unavailable or unchosen, 
however, if such a representation is to guide future behavior, then it should reflect the ranked values 
of the alternative options (Hypothesis 2). We also compared this with a third scheme in which an 
unavailable option’s value had no influence on neural activity (Hypothesis 3) (fig.1e). We found 
evidence for the existence of counterfactual values in ACC, anterior lateral prefrontal cortex (lPFC), 
and hippocampus. Activity in these regions was related to accurate decision making in future decisions 
but not in the current decision. The activity pattern in ACC further indicated that it was in this region 
that counterfactual values were transformed into actual behavioral change.   

Because we used an animal model it was possible to investigate not just correlation between 
neural activity and behavior but the activity’s causal importance for behavior3. We examined the 
impact of transiently disrupting ACC neural activity with Transcranial Focused Ultrasound Stimulation 
(TUS). The TUS 250 kHz ultrasound stimulation was concentrated in cigar-shaped focal spot several 
centimeters below the focusing cone. Importantly, we recently demonstrated that this protocol 
transiently, reversibly, reproducibly, and focally alters neural activity (Verhagen et al., BioRXiv) and 
can do so even in a relatively deep area such as ACC (Folloni et al., BioRXiv). Additionally, a similar TUS 
protocol altered saccade planning in macaques when applied to the frontal eye fields but not to a 
location 10-12mm distant in dorsal premotor cortex4. In the current study, consistent with our ranked 
counterfactual hypothesis (Hypothesis 2), ACC TUS impaired translation of counterfactual choice 
values into actual behavioral change. 
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Results 

 

Animals learned option values and maintained them in memory without forgetting.  

To behave adaptively in this task, animals should estimate each option’s reward probability and 
maintain these estimates in memory. If there are three options (for example A, B, and C) then animals 
should retain what they have learned about option C even if subsequent trials involved presentation 
of only options A and B. The representations of C’s reward value should then guide future decisions 
when C becomes available again. We therefore modeled animals’ choices using a reinforcement 
learner4,5  and tested whether the unavailable option’s estimated reward probability (which in our 
experiment determines expected value) was maintained in memory. Specifically, we used two 
reinforcement-learning models to simulate behavior: 1) the Maintain model which assumes the 
expected value associated with the unavailable option does not change or decay on trials when it is 
not shown6–8; 2) the Decay model in which memory of an unavailable option’s value decays or is 
"forgotten" as a function of time whenever it is not presented (Methods)9,10.  

For both models, we estimated free parameters by likelihood maximization and Laplace 
approximation of model evidence to calculate the Bayesian Information Criterion (BIC) and the 
exceedance probability respectively (supplementary fig.1; Methods). Bayesian model comparison 
revealed that monkeys did not forget unavailable option values (Lower BIC values indicate better 
model fit, Maintain model: BIC=486.80, Decay model: BIC=618.75; fig.1c). Exceedance probabilities 
for the models based on approximate posterior probabilities suggested the Maintain model 
significantly outperformed the Decay model (𝜑𝜑=0.96; see supplementary fig.1).  Animals learned the 
options' values and maintained them in memory without forgetting even when options were not 
available on a given trial.  

To confirm the relationship between the better model’s predictions and behavior, we 
compared choice probabilities predicted by the Maintain model and the actual recorded frequencies 
of animals' responses and found that the model matched behavior well (fig.1c). A further linear 
regression analysis at the individual level generated an average R2 of 0.92 across animals and 
regression coefficients that were significant (P<0.005) for each animal. Having established the 
goodness of fit of the Maintain model to behavior, all further analyses were conducted using the 
expected values estimated with this model. To predict behavior as in humans and artificial decision 
making networks11, estimates for the two available options were categorized as "high value" (HV) and 
"low value" (LV) and accuracy was categorically defined as HV selection. With these estimates, we 
found that the difference in value between the two available options (sometimes called “difficulty” as 
depicted in fig.1e[iii]) as well as the total value of available options were reliable predictors of animals' 
choice accuracy (value difference: t24=7.12, P<0.001; total value: t24=4.10, P<0.001) and reaction times 
(value difference: t24=-3.68, P=0.001; total value: t24=-5.54, P<0.001; fig.1d).  

 

Value associations of counterfactual options guide future choices.  

To guide future behavior, it is essential to retain counterfactual choice values in case these choices 
become available again in the near future. There are at least two different ways that animals can 
maintain counterfactual information for future use. The first way is to consider which choices are 
available and which are not on each trial (Hypothesis 1; fig.1e[i] left panel) and thus to categorize the 
options as "chosen", "unchosen" and "unavailable". A second way to describe the options (Hypothesis 
2; fig.1e[ii] middle panel) is to think of both the unchosen and the unavailable options as alternative 
courses of action. Together, these two options constitute the counterfactual choices – potential 
choices that were not, or could not, be taken on the current trial but which might be taken in the 
future. Animals might rank the expected value associated with the counterfactual options. Therefore, 
instead of categorizing the options as "unchosen" and "unavailable", we characterized them as the 
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"better" and "worse" counterfactual options (also named "better" and "worse" alternative options), 
irrespective of their availability. Sometimes, the unchosen option will be the better alternative, and 
sometimes the unavailable option will be the better alternative. Finally we can test the hypothesis 
that animals do not maintain counterfactual information for future use but only represent information 
about counterfactual choices so as to represent the difficulty of the current decision (Hypothesis 3; 
fig.1e[iii] right panel). Consideration of this possibility is important because it has been suggested that 
activity in some of the brain areas that we investigated, such as ACC, reflects the difficulty of response 
selection14,15. 

In line with the first hypothesis, we performed a logistic regression assessing whether the 
unavailable option’s expected value influenced its future selection when it next reappeared on the 
screen. This analysis revealed that decisions to select the previously unavailable option were strongly 
related to its expected value (t24=3.31, P=0.002; fig.2a), indicating monkeys held the memory of its 
value even over trials on which it was not available in order to guide later behavior, aligning with the 
prediction of the Maintain model. A complementary analysis confirmed these results and showed that 
accuracy of the future choice was influenced by the currently unavailable option, particularly when its 
most recent expected value was the best of the three options (t24=6.59, P<0.001; fig.2b) regardless of 
the last reward/choice association (paired t-test between rewarded/non-rewarded choices at t-1: 
P<0.001) and beyond the effect of the current HV and LV on the screen (all one-sample t-tests: 
P<0.001). 

In line with the second hypothesis, we performed a series of analyses similar to those 
described above but replacing value estimates for the unavailable option by estimates for better and 
worse alternative choices. These analyses revealed animals’ decisions to switch to the better 
counterfactual choice were influenced by its expected value (t24=5.68, P<0.001) but this was not true 
for the worse counterfactual choice (t24=0.21), suggesting animals switch to the next best alternative 
more effectively than to the worse alternative (fig.2c, left and right panels). Overall, the results 
demonstrate two ways of categorizing the choices made in the task: either by classifying them as 
"available" and "unavailable", or by considering the current chosen option in contrast to better and 
worse counterfactual choices. These frameworks guided our following analysis of fMRI data (fig.1e).  

 

Hippocampal activity predicts successful future choices when the unavailable option becomes 
available again. Having established that animals not only represent choice value information that 
cannot be used on the current trial, but exploit this information on pending trials, the first fMRI-related 
analysis explored the extent to which neural activity reflected this key feature: the expected value of 
the currently unavailable option (Hypothesis 1; fig.1e[i] left panel). We tested for voxels across the 
whole brain where activity correlated with the trial-by-trial estimates of the unavailable option's 
expected value, particularly when the future selection was successful (GLM1: value of unavailable 
option on trial t when switching to it correctly on trial t+1 vs. value of unavailable option on trial t 
when switching to it incorrectly on trial t+1). We also included the expected value of the chosen and 
unchosen options as separate terms in the GLM (Methods). This analysis revealed one region in which 
the neural value coding of the unavailable option was different for successful future selection 
compared with unsuccessful future selection, surviving multiple correction (Z>3.1, whole-brain 
cluster-based correction P<0.001): right hippocampus (peak Z=3.61, Caret-F99 Atlas (F99): x=16.5, y=-
7.5, z=-12). At a lower threshold, we also found its bilateral counterpart: left hippocampus (peak 
Z=3.05, F99 x=-14, y=-9, z=-12.5; fig.3a). To illustrate the significant activity in bilateral hippocampal 
regions, we extracted the time course of the neural activation in two regions of interest (ROIs), defined 
as spheres centered on the peak of the activations (fig.3b left). Note that this analysis was performed 
for illustrative purposes only as the ROIs were formally linked to the comparison between correct and 
incorrect future selection used to establish the ROI location16. The activity pattern represented in this 
analysis is noteworthy as it shows that the blood oxygenation level dependent (BOLD) signal in 
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hippocampus is scaled by the expected value associated with the unavailable options only when the 
currently unavailable option is going to be chosen correctly on a future trial (see supplementary fig.2).  

