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Abstract 
 
Biases in choice behavior are shaped by both immediately encountered cues as well as 
the background context in which these cues are embedded. Here we examine the 
mechanisms that underlie the integration of contextual and cue information, and the 
manner in which these sources of information shape behavior. We demonstrate 
contextual influence on choice dissociated from cue information using a value-based 
multi-alternative choice task while recording neural activity using 
electroencephalography. Consistent with work on negativity biases, we show that 
contextual attributes related to loss, reflected along central-parietal sites in the gamma 
(30-59 Hz) frequency range, are prioritized and drive behavior to prevent loss. We 
employ a multi-alternative sequential sampling computational model to show that 
contextual and cue information are integrated through the decision process to shape 
choice responses, and link this integrative process to a neural signature in the gamma 
frequency band. 
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Introduction 
 
Adaptive behavior in the world necessitates integrating relevant information from 
multiple possible sources and exploiting this information to inform decision processes. 
Two potential sources of relevant information include the immediate cues encountered 
in the environment, and the properties and contingencies of the environment itself. A 
foraging animal that encounters a relevant cue, such as a bush that might hold ripe fruit, 
is more likely to survive if it integrates decisions to approach with knowledge about the 
season and presence of potential predators. Integrating this contextual knowledge 
becomes critical for correctly evaluating the trade-off between predatory threat and 
opportunity for food. Here we ask how these sources of information might be 
differentially processed in the brain, as well as the nature of the computations that allow 
background contextual and immediate cue information to be integrated for decision-
making.  
 
While recent research has placed emphasis on the hierarchical organization between 
context and cues, our current focus aims to address the open question of how different 
stages across the hierarchy shape one another; that is, on the integrative processes 
between contextual and cue information. Such a hierarchical organization, in which 
immediate cues are embedded within higher-order structure with shared statistical 
features (Botvinick, 2012; Collins and Frank, 2013; Gershman et al., 2010), is a useful 
framework to adopt as it decomposes the study of contextual influence on decision-
making into tractable problems of contextual representation versus control. Problems of 
representation concern the consolidation of shared statistical features across a given 
environment (Tse et al., 2007; Wilson et al., 2014), and is largely influenced by the 
literature on cognitive maps (Tolman, 1948; Gershman et al., 2010). On the other hand, 
by control we emphasize the processes that use contextual information for the purpose 
of guiding responses to immediately encountered information (Cohen et al., 2000; Daw 
et al., 2011). The latter problem is the focus of the current inquiry.  
 
In many ways this hierarchical relationship between context and cue mirrors the 
organization of neural systems across the brain (Badre and D’Esposito, 2009; Ribas-
Fernandes et al., 2011). Specifically, there has been increasing evidence that higher-
order contextual structure might be represented across the prefrontal (Schuck et al., 
2016) and medial temporal cortices (Burgess et al., 2002; Diana et al., 2007). There has 
also been much work on how the brain supports control over behavior, with emphasis 
on the role of the anterior cingulate cortex (Behrens et al., 2007; MacDonald et al., 
2000), as well as distributed regions across frontoparietal cortices (Nieuwenhuis et al., 
2004), in particular relation to attentional processes (Niv et al., 2015). 
Electrophysiological experiments have demonstrated the importance of slow theta (Θ, 
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1-7 Hz) oscillations along the frontal midline for both memory maintenance (Hsieh and 
Ranganath, 2014) as well as control (Cavanagh and Frank, 2014; Summerfield and 
Mangels, 2005). Additionally, fast gamma (𝛾, > 30 Hz) oscillations across the cortex, 
and particularly in a frontoparietal system, has been linked to computations driving 
value-based choice (Polanía et al., 2014), and support the binding between contextual 
representations and incoming cue- (item) level information (Jensen et al., 2007; Nyhus 
and Curran, 2009). These findings provide important guidance for delineating the 
component processes that drive context-dependent choices; however, specifying the 
potential mechanistic pathways through which these neural systems give rise to 
behavior remains an important challenge.  
 