The hippocampus' role in maintaining information about currently unavailable choices for 
prospective guidance of future decisions might not be restricted to occasions when that choice will be 
made in the future; it may also encompass the prospect of rejecting the currently unavailable option 
if it is likely to be worse than the others17. To demonstrate this, we repeated the analysis in the trials 
preceding those in which the animal decided not to select a currently unavailable option. Critically, 
this analysis also revealed a greater BOLD signal for the value of the unavailable option on the current 
trial when this option was correctly rejected in the future compared to when it was incorrectly 
rejected (Leave-one-out peak selection: right Hippocampus: P=0.006, t24=2.96; left Hippocampus: 
P=0.03, t24=2.19; fig.3b right). In summary, hippocampal activity is scaled by the currently unavailable 
option’s value more strongly (e.g. there is a stronger memory trace) when the next decision involving 
that option is going to be made correctly regardless of whether it is going to be chosen correctly 
(because it is highest in value) or rejected correctly (because it is lowest in value) in the future.  

Finally, having established that hippocampal activity is related to memory of unavailable 
options we hypothesized that variation in such activity (at trial t) across sessions might predict 
variation in influence of the unavailable option’s value on future accurate switching behavior (at t+1) 
(fig.2b). We found a significant correlation in the case of future decisions in which the unavailable 
option became accessible (r=0.43, P<0.05) but there was no correlation for the current decision while 
the unavailable option remained inaccessible (r=0.01, P>0.5; fig.3c). This result again suggests that the 
hippocampus is involved in future planning but not current, on-going decision making, as further 
confirmed by connectivity analysis with regions involved in guiding the ongoing decision (see 
supplementary PPI analysis).  

 

ACC ranks counterfactual options according to their expected value.  

The previous analysis was predicated on the idea that the brain maintains information in memory 
pertaining to currently unavailable choices while encoding what is relevant for the current decision 
(the two available options) elsewhere in the brain. Therefore, we next sought brain regions encoding 
the key decision variable – how much better is the currently chosen available option compared to the 
currently rejected available option.  We searched for activity that parametrically encoded the 
difference in value between the currently chosen and unchosen options (GLM2: subjective choice 
comparison model with chosen vs. unchosen expected values). Such a neural pattern, when locked to 
decision time, is sometimes referred to as a choice or value comparison signal. We found strong 
bilateral activations in a distributed network including ACC (peak Z=-3.75, F99 x=1, y=20.5, z=10.5), 
lPFC (right peak Z=-4.61, F99 x=14.5, y=17.5, z=9.5; left peak Z=-4.29, F99 x=-15, y=16, z=9.5) and 
ventromedial prefrontal cortex and adjacent medial orbitofrontal cortex (vmPFC/mOFC; peak Z=-4.01, 
F99 x=-5, y=14, z=2) encoding the (negative) difference in expected value between the chosen and 
unchosen options (fig.4a; |Z|>3.1, whole brain cluster-based correction P<0.001). In other words, 
activity in these areas increased as decisions became harder (e.g., because the subjective value of the 
chosen option became lower or the subjective value of the unchosen option became higher or both).  

  To first illustrate the relationship between option values and lPFC and ACC activity, we 
extracted BOLD time courses (using a leave-one-out cross-validation approach to avoid circularity of 
analyses) from ROIs over each region and performed further analyses (Methods). For each region, we 
found activity related to the key decision variable – the difference between chosen and unchosen 
values – was mainly driven by the negative relationship of the BOLD signal with the expected value of 
the chosen option (all |Z|>3.1 for the Chosen regressor); there was no effect related to the unchosen 
option value (no significant activity for the Unchosen regressor). Importantly, the analysis contained 
an extra regressor representing the unavailable option’s value, which also had no significant effect (no 
significant activity for the Unavailable regressor), suggesting that, aside from the choices that the 
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animals had experienced directly, the representation of the other two options as "unchosen" and 
"unavailable" provided a poor account of activity in these regions (ACC and lPFC). Importantly, the 
negative relationship between the ACC BOLD signal and the value of the chosen option may reflect 
the opportunity cost of switching away from the current choice. 

Following this idea, in a second step, we tested whether the ACC might represent the possible 
alternatives that the animal might switch to in the future (Hypothesis 2 in fig.1e middle panel). In this 
scheme, the two options not selected on the current trial, the unchosen option and the unavailable 
option, could both be considered counterfactual options that might be taken in the future and which 
could be ranked according to their expected value (GLM3: better vs. worse alternatives model, as per 
our behavioral analyses). Using Bayesian statistics for each region within the same network (see 
Methods), we found that the activity pattern representing better and worse alternatives provided a 
significantly better account of neural activity in both ACC and lPFC compared to either the subjective 
choice comparison model (GLM2) or a third model (GLM4) that does not represent alternative options 
but rather the difficulty of selecting the current response (Hypothesis 3 in fig.1e) with 𝜑𝜑𝜑𝜑>0.95 (fig.4b 
and see supplement fig.3 and methods for full Bayesian Model Comparison18). Thus, ACC and lPFC 
activity parametrically scales with the values of counterfactual choices. One interpretation of the 
activity pattern is that it forecasts choosing the better of the counterfactual options during future 
decisions.  

We directly tested this hypothesis using multiple regressions to investigate whether the 
activity in lPFC or ACC would predict upcoming switching behavior. For each ROI, we employed four 
regressors time-locked to the stimulus period of trial t, including i) the expected value of the better 
alternative if the future trial is a switch to that option; ii) the expected value of the better alternative 
if the future trial is a stay (i.e. repetition of the same choice as on the current trial); iii) the expected 
value of the worse alternative if the future trial is a switch to that option; iv) the expected value of the 
worse alternative if the future trial is a stay. ACC activity predicted upcoming decisions to switch to 
the better and avoid the worse counterfactual (fig.4c; leave-one-out procedures for peak selection: 
ANOVA: main effect of area: F24=6.15, P=0.02; post-hoc tests: Best: t24=2.41; P=0.02, Worst: t24=-2.94, 
P=0.007) but this was not true in lPFC (all Ps>0.2). Such a pattern is consistent with a role for ACC in 
evaluating future strategies before execution8,19–21. By contrast, macaque anterior lPFC holds 
estimates of counterfactual choice values that are less immediately linked to behavior. Similarly, 
human frontal polar cortex activity reflects the values of alternative choice strategies in a manner that 
is also less immediately linked to behavior22.   

There has been considerable interest in the possibility that ACC activity simply reflects 
decision difficulty, which is inversely proportional to the difference in value between the option 
chosen and the available option left unchosen4 (fig.1e, right panel). When one option’s value is much 
higher than the other option, the decision is easy. But when the values of the two options are similar, 
the decision is difficult because it is hard to reject an alternative that is close in value. However, ACC 
activity cannot be explained by difficulty because GLM2 demonstrated it did not reliably reflect the 
value of the rejected available choice and GLM3 demonstrated that instead it reflected the best 
counterfactual choice value even when that choice was not currently available.  

 

ACC disruption impairs translation of counterfactual choice values into actual behavioral change. 