We address this open challenge by examining how the brain supports higher-order 
contextual information that is dissociated from cues, as well as how precise neural 
signatures and computational mechanisms account for the integration of contextual- 
and cue- level information. We probe both the isolated and interactive processes across 
contexts and cues by testing participants on an adaptation of a multi-alternative value-
based forced-choice paradigm (Mowrer et al., 2011) while recording neural activity 
using noninvasive electroencephalography (EEG). We exploited the high temporal 
resolution and spatial breadth of this neuroimaging modality to probe whether different 
contextual attributes might be represented in parallel neural traces across the frequency 
spectrum in a distributed fashion. Under our experimental paradigm (Figure 1), at a 
given moment the potential to acquire a gain or prevent a loss outcome is given by the 
incoming cue information. Importantly, we include a response time limit to induce 
speed-accuracy trade-off processes; this allows us to examine the response profile of 
error responses and consequently, whether strategic attention shifts towards 
contextually advantageous choice options. We manipulate the magnitude of the 
potential monetary outcome across task blocks to shape the context in which these trial-
level cues are encountered. This dissociation between the information conferred by the 
context and by the cue allows us to employ an analytic strategy that disentangles 
sustained, or tonic contextual influence from context-cue interactions. We do so 
behaviorally by examining response bias towards contextually-favored choice 
alternatives on trials in which the cue indicates no monetary consequence. We take a 
similar approach in dissociating context-unique neural markers by examining oscillatory 
signal that vary across contextual states, and isolating contextual components of the 
resulting signal.  
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Figure 1. Experimental paradigm and computational model.  
A) Sequence of events within a trial (see supplementary methods for details) B) Matrix of potential 
outcomes given the presented cue (columns) and potential responses (rows). C) Context was 
manipulated via outcome, with contextual gain values of +$0.50 and $1.00 (columns) and contextual loss 
values of -$0.50 and -$1.00 (rows). D) Schema of the multi-alternative sequential sampling model, with 
three noisy accumulators for each choice alternative. The first accumulator to reach the collapsing upper 
boundary gives the behavioral choice for that trial, with the reaction time given by the corresponding value 
on the Time (x-) axis. 
 
 
To address the integrative processes between contextual and cue-level information and 
how these processes drive choice behavior, we tested a potential computational 
mechanism and probed the nested trial-level neural signal along spatial, temporal, and 
oscillatory frequency dimensions. We tested the possibility that the context- and cue-
level information is integrated moment-to-moment in the decision process, and that this 
integrated signal explains observed contextual influence on choice behavior. We also 
tested an alternative mechanism by which observed context-dependent choices need to 
additionally recruit an initial representation of the context, which sets the stage for later 
integrative processes (see Bornstein et al., 2017; Lositsky et al., 2015; Mulder et al., 
2012). To test these potential mechanisms of context-cue interactions computationally, 
we built upon an approach that frames decision processes as an evidence accumulation 
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problem using sequential sampling models (SSMs; (Brown and Heathcote, 2008; 
Bogacz et al., 2006; Ratcliff, 1978; Roe et al., 2001; Usher and McClelland, 2001; Wald, 
1947). These models are unified by the principle that observed behavior in decision 
problems is driven by the noisy accumulation of evidence respective to each alternative. 
SSMs importantly capture speed-accuracy trade-offs in behavior, and have been 
successfully applied to explain decisions across perceptual (Gold and Shadlen, 2001; 
Tavares et al., 2017) and value-based (Hunt et al., 2012; Hutcherson et al., 2015; 
Krajbich and Rangel, 2011; Mormann et al., 2010; Polanía et al., 2014) domains. 
Importantly, both their development and application have been closely linked to 
underlying biology, across neural modalities (Hare et al., 2011; Hunt et al., 2012; 
Polanía et al., 2014; Shadlen and Newsome, 2001).  
 
This link to underlying biology is particularly important given that both computational 
predictions describe context-cue integration as a process that unfurls over the decision 
period. As such, neural traces reflecting this integrative process should occur after both 
contextual and cue-level information is available and within the span of a decision trial, 
and relate to the relative activation of the evidence-accumulating model mechanisms. 
To test this prediction, we specified contrasts that specifically probed statistical 
interactions between contextual features and cue information, using an out-of-sample 
approach to first delineate the spatiotemporal topology of any signature supporting any 
interaction, then time-frequency properties of this signature at its relevant brain sites.  
 