To test whether counterfactual choice value representations in ACC were causally important for 
effective behavioral switching, TUS was applied to the same ACC region in two of the four macaques. 
We previously demonstrated, using resting state fMRI data that 40s sonification at 250 kHz reaches 
ACC and does so in a relatively focal manner having less effect on adjacent, even overlying, brain areas 
(Folloni et al., BioRXiv). The same stimulation was applied to ACC using MRI-guided frameless 
stereotaxy22,23 immediately prior to nine testing sessions that were interleaved, across days, with nine 
control sessions in which no TUS was applied in each monkey (fig.5a; Methods). As in all previous fMRI 
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sessions, novel stimulus images were assigned to options at the start of each day’s testing session 
although the underlying reward environment remained constant. While there were clear differences 
in choice patterns between the ACC TUS and control conditions (fig.5b) these did not result in 
straightforward accuracy differences (fig.5c; P > 0.5).  

 To test formally whether ACC translates counterfactual choice values into actual behavioral 
change, as in the earlier behavioral analyses (fig.2f), we regressed the frequency with which monkeys 
switched, on one trial, onto the values of choices that, on a previous trial, had been counterfactual 
alternatives (fig.5d). As in previous analyses, without TUS, the value of the better counterfactual 
option significantly influenced the frequency with which monkeys subsequently switched to it 
(P<0.001; t17=6.5) but this was not the case for the worse counterfactual option (P=0.9; t17=-0.06). This 
was, however, not true for the TUS condition. When comparing the control with the TUS data, a two-
way ANOVA revealed a significant interaction between the effect of TUS and the influence of 
counterfactual values on switching behavior (P=0.002; F17=12.97). The significant difference between 
the influence of the better and worse counterfactual option value on future switching behavior that 
was present in the baseline condition (post hoc test: P<0.001; t17=7.56) was abolished (P=0.11; t17=1.7) 
after ACC TUS. 

 We further hypothesized that this behavioral change would impact the monkeys’ search 
strategies13 and reduce the influence of entropy (the unpredictability of the environment; see 
Methods for the computational definition of entropy) on their exploratory behavior24. In a running 
window analysis, we used the slope of entropy to predict the slope of cumulative stay choices (i.e. 
successive choices of the same option)25. As lower entropy favors exploiting knowledge to maximize 
gains and higher entropy favors exploring new options and discovering new outcomes, we expect to 
see a negative relationship between entropy and the frequency of stay choices. In the control group 
condition, we found such a relationship (P<0.001; t28=-6.59) but this was not the case after ACC TUS 
(P=0.82; t28=0.22). 

 In a final TUS experiment, to control for the anatomical specificity of the observed effects, we 
examined the effect of TUS to lateral orbitofrontal cortex (lOFC), a brain region also associated with 
distinct aspects of reward-guided learning and decision making26,27. LOFC TUS, however, had no impact 
on the way in which counterfactual choice value was translated into subsequent actual behavioral 
switching (supplementary fig.4). 

 

The unavailable option value affects the current value comparison via vmPFC/mOFC. 

So far, we have reported evidence that activity in a distributed circuit spanning hippocampus, anterior 
lPFC, and ACC reflects counterfactual choice values. Hippocampal activity reflects values of currently 
unavailable options while lPFC and ACC activity reflects the value of the current, better counterfactual 
choice regardless of availability. In ACC, counterfactual choice values are translated into behavioral 
change and disruption of ACC activity impairs the translation process. 

One other area, vmPFC/mOFC, also carried a choice value comparison signal (fig.4a and 
fig.6b). This pattern of decision-related fMRI activity in vmPFC/mOFC has been reported previously in 
macaques27. Not only does BOLD activity increase as the decision becomes harder but single neuron 
activity also appears to reflect a decision process26–29 and vmPFC/mOFC lesions disrupt value-guided 
decision making30. The activity is in a location27,31,32 corresponding with that in which similar signals, 
albeit with an inverted sign, encode values of chosen and unchosen options during decision making in 
humans13,33–36. Given vmPFC/mOFC’s importance for many aspects of decision making27,30, it is 
noteworthy that unlike ACC, vmPFC/mOFC activity reflecting better and worse counterfactual values 
did not predict behavioral switches on future trials (as per results presented in fig4c, P>0.05). Instead, 
vmPFC/mOFC is concerned with the decision being taken now rather than decisions that might be 
taken in the future. In the following analyses, we tested whether the value of the unavailable option, 
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rather than being maintained and leading to future successful switches, modulated the current 
decision between available options via vmPFC/mOFC. 

 We first assessed whether the unavailable option’s value influenced monkeys’ choices 
between available options. We computed accuracy (HV selection) and used a logistic regression to 
predict this categorical variable as a function of the unavailable option’s value (including HV and LV in 
the model). Our results strikingly show that the higher the value of the unavailable option, the better 
animals were at discriminating between the two available options (t24=3.79; P<0.001; similar results 
were obtain using a mixed-effect logistic regression model including sessions and animals as random 
effects using the lmer4 package in the R environment: 𝜒𝜒2(1)=25.78; P<0.001). To illustrate this effect, 
we represented frequency of choosing an option (for example the Right option) as a function of the 
value difference between the two available options (Right-Left option values) for two different levels 
of the unavailable option values (high vs. low; median split). Importantly, although the unavailable 
option can never be chosen, its value profoundly affects the efficiency of choice behavior. In all 
monkeys (see supplementary fig.5; test on softmax parameters; all Ps<0.05) and the group (fig.6a; 
t24=-2.66, P=0.01), relative choice curves were steeper when the unavailable option had high versus 
low values. In summary, unavailable options affected decision making; low value unavailable options 
rather than high value unavailable options were associated with lower accuracy. The result resembles 
a report that decision making between two options is improved if a third option, that is visually 
presented and cannot be chosen, is high rather than low in value35. In the previous study, the influence 
of the third option on decision making was mediated by vmPFC/mOFC. It is possible that a high value 
third option increases the total sum of inhibitory activity and that inhibitory activity drives a 
competitive selection process between the other two options35. Therefore, higher unavailable option 
value should result in a stronger value comparison signal in the vmPFC/mOFC associated with greater 
behavioral accuracy. We tested whether the same was true in the current data. 

To examine vmPFC/mOFC activity independently from biases in peak selection, we used a 
literature-based ROI selection (in area 11m/11; fig.5b, left). We focused on activity reflecting the value 
difference guiding decisions between available options (chosen value–unchosen value) and binned it 
according to the value of the unavailable option (low: 0-33%; middle: 33-66%; high: 66-100% 
percentiles of unavailable option value). The vmPFC/mOFC response to the chosen value–unchosen 
value difference was modulated by the currently unavailable option’s value (linear mixed-effect 
analysis: t10=-4.01, P=0.002; fig.6b, right panel), in exactly the same way as behavior. Normally 
vmPFC/mOFC activity reflects the value of the chosen option with a negative sign (fig.4b and fig.6d); 
as the chosen option’s value falls and choosing it becomes more difficult, there is more activity in 
vmPFC/mOFC. This negative signal was diminished when the unavailable option value was very low 
and decisions between available options were less accurate. In summary, low (high) value unavailable 
options weakened (strengthened) the vmPFC/mOFC value comparison signal and weakened 
(strengthened) current decision accuracy. Importantly, the same analysis in the ACC and lPFC (both 
hemispheres) shows that the other areas behave differently and did not represent such modulation 
of value comparison by the unavailable option (all Ps>0.25). 