Extending our inquiry into how context and cue bind together, we further capitalized on 
our paradigm and analytic strategy to examine whether certain contextual attributes (i.e. 
loss versus gain features of the context) might be prioritized over others. We adopt the 
perspective that a model of the external context is internalized in the form of a goal, in 
that they are placed in relation to concrete objectives and associated with potential 
action strategies (Dolan and Dayan, 2013; Rushworth et al., 2011; Solway and 
Botvinick, 2012). Importantly here, goals are shaped by external contingencies: our 
foraging animal might have attained through experience the knowledge that the current 
season invites predators to an area. As a result, goals to prevent harm outweigh goals 
to exploit foraging opportunities, and it executes a congruent action set by seeking 
shelter instead of approaching the bush. This perspective allows us to ask whether 
certain types of goals are prioritized by default over others. For example, given equal 
likelihood between the presence of abundant food or predators at a certain patch, our 
foraging animal may default towards prevention goals and again seek shelter because 
the threat of harm intrinsically outweighs potential opportunity costs (Higgins, 1997). To 
the extent that certain environmental demands take precedence with regards to 
attentional and motivational resources for survival, the goals respective to those 
environmental states should be more heavily weighted.  
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Results 
 
Preferential response to value  
 
We conducted an initial investigation with an independent sample that completed a 
simple non-contextual version of the three alternative forced-choice task (described in 
supplementary methods). The match-to-sample nature of the task means that 
participants are able to succeed at the task by only attending to the presented cue and 
choosing the matching response, without representing any associated reward 
outcomes. If participants solely focus on matching response to the presented cue, we 
expect the associated value of the gain and no loss choice alternatives to be irrelevant 
and thus similar response tendencies across all three choices.  
 
Instead, we found that participants showed preferential response to the value-based 
(gain and no loss) cues. We found significantly higher accuracy for gain (b=1.475, 
SE=0.112, z=13.196, p<0.001) and no loss (b=1.211, SE=0.106, z=11.385, p<0.001) 
cues, compared to control (see Figure 4a). In this same model we controlled for 
potential interactions with the between-subjects outcome magnitude assignment (see 
supplementary methods), and found no significant main effect of outcome magnitude 
assignment (χ2(1)=0.444, p=0.505) nor significant interaction between the cue type and 
outcome magnitude (χ2(2)=3.130, p=0.209). 
 
Reaction time (RT) analyses also confirmed that participants attended to valued cues 
preferentially over the control alternative, despite explicit instructions to match shapes 
on all trials. We found a significant main effect of the cue condition (F(2,5394)=74.363, 
p<0.001; see Figure 4b), after controlling for the main effect of the between-subjects 
outcome magnitude assignment and for interactions between cue and outcome 
assignment. There was no significant main effect of the outcome magnitude assignment 
(F(1,55)=0.460, p=0.501) or its interaction with the cue type (F(2,5394)=0.836, 
p=0.434). 
 
Context-dependent behavior  
 
In an independent sample we recorded 64-channel EEG data from healthy adults 
performing a contextual version of our multi-alternative three-alternative forced choice 
task (see supplementary methods). We replicated the effect that participants respond 
preferentially to valued cues, with significantly higher accuracy for gain (b=1.455, 
SE=0.040, z=36.55, p<0.001) and no loss (b=1.413, SE=0.040, z=35.62, p<0.001) 
cues, compared to control. Confirming our hypothesis that contextual demands can shift 
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the focus towards appropriate cue types, a model that includes the contextual condition 
as a higher-level moderator of cue condition had a better fit to data (χ2(9)=26.571, 
p=0.002), compared to a nested variant that didn’t include the context regressor. We 
found a significant effect of the no loss cue in the prevention context (in which focus on 
preventing loss is optimal) in predicting response accuracy (b=0.414, SE=0.112, 
z=3.702, p>0.001; Figure 2a). 
  

 
Figure 2. Behavioral contextual influence. 
Participants show greater response accuracy (A) and faster reaction times (B) for valued, compared to 
non-valued, cues. Participants were significantly more accurate and faster for no loss cues in the 
prevention context. Error responses on trials with the non-value control cue demonstrate effects of 
contextual influence: participants showed more responses (C) and faster reaction (D) to the no loss cue in 
the prevention context, and for the gain cue in the promotion context. The proportion response (C) effect 
was not significant but the reaction time (D) effect was significant. Bars represent estimated means ± 95% 
CI. LM: Low magnitude; Prev: Prevention; Prom: Promotion; HM: High Magnitude. 
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RT analyses again provided convergent evidence that participants attended to valued 
choices preferentially over the control alternative, despite explicit instructions to match 
shapes on all trials. We found a significant interaction between cue and context 
(F(6,20151)=12.76, p<0.001). Simple effects tests showed that prioritized response was 
moderated by context such that participants responded more quickly to the no loss cue 
in the prevention context (b=0.007, SE=0.001, t(19670)=9.448, p<0.001). We also found 
an effect of gain cue prioritization in the promotion context (b=-0.001, SE=0.001, 
t(19710)=-1.986, p=0.047) (Figure 2b).  
 
To the extent that individuals represent contextual properties beyond cue-based reward 
outcomes, we expected error response biases to be strategically aligned with current 
contextual demands, and exhibited throughout the block. Given that context shapes the 
outcome magnitudes for the valued cue trials, if contextual demands impose tonic 
influence on behavior, error responses on the non-valued control cue trials should align 
with the advantageous strategy in the current context.  
 
We tested this third critical behavioral hypothesis by modelling behavior as a function of 
the type of error response (i.e. to gain or no loss) and context, only on trials with control, 
non-valued, cues. We found that participants exhibited bias in their error responses in a 
context-congruent manner, consistent with our hypothesis (Figure 2c), though the effect 
was not significant (χ2(3)=5.001, p = 0.172). However, we found a significant interaction 
effect (F(3,2531)=4.561, p=0.003) of RT: simple effects tests demonstrated significantly 
faster RT for erroneous non-loss responses to control cues in the prevention context 
(b=0.014, SE=0.005, t(2526)=2.743, p=0.006) and significantly faster RT for erroneous  
gain responses to control cues in the promotion context (b=-0.013, SE=0.005, t(2630)=-
2.424, p=0.015) (Figure 2d). Together this pattern of context-dependent error responses 
reveals contextual influences dissociated from cue-driven behavior.  
 
Neural signatures of context 
 
If there are distinct neural mechanisms that underlie higher-order processes, probing 
the FFT signal with a set of orthogonal contrasts that controls for cue level variability 
should result in distinct patterns that correspond to contextual attributes without an 
effect of cue. Otherwise, if the choice biases are driven only by cue-related processes, 
we would expect no effect across all contrasts. We specified a linear mixed-effects 
model (described in the supplementary methods) that allowed us to separately look at 
how the brain processes contextual gain, contextual loss, and the informativeness of a 
context. Critically, we exploited our two control context conditions, along with the 
balanced experimental design that necessitated the same number of cue types among 
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trials within a context, to probe a specific contextual feature (e.g. contextual loss) while 
controlling for variability at the cue level (e.g. the amount of potential gain given by the 
trials).  

  
 
Figure 3. Contextual loss representation.  
A) Significant channels for the low-𝛾 band. B) Significant channels for the Δ band. C) Significant channels 
for the Θ band. D) Individual differences in low-𝛾 power predicted faster responses to the no loss cue 
under the prevention, but no other, context. E) Within-participant low-𝛾 power predicted faster reaction 
times to the prevention context, but no other, context. Lines represent estimated means ± 95% CI. 
 
 
An area covering midline central-parietal sites in the low-𝛾 (30-59 Hz) band showed 
significant effects for contextual loss features (F(1,261)=5.612, p=0.019; Figure 3a), but 
not for contextual gain (F(1,261)=0.020, p=0.887) or informativeness (F(1,261)=0.069, 
p=0.793). Frontal electrodes in the Θ (4-7 Hz) band also showed significant effects for 
contextual loss features (F(1,261) = 10.077, p = 0.002; Figure 3b) but no effects of gain 
(F(1,261)=0.010, p=0.757) or informativeness (F(1,261)=0.049, p=0.825). Finally, 
parietal electrodes in the Δ (1-3Hz) band also showed significant effects for contextual 
loss (F(1,261)=9.864, p=0.002; Figure 3c) but no effects of gain (F(1,261)=0.035, 
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p=0.851) or informativeness (F(1,261)=0.003, p=0.957). While we found three neural 
signature across frequency space reflecting greater contextual loss processing, we did 
not find any effect for the contextual gain or informativeness contrasts (see Figure S2a). 
 
If this neural emphasis on loss features reflects contextual processing, we expected that 
it should correspond to observed behavioral biases related to loss. Our reasoning was 
that neural signatures of contextual processes should have downstream influence on 
behavior. Since it is more advantageous to more strongly represent loss-related 
contextual attributes under the prevention blocks, the frequency signatures described 
above should predict behavior to prevent losses more so within these prevention blocks.  
 