To further test the strength of the link between the unavailable option’s impact on the current 
decision and its neural impact in vmPFC/mOFC we exploited variability in the behavioral effect across 
sessions. We hypothesized that variation across sessions in the size of the influence of the unavailable 
option’s value on vmPFC/mOFC would be related to variation in behavioral accuracy. To test this 
hypothesis, we first performed a partial regression analysis to reveal the uncontaminated effect of the 
unavailable option’s value on accuracy after controlling for the effects of the available options’ values 
(t24=2.84, P=0.008; see fig.6c). Separately, we extracted the unavailable option’s value-related signal 
change across sessions (time course analysis performed with the GLM2, see fig.6d for illustration of 
the chosen and unavailable options). Sessions with a greater unavailable option value-related signal 
in the vmPFC/mOFC also exhibited a higher effect of the unavailable option on accuracy in the current 
trial (r=0.58, P<0.001, see fig.6e). 
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Discussion 

 

Decision making is not only guided by accumulation of sensory evidence in favor of one choice over 
another but also by the values associated with choices that are currently unavailable but stored in 
memory2. It is both essential and a burden to store counterfactual choice values when other choices 
are actually being taken at the current point in time. On the one hand, it is essential to retain 
counterfactual choice values to guide future behavior; choices that are currently counterfactual may 
be taken in the future if they become available again, if the value of the choice currently taken 
diminishes, if the current choice is no longer available, or if the value of the counterfactual choice 
exceeds that of other alternatives offered in the future. We found that the four monkeys indeed held 
counterfactual choice values and when they used them to guide their decision making they were able 
to switch more effectively between choices and harvested more reward (fig.2b). On the other hand, 
holding information about counterfactual choice values is a burden because it distracts from the 
current choice to be taken; the monkeys chose less effectively between two available options when 
they had recent experiences of a currently unavailable low value option (fig.6a). One way of 
interpreting this finding is that both available options are much better than the unavailable option 
with which they are compared and so the monkeys choose either available option. Ecologically, this 
might be adaptive as an animal can afford to slow down in a high value environment, rather than 
having to satisfice quickly. As well, low (high) value unavailable options may reduce (increase) the net 
amount of inhibitory activity necessary for mediating the competitive selection process between 
available options and this leads to less/more accurate decision making.  The benefits and costs of 
holding counterfactual choice values in memory were, respectively, associated with a neural circuit 
spanning hippocampus, ACC, and anterior lPFC (fig.3, 4, 5) and, on the other hand, with vmPFC/mOFC 
(fig.6). 

 The hippocampus-ACC-lPFC circuit suggested by the results is consistent with the known 
connections of these areas. The hippocampal formation interconnects with an identical ACC region 
via a fornical pathway from the subiculum37 while it interconnects with adjacent parts of lPFC via an 
extreme capsule pathway from presubiculum and parahippocampal cortex38. ACC and lPFC are 
strongly interconnected39 and frequently co-active40–43.  The ACC is a key node in this network.  It 
translates counterfactual choice values into actual changes in behavior; its coding of counterfactual 
choice values predicted whether monkeys would switch to those choices on a future trial (fig.4) and 
ACC disruption impaired the guidance of behavioral switching by counterfactual choice values (fig.5). 

 There has recently been debate about the degree to which ACC activity is simply explained by 
difficulty of response selection; ACC activity increases as decision difficulty increases15,44. However, in 
macaques, fMRI-recorded activity in other brain areas such as vmPFC/mOFC has the same property, 
it increases with decision difficulty. Nevertheless, macaque vmPFC/mOFC encodes the same 
information about choices as human vmPFC/mOFC even though human vmPFC/mOFC activity 
decreases with difficulty27 (figs.3, 6). It is therefore unlikely to be correct to attribute a role in difficulty 
detection to any area with activity that increases with decision difficulty. More direct evidence for this 
comes from the present study where current decisions improved as the unavailable choice value 
increased and ACC activity increased too (fig.4). Instead, the pattern of results is more in line with a 
view of ACC emphasizing the encoding of the value of alternatives8,14,45,46 and in mediating exploration 
of possible alternative choices41,47,48 as contexts change42. 

 Like the ACC, lPFC held counterfactual choice values but its activity was not closely related to 
behavioral change on future trials. In this respect, lPFC activity resembles that seen in parts of the 
frontal pole in humans that is also less directly related to behavior14,33. The lPFC region studied here 
may not, however, be homologous with the human frontal polar cortex but it may share some of the 
connections that the human lateral frontal pole has with other brain regions31. Holding counterfactual 
choice values in mind while other decisions are taken also compromises the accuracy with which the 
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current decision is taken. Although the presence of high value distracting information can impair 
decision making via a process of divisive normalization of choice values,35,49 so can distracting low 
value choice information11,35. The two effects may depend on the distinct manner in which choices are 
encoded in intraparietal cortex and vmPFC/mOFC and damage to one area increases the distracting 
influence mediated by the remaining area30,50. In the present study, low value unavailable options 
were associated with diminished vmPFC/mOFC representation of the value difference relevant for 
guiding the current decision. Thus, even memories of choice values, as opposed to visually presented 
choice options, can impact on the accuracy of decision making via vmPFC/mOFC.  
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Figures 

 

 
 