We tested this in two ways. First, we looked at whether individual differences in this 
neural signature across contextual conditions drove performance on the task (see 
supplementary methods). We found a significant two-way interaction between context 
and individual differences in mean low-𝛾 power differences (according to the Loss 
Features contrast across central-parietal channels; Figure 3a) in predicting mean RT 
(F(3,1012)=17.537, p<0.001, Figure 3d). Specifically, we found that individuals with 
decreased low-𝛾 power demonstrated generally faster reaction times to successful 
choices, particularly in the prevention context. This was supported by significant simple 
main effects of mean 𝛾 difference across participants for the prevention context 
(b=0.011, SE=0.005, t(98)=2.267, p=0.026) compared to the other contexts (promotion: 
b=0.006, SE=0.005, t(97)=1.184, p=0.239; high magnitude: b=0.006, SE=0.005, 
t(97)=1.301, p=0.196;  low magnitude: b=0.001, SE=0.006, t(97)=0.229, p=0.819). 
 
Furthermore, if this central-parietal 𝛾 power constitutes a neural representation at the 
high-order contextual level, this signal should have a tonic influence on behavior to 
prevent loss throughout the span of the prevention block (i.e., even during trial in which 
the no loss cue is not presented). We tested whether RT is predicted by the interaction 
between this neural signature and task condition. Critically for this analysis, the block-
level neural regressor was computed by only averaging across gain and control cue trial 
values of mean 𝛾 power across the central-parietal sites in Figure 3a, but was used to 
predict mean RT only across no loss cue trials (see supplementary methods). In other 
words, this neural regressor constitutes variation in representing contextual loss 
features, but was computed without inclusion of cue-level loss trials, thereby 
dissociating context and cue while controlling for neural responses to stimulus 
presentation. Within participants, we found that block-level 𝛾 power across central-
parietal sites significantly interacted with the contextual condition to predict mean RT to 
no loss cues (F(3,7998) = 22.393, p < 0.001; Figure 3e), even after controlling for neural 
signal in pre-trial fixation periods. Specifically, we found that within participants, 
decreased mean 𝛾 power predicted faster responses to no loss cues only within the 
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Prevention context (b=0.006, SE=0.007, t(80)=8.597, p<0.001, R2 = 0.009, Cohen’s d = 
0.192), whereas for the other contexts, the decreased mean power did not drive faster 
reaction times to no loss cue trials.  
 
Computational mechanisms driving contextual influence 
 
We probed two potential computational pathways by which context exerts influence on 
decision processes. By one hypothesis, the integration of contextual information into the 
moment-by-moment accumulation process can capture the observed behavioral context 
effects in cue match accuracy and RT. Alternatively, the current context might 
additionally initialize the decision process; this implies that the identity of the current 
context needs to be represented prior to decision accumulation process (Bornstein et 
al., 2017; Lositsky et al., 2015; Mulder et al., 2012). 
 
We formalized these hypotheses with a multi-alternative variant of a SSM (m-SSM; 
Figure 1d; see supplementary methods for the formal model and details), similar to 
previous approaches (Churchland et al., 2008; Krajbich and Rangel, 2011; Tsetsos et 
al., 2011), and according to specific features of our experimental design. Critically, the 
stochastic accumulator is driven by both the cue information formalized with the cue 
boost parameter c, as well as the (normalized) outcome magnitudes of all available 
alternatives, which in our experiment is the contextual information. This design 
importantly allowed us to disentangle the contribution of cue processes (e.g., the 
response matching component of our paradigm) with the processing of value across all 
choice alternatives. We tested a divisive normalisation mechanism (Louie et al., 2011; 
2013) to account for choice set effects, or the local context of an alternative against 
other available options (Tversky and Simonson, 1993). Importantly, divisive 
normalisation includes a weight parameter w that determines the degree to which 
objective outcome magnitudes are shaped by the choice set.  
 
We used the independent sample of the initial non-contextual experiment to validate this 
design for the m-SSM by testing against other model variants, using the group data out-
of-sample. The models differed along two components: we modified either the core 
value transformation driving the accumulator, the starting position of each accumulator, 
or both (Table S1). Our criterion was that the model predictions should fall within the 
95% CI of the empirical data across all conditions. Specifically, a good fitting model 
should reproduce the relative differences in accuracy and RT between the valued (gain 
and no loss) and non-valued (control) cues, and approximate the means of each 
condition in the empirical data.  
 