Figure 1. (a) On each trial, animals could choose between two symbols presented on the screen and 
had to keep in mind a third option, unavailable to them. The position of each symbol on the left/right 
part of the screen and the combination of available/unavailable options was fully and pseudo-
randomized respectively. (b) Each trial began with a random delay followed by the presentation of 
two abstract symbols for a period ending when the animals made a choice. During this time monkeys 
pressed one of two touch-sensors to indicate which of the two symbols (right or left) they believed 
was more likely to lead to a reward. Finally the decision outcome was revealed for 1.5 sec. The selected 
symbol was kept on the screen (or not) to inform the monkeys of a reward delivery (or no reward). (c) 
Main panel: Model-predicted choice probabilities (x-axis) derived from an RL algorithm (Maintain 
model) using the softmax procedure (binned into 5 bins – bin size of 0.2 - and averaged across all 
animals and across symbols) closely matched animals' observed behavioral choices (y-axis), calculated 
for each bin as the fraction of trials in which they chose one of the three symbols. Small panel: A 
Bayesian model comparison using BIC scores revealed that the Maintain model explained the data 
better than a Decay model in which a free parameter captured how much the animals would "forget" 
the unavailable option. (d) The top graphs show the proportion of correct choices (selecting the option 
with the highest reward probability) plotted as a function of difficulty (distance between the better 
high value [HV] and the worse low value [LV] presented options: left panel) and context value (sum of 
both HV’s and LV’s expected values: right panel). Decision accuracy improved with higher value 
difference between available options and higher total value. The bottom graphs show log-transformed 
mean RTs (±SEM) plotted as a function of difficulty and context. LogRTs decreased for easier decisions 
and higher trial value. Solid lines are linear fits to the data and the shaded area is the 95% confidence 
interval. (e) Because each of the three options' values were uncorrelated with one another it was 
possible to look for neural activity according to three main coding schemes. [i] If activity in a brain 
area covaries only with the value of the unavailable option then this suggests the area is concerned 
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with representing the value of an option held in memory on the current trial and which should not 
interfere with decisions taken on the current trial. [ii] If instead activity covaries with the ranked value 
of both the unchosen available option and the option held in memory then it reflects the value of any 
currently counterfactual choice that might be taken in the future. It is important, however, to 
distinguish such a pattern from a third possibility [iii] in which neural activity is only reflecting the 
currently available options without representing the counterfactual or unavailable option. Thus the 
activity would be negatively related to the HV available option value and positively related to the LV 
option value. This third pattern indicates that the brain area’s activity reflects the difficulty or 
uncertainty of the current decision because the difficulty of selecting an option becomes harder as 
the LV option increases and as the HV option decreases but it is unaffected by the value of the choice 
that cannot currently be taken (see discussion by Kolling and colleagues1,2). 
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Figure 2: Future switches are explained by the expected value associated with counterfactual 
options. (a) Estimated expected values associated with the unavailable option on the current trial 
predict whether animals switch to it when it reappears on the screen on subsequent trials (y-axis: 
probability of switching to the currently unavailable option. x-axis: reward probability associated with 
the unavailable option estimated from the Maintain model). Each bin contains 20% of averaged data 
across sessions (±SEM) (b) A logistic regression confirms that accuracy is explained by the currently 
unavailable option’s value (higher accuracy, for trials in which it is the best of the three options vs. 
when it is not), in addition to the value of the future chosen and unchosen options (beta coefficients 
are averaged across sessions ±SEM) (c) A similar analysis to the one shown in panel (a) is performed 
but on the basis of a new coding scheme where the counterfactual options (current unchosen option 
and current unavailable option) are ranked according to their associated reward probabilities as the 
better and the worse counterfactual choices (left panel). The value of the better counterfactual option 
significantly influenced the frequency with which monkeys subsequently switched to it but this was 
not the case for the worse counterfactual option (right panel).  
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Figure 3. Unavailable option value signal in hippocampus favors accurate future planning. (a) A 
whole-brain analysis tested for voxels where activity correlated with the trial-by-trial estimates of the 
unavailable option binned according to successful future selection. The fMRI analysis was time-locked 
to the decision phase on trial t and binned according to accurate vs. inaccurate selection of the 
unavailable option on trial t+1 (in light pink: cluster-corrected, Z > 3.1, P < 0.001; in red: uncorrected) 
(b) ROI analyses of the right (top panels) and left (bottom panels) hippocampus illustrate the time 
course of the aforementioned contrast. BOLD fluctuations reflect the value of the unavailable option 
on the current trial when it is accurately versus inaccurately selected on the next trial (left panels 
illustrate the contrast show in (a)). A leave-one-out procedure (for spatial and temporal peak 
selection) to assess statistical significance revealed that a similar activity change occurs when 
contrasting the value of the unavailable option for accurate versus inaccurate future rejections of the 
unavailable option (right panels). (c) In the left hippocampus, the beta weights for the contrast used 
in (a) and illustrated in (b, left panel) were predictive of how much the unavailable option’s reward 
probability influenced animals’ future choice accuracy (top panel) but this was not true for current 
choice accuracy (bottom panel). Results are normalised. 
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Figure 4. The anterior cingulate ranks expected reward probabilities of counterfactual options. (a) 
Whole-brain analysis shows a significant negative relationship between BOLD activity and the 
difference between the expected value associated with the currently chosen and unchosen options in 
a distributed brain network, including ACC, bilateral lPFC, and vmPFC/mOFC (cluster corrected, Z > 3.1, 
P < 0.001) (b) ROI analysis of the ACC illustrates the relationship between BOLD and the fully 
parametric representation of the currently chosen, unchosen, and unavailable options (left panel) and 
shows that a distinct model in which the counterfactual options are ranked according to their 
associated reward probabilities explains the data better. Note that we avoid double dipping in favor 
of the hypothesis that we want to support (hypothesis 2) since the ROI has been defined on the basis 
of hypothesis 1. (c) The parametric representation of the better and worse counterfactual values in 
ACC was further explained by whether a future switch in behavior will occur as opposed to the 
continued maintenance of behavior (“stay”) (leave-one-out procedures for peak selection on time 
series analyses: top panel). This was not true in the lPFC (bottom panel) 
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Figure 5. Transcranial Focused Ultrasound Stimulation (TUS) of ACC impaired translation of 
counterfactual choice values into actual behavioral change. (a) Neurostimulation site where TUS was 
applied for each animal (S1 and S2). The TUS transducer was set at a resonance frequency of 250 kHz 
and concentrated ultrasound in cigar-shaped focal spot in ACC. (b) Running average choice frequency 
for the three options in the control/sham ACC (left) and the TUS ACC condition (middle) across 
sessions. Predetermined reward schedules used in the sham and in the TUS ACC task for three options, 
similar to the task used in the fMRI experiment (right). (c) Decision accuracy (selecting the option with 
the highest reward probability) plotted as a function of difficulty (difference in value between the best 
[HV] and worst [LV] presented options). There was no difference between the TUS ACC and the control 
conditions. Solid lines are linear fits to the data and the shaded area is the 95% confidence interval. 
(d) The significant difference between the influence of the better and worse counterfactual option 
value on future switching behavior (in blue, as per fig.2f) was significantly reduced after TUS ACC (in 
green). (e) While entropy (summed entropy of reward probability for all options) is strongly and 
negatively predictive of a change in exploratory behavior in the control condition (indexed by the 
cumulative number of “stay” choices: choices of the same option on one trial after another), this 
relationship is disrupted in the TUS ACC condition. The small panel depicts the difference between the 
TUS ACC and the sham condition for each pair of days (Animals 1 [S1] and 2 [S2] are individually 
represented as red diamond and yellow square, respectively in all plots).  
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Figure 6. Contextual modulation of value-guided choice. (a) Average choice behavior when choosing 
between the Left and Right options plotted as a function of the value of the unavailable option (low: 
green; high: yellow).  Decisions were less accurate when they were made in the context of a low value 
unavailable option. Curves plot logistic functions fit to the choice data. (b) ROI analysis of the 
vmPFC/mOFC (left panel: ROI sphere) illustrates the relationship between the BOLD value-comparison 
signal and the expected value associated with the unavailable option (binned in Low/Mid/High) (right 
panel). The greater the value of the unavailable option, the more negative the value difference; a more 
negative pattern is normally associated with decisions that are easier to take (see panel d).  Data for 
individual animals are indicated by red dots. (c) A partial regression plot shows the uncontaminated 
effect of the unavailable option’s value on accuracy (y-axis: accuracy residuals; x-axis: residuals of the 
unavailable option’s value). Each bin contains 20% of averaged data across sessions (±SEM). (d) ROI 
time course analysis of the vmPFC/mOFC illustrates the relationship between BOLD and the fully 
parametric representation of the currently chosen and unavailable options (e) While there was not a 
main effect of the unavailable option value, vmPFC/mOFC variation in activity related to the currently 
unavailable option’s value explains between-session variation in the currently unavailable option’s 
influence on decision making. Scatter plot at the time of the peak effect of unavailable option value in 
the vmPFC/mOFC (leave-one-out peak selection). 
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Supplementary figures 

 

 

 
 

Supplementary Figure 1: Model fit and model comparison. (a) To explain behavioral data, two models 
were fitted and compared: (i) a classical reinforcement learning algorithm that assumes no decay for 
the unavailable option (Maintain) and (ii) a modified version that assumes a decay for the unavailable 
option (Decay). Bayesian statistics revealed that there was a higher posterior probability that the 
Maintain model had generated the data than the Decay model. (b) The difference in log-evidences for 
all twenty-five data sets is plotted as a bar chart. (c) Left and right panel: Model-predicted choice 
probabilities (x-axis) derived from the Maintain and the Decay models respectively (binned into 5 bins 
– bin size of 0.2 - and averaged across all animals for each symbol separately).  
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Supplementary Figure 2: A hippocampal-frontal circuit in macaques holds memories of currently 
unavailable choice values to guide future behavior (a) PPI results show that on the subsequent trial, 
when the previously unavailable option is correctly selected versus when it is incorrectly selected, the 
vmPFC/mOFC and right hippocampus are negatively coupled as a function of the currently unavailable 
option’s value. A negative coupling pattern is consistent with evidence that macaque mOFC/vmPFC 
codes the value of the choice that is taken with a negative change in activity (this means that it is more 
active when the decision is difficult because the choice taken is low in value).  
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Supplementary Figure 3: ROI analysis of the ACC illustrates the relationship between BOLD and the 
fully parametric representation of the estimates from the learning model that could be categorized in 
relation to the three hypotheses for action value coding scheme (see also fig.1e). (a) Time series were 
extracted from an ROI sphere centered on the ACC with a leave-one-out procedure. In the background 
is the result of the whole-brain analysis presented in the main manuscript in figure 4a. (b) The first 
coding scheme represents the currently chosen, unchosen, and unavailable options (left panel). The 
second coding scheme, which represents the counterfactual options ranked according to their 
associated reward probabilities, explains the data better (middle panel). The last model represents 
the HV option, LV option (available to the animal) as well as the unavailable option (right panel). (c) A 
formal model comparison showed that the 2nd coding scheme outperformed the other two models. 
Bayesian model comparison of the three GLMs presented in the hypotheses section was performed 
within the functional ROI. Note that ROI selection avoids double dipping in favour of the hypothesis 
we aimed to validate, since the ROIs were defined from Hypothesis 1 that we aimed to reject. 

 

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 11, 2018. ; https://doi.org/10.1101/336917doi: bioRxiv preprint 

https://doi.org/10.1101/336917


25 
 

 
 

Supplementary Figure 4. Transcranial Ultrasonic Stimulation of lateral orbitofrontal cortex (lOFC) 
did not impair translation of counterfactual choice values into actual behavioral change. a) 
Neurostimulation site where TUS was applied for each animal (S1 and S2). The TUS transducer was set 
at a resonance frequency of 250 kHz and concentrated ultrasound in cigar-shaped focal spot in lOFC. 
(b) The significant difference between the influence of the better and worse counterfactual option 
value on future switching behavior (in blue, as per fig.2f and 5c) was unaltered after lOFC TUS (in red). 
(c) Entropy is strongly and negatively predictive of change in exploratory behavior (indexed by 
cumulative number of “stay” choices: choices of the same option on one trial after another) in the 
control condition (blue) and this remains the case after lOFC TUS (red).  
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Supplementary Figure 5: The unavailable option value affects the efficiency of choice behavior. (a) 
Average choice behavior when choosing between the Left and Right options plotted as a function of 
the value of the unavailable option (low value: blue; high value: red) value for each animal separately 
(data are averaged across sessions). Curves plot logistic functions fit to the choice data. 
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Methods 

 

Subjects. Four male rhesus monkeys (Macaca mulatta) were involved in the experiment. They weighed 
10.4–11.9 kg and were 7 years of age. They were group housed and kept on a 12 hr light dark cycle, 
with access to water 12–16 hr on testing days and with free water access on non-testing days. All 
procedures were conducted under licenses from the United Kingdom (UK) Home Office in accordance 
with the UK The Animals (Scientific Procedures) Act 1986 and with the European Union guidelines (EU 
Directive 2010/63/EU). 

 

Behavioral Training. Prior to the data acquisition, all animals were trained to work in an MRI 
compatible chair in a sphinx position that was placed inside a custom mock scanner simulating the 
MRI scanning environment. They were trained to use custom-made infra-red touch sensors to respond 
to abstract symbols presented on a screen and learned the probabilistic nature of the task until 
reaching a learning criterion. The animals underwent aseptic surgery to implant an MRI compatible 
head post (Rogue Research, Mtl, CA). After a recovery period of at least 4 weeks, the animals were 
trained to perform the task inside the actual MRI scanner under head fixation. The imaging data 
acquisition started once they performed at more than 70% accuracy (choosing the option with the 
highest expected value) for at least another three consecutive sessions in the scanner. 

 

Experimental task. Animals had to choose repeatedly between different stimuli that were novel in 
each testing session (Figure 1a). We used a probabilistic reward-based learning task inspired from 
tasks originally designed to study reinforcement learning. However, our task consisted of a series of 
choices, on each trial, between two stimuli drawn out of a larger pool of three and this manipulation 
alters the nature of reinforcement learning in at least two major ways. First, the subjects have to 
maintain in memory the value of the option that is not directly available. Second, it creates a horizon 
of choices that is not deterministic, as the animal cannot predict what option will be presented next. 
The position of the two available options on the left and right side of the screen were fully randomized. 
Animals had to choose any symbols by touching one of two infra-red sensors placed in front of their 
two hands corresponding to the stimuli on the screen. After making their decision, if the correct option 
was selected, the unselected option disappeared and the chosen option remained on the screen and 
a juice reward was delivered. If an incorrect choice was made, no juice was delivered. The outcome 
phase lasted 1.5 seconds. Each reward was composed of two 0.6 ml drops of blackcurrant juice 
delivered by a spout placed near the animal's mouth during scanning. Each animal performed six to 
seven sessions in the MRI scanner. The experiment was controlled by Presentation software 
(Neurobehavioral Systems Inc., Albany, CA). 

 

Reinforcement learning algorithms. We used two reinforcement-learning algorithms (Maintain and 
Decay models) to estimate trial-by-trial expected values associated with each option using animals' 
responses 1. For both models, if stimulus A was selected on trial i, its value was updated via a prediction 
error, δ, as follows: 𝑣𝑣𝐴𝐴(𝑖𝑖 + 1) = 𝑣𝑣𝐴𝐴(𝑖𝑖) +  𝛼𝛼. 𝛿𝛿(𝑖𝑖) where 𝛼𝛼 is the learning rate and the prediction error 
was given by 𝛿𝛿(𝑖𝑖) = 𝑟𝑟(𝑖𝑖) −  𝑣𝑣𝐴𝐴(𝑖𝑖). The values of the unselected stimulus (e.g. B) were not updated. 
The two models differ in their assumptions of the stimulus that was not shown on that trial (e.g. C). In 
the Maintain model, the values of C were maintained at their current values such that 𝑣𝑣𝐶𝐶(𝑖𝑖 + 1) =
𝑣𝑣𝐶𝐶(𝑖𝑖). In the Decay model, the values of C were updated as followed: 𝑣𝑣𝐶𝐶(𝑖𝑖 + 1) = 𝑣𝑣𝐶𝐶(𝑖𝑖) +
 𝛾𝛾. (𝑣𝑣𝐶𝐶(1)−  𝑣𝑣𝐶𝐶(𝑖𝑖)). To generate choices for both models, we first used a softmax procedure in which, 
on every trial, the probability of choosing stimulus A was given by: 𝑃𝑃𝑃𝑃(𝑖𝑖) = 𝜎𝜎(𝛽𝛽�𝑣𝑣𝐴𝐴(𝑖𝑖) − 𝑣𝑣𝐵𝐵(𝑖𝑖)�) 
where 𝜎𝜎(𝑧𝑧) = 1/(1 + 𝑒𝑒−𝑧𝑧) is the logistic function, and β the degree of stochasticity in making the 
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decision. The model choice probabilities were then fitted against the discrete behavioral choices to 
estimate the free parameters (𝛼𝛼, β, 𝛾𝛾).  

 

Model fitting. To estimate the free parameters (𝛼𝛼, β, 𝛾𝛾), we used separate fitting procedures. The first 
fitting procedure employed maximum likelihood estimation and a constrained non-linear optimization 
procedure (as implemented in fmincon in MATLAB) separately for each session. The associated 
likelihood function was given by: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ∑𝐵𝐵𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝐴𝐴+∑𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝐵𝐵

𝑁𝑁𝐴𝐴+𝑁𝑁𝐵𝐵
 where NA and NB denote, the number of 

trials in which stimulus A and B were chosen, and BA (BB) equals 1 if A (B) was chosen on that trial, and 
0 otherwise. We fitted this function similarly for the other two stimulus combinations (AC and BC) and 
found the optimal parameters by minimizing the sum of the three negative log-likelihoods. 

The second fitting procedure we employed minimizes overfitting 2, and for each session i we 
found the maximum a posteriori estimate of each model’s free parameters: 𝜃𝜃𝑖𝑖𝑀𝑀𝐴𝐴𝑃𝑃 =
 𝑎𝑎𝑟𝑟𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 𝑝𝑝(𝐶𝐶𝑖𝑖|𝜃𝜃𝑖𝑖)𝑝𝑝(𝜃𝜃𝑖𝑖|𝜉𝜉) where 𝑝𝑝(𝐶𝐶𝑖𝑖|𝜃𝜃𝑖𝑖) is the cross-entropy loss function between observed and 
predicted choices 𝐶𝐶𝑖𝑖 given the model parameters 𝜃𝜃𝑖𝑖 and 𝑝𝑝(𝜃𝜃𝑖𝑖|𝜉𝜉) is the prior distribution on the model 
parameters 𝜃𝜃𝑖𝑖 given the population-level hyperparameters ξ. In order to estimate the optimal ξ we 
implemented an Expectation-Maximization algorithm, which performs k iterations of a two-stage 
optimization routine until convergence. Particularly, during the Expectation step we optimized the 
session-wise joint distribution over the data and parameters with respect to the parameters holding 
the hyperparameters fixed: 𝜃𝜃𝑖𝑖

(𝑘𝑘) = 𝑎𝑎𝑟𝑟𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃 𝑝𝑝(𝐶𝐶𝑖𝑖|𝜃𝜃𝑖𝑖)𝑝𝑝�𝜃𝜃𝑖𝑖�𝜉𝜉(𝑘𝑘−1)� and found the posterior 
distribution over the parameters using a Laplace approximation: 𝑝𝑝�𝜃𝜃�𝐶𝐶𝑖𝑖, 𝜉𝜉(𝑘𝑘−1)� =  𝑁𝑁(𝜇𝜇,𝛴𝛴). During 
the Maximization step we revised the population-level hyperparameters ξ by updating the first and 
second moments of the multivariate normal distribution over the parameters.  

 

Reinforcement-learning model comparison. To determine the best fitting model we subsequently 
performed two types of formal Bayesian model comparison amongst the fitted models. The first 
approach treats each model as a random-effect and is therefore more robust to outliers than fixed-
effect approaches 3,4. Specifically, we first estimated the session-wise Laplace approximated log 
evidence for each model. We subsequently computed the model-wise exceedance probability (that is, 
how confident we are that a model is more likely than any other model tested) using the spm_BMS 
routine (http://www.fil.ion.ucl.ac.uk/spm/software/). The second approach measures each model’s 
goodness of fit based on the model’s population-level hyperparameters 𝜉𝜉. We implemented the 
procedure described by Huys and colleagues 2. Here the model log likelihood is obtained by integrating 
over the model’s parameters. Sampling the model’s parameters from a Gaussian prior density whose 
mean and variance are set to the population-level hyperparameters 𝜉𝜉 allow us to approximate the 
integral. 

 

Imaging Data Acquisition. Awake-animals were head-fixed in a sphinx position in an MRI-compatible 
chair. We collected fMRI using a 3T MRI scanner and a four-channel phased array receive coil in 
conjunction with a radial transmission coil (Windmiller Kolster Scientific Fresno, CA). FMRI data were 
acquired using a gradient-echo T2* echo planar imaging (EPI) sequence with 1.5 x 1.5 x 1.5 mm3 
resolution, repetition time (TR) = 2.28 s, Echo Time (TE) = 30 ms, flip angle = 90, and reference images 
for artifact corrections were also collected. Proton-density-weighted images using a gradient-
refocused echo (GRE) sequence (TR = 10 ms, TE = 2.52 ms, flip angle = 25) were acquired as reference 
for body motion artifact correction. T1-weighted MP-RAGE images (0.5 x 0.5 x 0.5 mm3 resolution, TR 
= 2,5 ms, TE = 4.01 ms) were acquired in separate anesthetized scanning sessions.  
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fMRI data preprocessing. FMRI data were corrected for body motion artefacts by an offline-SENSE 
reconstruction method 5 (Offline_SENSE GUI, Windmiller Kolster Scientific, Fresno, CA). The images 
were aligned to an EPI reference image slice-by-slice to account for body motion and then aligned to 
each animal's structural volume to account for static field distortion 6 (Align_EPI GUI and 
Align_Anatomy GUI, Windmiller Kolster Scientific, Fresno, CA). The aligned data were processed with 
high-pass temporal filtering (3-dB cutoff of 100s) and Gaussian spatial smoothing (full-width half 
maximum of 3mm). The data that were already registered to each subject’s structural space were then 
registered to the CARET macaque F99 template7 using affine transformation. 

 

fMRI data analysis. We employed a univariate approach within the general linear model (GLM) 
framework to perform whole-brain statistical analyses of functional data as implemented in the FMRIB 
Software Library 8: 

 𝑌𝑌 = 𝑋𝑋𝛽𝛽 +  𝜀𝜀 = 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + … + 𝛽𝛽𝑁𝑁𝑋𝑋𝑁𝑁 +  𝜀𝜀  where Y is a T×1 (T time samples) column vector 
containing the times series data for a given voxel, and X is a T × N (N regressors) design matrix with 
columns representing each of the psychological regressors convolved with a hemodynamic response 
function specific for monkey brains 9,10. β is a N × 1 column vector of regression coefficients and ε a T 
× 1 column vector of residual error terms. Using this framework we initially performed a first-level 
fixed effects analysis to process each individual experimental run which were then combined in a 
second-level mixed-effects analysis (FLAME 1 + 2) treating session as a random effects (we also had a 
similar number of sessions across subjects). Time series statistical analysis was carried out using 
FMRIB’s improved linear model with local autocorrelation correction. Applying this framework, we 
performed the GLMs highlighted below. 

 

GLM1 – correct vs. incorrect future selection of the currently unavailable option. Our first fMRI analysis 
was designed to reveal the brain regions representing the value of the currently unavailable option to 
guide accurate future decision making. Specifically, locked to the decision time, we included 3 boxcar 
regressors with a duration of 100 ms that were then convolved with the hemodynamic response 
function: 1) an unmodulated regressor indexing the occurrence of a decision (Dec; all event 
amplitudes set to one), 2-3) two parametric regressors whose event amplitudes were modulated by 
the expected value of the unavailable option for i) future correct selection (unavcorr) and ii) future 
incorrect selection (unavincorr). Additionally, we included two fully parametric regressors whose event 
amplitudes were modulated by the expected value of the chosen (Ch) and unchosen (Unch) options 
that were available on the current trial. Locked to feedback time we included a binary regressor 
representing positive and negative feedback (+1/-1) and a categorical regressor representing right and 
left responses (+1/-1), such as:  

𝑌𝑌 =  𝛽𝛽1𝐷𝐷𝑒𝑒𝐷𝐷 + 𝛽𝛽2𝑢𝑢𝑢𝑢𝑎𝑎𝑣𝑣𝑐𝑐𝑙𝑙𝑐𝑐 + 𝛽𝛽3𝑢𝑢𝑢𝑢𝑎𝑎𝑣𝑣𝑖𝑖𝑖𝑖𝑐𝑐𝑙𝑙𝑐𝑐 + 𝛽𝛽4𝐶𝐶ℎ + 𝛽𝛽5𝑈𝑈𝑢𝑢𝐷𝐷ℎ + 𝛽𝛽6𝐹𝐹𝐹𝐹𝐹𝐹 + 𝛽𝛽7𝑆𝑆𝑖𝑖𝑆𝑆𝑒𝑒 +  𝜀𝜀.     Finally, to 
further reduce variance and noise in the BOLD signal, we add two unconvolved regressors locked at 
time of feedback and with a duration of a TR (2.28sec) for left and right responses (to capture variance 
in the BOLD signal caused by any field distortion coincident with responding), six nuisance regressors 
one for each of the motion parameters (three rotations and three translations), and extra single-trial 
nuisance covariates for abrupt changes in the BOLD signal.  

 

GLM2 – Subjective choice comparison (Chosen option value vs. Unchosen option value). Our second 
fMRI analysis was designed to reveal the brain regions representing the decision variable guiding 
choices between the options actually available on the current trial (Chosen option value-Unchosen 
option value). Locked to decision time, we included 4 boxcar regressors with a duration of 100 ms that 
were then convolved with the hemodynamic response function: 1) an unmodulated regressor indexing 
the occurrence of a decision (Dec), 2-4) three fully parametric regressors whose event amplitudes 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 11, 2018. ; https://doi.org/10.1101/336917doi: bioRxiv preprint 

https://doi.org/10.1101/336917


31 
 

were modulated by the expected value of the chosen option (Ch), unchosen option (Unch) and 
unavailable option (Unav) and the same covariates of non-interest as described in GLM1: 

 𝑌𝑌 =  𝛽𝛽1𝐷𝐷𝑒𝑒𝐷𝐷 + 𝛽𝛽2𝐶𝐶ℎ + 𝛽𝛽3𝑈𝑈𝑢𝑢𝐷𝐷ℎ + 𝛽𝛽4𝑈𝑈𝑢𝑢𝑎𝑎𝑣𝑣 + 𝛽𝛽6𝐹𝐹𝐹𝐹𝐹𝐹 + 𝛽𝛽7𝑆𝑆𝑖𝑖𝑆𝑆𝑒𝑒 +  𝜀𝜀. In the third GLM (GLM3: 
counterfactual model), the Unchosen and Unavailable options were replaced by the Better and the 
Worse alternatives and in the fourth GLM (GLM4: difficulty model), the Chosen and Unchosen options 
were replaced by the High Value option and the Low Value option presented.  

 

Neural model comparison. To assess goodness of fit at the neural level and avoid double dipping in 
favor of the hypothesis that we wanted to support (GLM3)11, we first defined from GLM2, several ROIs 
within a network including all the brain areas that survived cluster level P < 0.001 (cluster-based 
correction) for the value comparison (chosen-unchosen) contrast. Within this network, we derived the 
log-evidence from GLM2, GLM3 and GLM4. Log evidence was then fed into a Bayesian model selection 
random effects analysis (using the spm_BMS routine), which computed the exceedance probability of 
each GLM for each ROI. This analysis indicates which GLM best explained the neural data. We report 
the results for ACC, lPFC, and vmPFC/mOFC. 

 

ROI analyses. We conducted analyses on ROIs defined as two-voxel radius spherical masks placed over 
the hippocampus (Right: x = 16.5, y = -7.5, z = -12; left: x = -14, y = -9, z = -12.5 CARET macaque F99 
coordinates), ACC (x = 1, y = 20.5, z = 10.5), lPFC (x = 14.5, y = 17.5, z = 9.5), vmPFC/mOFC (x = -5, y = 
14, z = 2). We used procedures now standardly employed in most human and animal neuroimaging 
studies12–14 in which the mean and standard error (denoted in all figures by lines and shadings 
respectively) of all the within-subject b weights were calculated across sessions for plotting the effect 
size time courses (each animal had a similar number of sessions).  

 

Leave one out for ROI spatial peak selection. We used a leave-one-out procedure to identify ROI peak 
voxels for the analyses of main effects for areas identified in all fMRI analyses. For each group level 
analyses, our procedure involved leaving one session out at a time. From the results of the remaining 
24 sessions, we extracted local maxima of the relevant clusters and centered the ROIs for the left out 
session on the local maxima. We repeated this for all sessions. Therefore, the ROI selection was 
statistically independent from the data of the session that was subsequently analyzed in the ROI.  

 

Leave one out on time-series group peak signal. We performed significance testing on time course 
analyses using a leave-one-out procedure on the group peak signal to avoid potential temporal 
selection biases. For every session, we calculated the time course of the group mean beta weights of 
the relevant regressor based on the remaining 24 sessions. We then identified the (positive or 
negative) group peak of the regressor of interest within the analysis window of 1 to 6 seconds from 
decision onset. Then, we took the beta weight of the remaining subject at the time of the group peak. 
We repeated this for all subjects. Therefore, the resulting 25 "peak" beta weights were selected 
independently from the time course of the subject analyzed. We assessed significance using t-tests on 
the resulting beta weights. 

 

Transcranial Focused Ultrasound Stimulation (TUS) 

A single element ultrasound transducer (H115-MR, diameter 64 mm, Sonic Concept, Bothell, WA, USA) 
with a 51.74 mm focal depth was used with a coupling cone filled with degassed water and sealed 
with a latex membrane (Durex). The ultrasound wave frequency was set to the 250 kHz resonance 
frequency and 30 ms bursts of ultrasound were generated every 100 ms with a digital function 
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generator (Handyscope HS5, TiePie engineering, Sneek, The Netherlands). Overall the stimulation 
lasted for 40 s. A 75-Watt amplifier (75A250A, Amplifier Research, Souderton, PA) was used to deliver 
the required power to the transducer. A TiePie probe connected to an oscilloscope was used to 
monitor the voltage delivered. The recorded peak-to-peak voltage was constant throughout the 
stimulation session. Voltage values per session ranged from 128 to 136V and corresponded to a peak 
negative pressure of 1.152 to 1.292MP respectively measured in water with an in house heterodyne 
interferometer (see 15 for more details about the simulation protocol). Based on a mean 66% 
transmission through the skull 16, the estimated peak negative pressures applied ranged from 0.76 to 
0.85 MPa at the target in the brain. 

The transducer was positioned with the help of a Brainsight neuronavigating system (Rogue 
Research, Montreal, CA) so that the focal spot would be centered on the targeted brain region, namely 
the rACC (F99 coordinates x = 1, y = 20.5, z = 10.5) (identified according to coordinates of the maximum 
peak used in GLM2). The ultrasound transducer / coupling cone montage was directly positioned to 
previously shaved skin on which conductive gel (SignaGel Electrode; Parker Laboratories Inc.) had 
been applied. The coupling cone filled with water and gel was used to ensure ultrasonic coupling 
between the transducer and the animal's head. 

A sham TUS condition (SHAM) was also implemented as a non-stimulation control. Sham 
sessions were interleaved with TUS sonication days and completely mirrored a typical stimulation 
session (setting, stimulation procedure, neuro-navigation, targeting of ACC, transducer preparation 
and timing of its application to the shaved skin on the head of the animal) except that sonication was 
not triggered. 

 

Entropy analyses 

For the analyses presented in Fig. 5 (behavioral analysis of TUS data), we used a running window 
analysis with entropy defined as: 𝐸𝐸(𝑖𝑖) =  ∑ 𝑝𝑝�𝑎𝑎𝑖𝑖,𝑗𝑗�. 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑝𝑝�𝑎𝑎𝑖𝑖,𝑗𝑗�)𝑡𝑡𝑐𝑐𝑖𝑖𝑡𝑡𝑙𝑙𝑡𝑡

𝑖𝑖=1 , in which xi,j is the probability 
that a given option j is associated with a positive feedback on trial i. We then used the slope of entropy 
(difference between the beginning and the end of a window of 20 trials) as a measure of 
environmental predictability. A positive change in entropy reflects that the environment is less and 
less predictable and should trigger exploration whereas a negative change in entropy should engage 
exploitative behavior. As a proxy for exploration/exploitation, we used the cumulative sum of stay 
behavior, which is simply a vector, keeping track of the number of times a choice has been chosen. 
Note that a consecutive stay for an option A that has been chosen on trial t could also include trials 
for which on the next trial (t+1) A would not be available but chosen on the subsequent trial (t+2). 

 

vmPFC partial regression analysis 

To test the strength of the link between the unavailable option’s impact on the current decision and 
its neural impact in vmPFC/mOFC, we computed the accuracy residuals (Y*, from regressing accuracy 
against the values of the two available options omitting the unavailable one) and the unavailable 
residuals (X* from regressing the unavailable option value against the values of the two observable 
options) and then regressed Y* against X* 17 for each session separately (see average effect on Fig.6c).  
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Supplementary methods 

 

Functional connectivity analyses. Psycho-physiological interaction (PPI) analyses were performed in 
two stages. We first performed a whole brain PPI analysis. Using the ROI procedure described above, 
we extracted time-series data from individual clusters in the right hippocampus that served as a seed 
region (that is the physiological regressor: PHY). This analysis was primarily designed to investigate 
the potential interaction of the hippocampus with decision-related regions involved in selecting the 
option that had previously been unavailable. As such, the increase in correlation between the 
hippocampus and potential decision making regions should be specific for the task in which this 
coupling is relevant; that is, it should be greater during a future trial in which the previously 
unavailable option is now correctly selected. Therefore our psychological (PSY) task regressor was 
constructed such that correct selection trials were weighted +1 and incorrect selection trials were 
weighted −1. The PPI analysis thus included the following regressors during the decision phase of the 
trial in which the previously unobserved option was now selected: 1) an unmodulated regressor 
indexing the occurrence of a decision (Dec), 2) the PHY regressor, 3) the PSY regressor and 4) the 
interaction regressor (PHY × PSY). The rest of the design was identical to GLM 1/2/3.  

In a second stage and in order to further confirm that the PPI result actually reflects a negative 
correlation between hippocampal activity and the vmPFC/mOFC during the correct selection of a 
previously unavailable option 18, we extracted the BOLD time course of the vmPFC/mOFC according 
to the same procedure described in the ROI section and computed the PPI regressor by taking the 
vmPFC/mOFC  time course and the PSY contrast described above. Note that we did not perform any 
further statistical analysis on this PPI regression as the significance was already assessed in the whole 
brain analysis 11.  
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