Two model variants, including the m-SSM, were the only models whose out-of-sample 
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predictions fell within the 95% CI of the empirical data across cue conditions, replicating 
the accuracy (Figure 4c; Models 1 [red line] and 3 [yellow]) and RT (Figure 4d) effects, 
for both the Low Magnitude (LM) and High Magnitude (HM) between-subject 
assignments. We favored the m-SSM because modelling the starting values linearly 
(Table S1) allows us to scale the model more efficiently, using less parameters (see 
supplementary methods). The divisive normalisation of choice alternative values 
critically allowed the m-SSM to reproduce the response accuracy patterns observed in 
the behavioral data: we found significant higher accuracy for gain (b=1.239, SE=0.142, 
z=8.700, p<0.001) and no loss (b=1.157, SE=0.143, z=8.101, p<0.001) cues, compared 
to control (Figure 4a), after controlling for potential interactions with the between-
subjects outcome magnitude assignment (Main effect of outcome magnitude: 
χ2(1)=0.043, p=0.835; Interactions between outcome magnitude and cue: χ2(2)=0.080, 
p=0.961). Alternative model variants with outcome magnitudes transformed 
subtractively did not capture these accuracy effects (Figure 4c-d and Table S1: Models 
4 [green line], 5 [blue line], and 6 [purple line]).  
 
 

 
 
Figure 4. Behavioural psychometrics and model comparison for Experiment 1.  
The grayscale bars show logistic (A) and linear (B) mixed-effects model estimates from the empirical data 
on left-out even trials, with lines depicting 95% CI. The red bars show the m-SSM out-of-sample 
predictions. C and D) The empirical data (even trials) are depicted with the point ranges in black, with 
points representing estimated means and lines representing 95% CI from the logistic (C) or linear (D) 
mixed effects models. m-SSM predictions (fit on odd trials) are depicted as color lines: red (Model 1), 
orange (Model 2), yellow (Model 3), green (Model 4), blue (Model 5), purple (Model 6). Model 1 and 3 
were the only models whose out-of-sample predictions fell within the 95% CI of the empirical data across 
cue conditions.  
 
We also specified unique starting position for each accumulator within the m-SSM. This 
model feature was critical for reproducing the reaction time effects observed in the 
behavioral data: we found a significant main effect of the cue condition 
(F(2,3039)=57.993, p<0.001) with faster responses to the gain and no loss cues (Figure 
4b), after controlling for potential interactions with the between-subjects outcome 
magnitude assignment (Main effect of outcome magnitude: F(1,3039)=0.093, p=0.760; 
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Interactions between outcome magnitude and cue: F(2,3039)=1.623, p=0.197). Notably, 
an alternative model with a shared starting position across accumulators was not able to 
capture RT difference between the valued and non-valued cues (Figure 4d: Model 6 
[purple line]).  
 
We formalized the alternative hypothesis which posits that the identity of the current 
context additional initializes the decision process with a contextual model variant (cm-
SSM; see supplementary methods for the formal model and details), which builds on the 
m-SSM by allowing unique accumulator starting positions between the Promotion and 
Prevention contexts. Both the m-SSM and the cm-SSM were able to capture key 
aspects of the observed behavioral data, out-of-sample (Figure 5). We favored the m-
SSM given reduced model complexity; indeed, the best fitting parameters values for the 
two additional parameters of the cm-SSM (βPrev and βProm) were both 0.  

 
Figure 5. Model comparison for Experiment 2.  
The empirical data (even trials) are depicted with the point ranges in black, with points representing 
estimated means and lines representing 95% CI from the logistic (A) and linear (B) mixed effects models. 
Model predictions (fit on odd trials) are depicted with color lines: m-SSM (red) and cm-SSM (green). Note 
that the m-SSM has two fewer parameters than the cm-SSM (Table S2).  
 
 
 
Critically, the m-SSM was able to reproduce context-dependent cue match accuracy 
rates for the key prevention and promotion contexts. Reproducing the empirical data, 
the contextual condition was a significant moderator of different accuracy rates across 
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cue conditions (χ2(96)= 122.680, p<0.001; Figure 5a), with significant greater accuracy 
for the no loss cue (b=0.581, SE=0.211, z=2.749, p=0.006) and lower accuracy for the 
gain cue (b=-0.510, SE=0.168, z=-3.035, p=0.002) in the prevention context, and vice 
versa in the promotion context (no loss cue: b=-0.661, SE=0.182, z=-3.636, p=0.0003; 
gain cue: b=0.589, SE=0.195, z=3.013, p=0.003). The m-SSM was also able to produce 
the RT patterns in the empirical data: we found a significant interaction between cue 
and context (F(6, 11925)=8.171, p<0.001; Figure 5b), and simple effect tests 
demonstrated faster responses to the no loss cue in the prevention context (b=6.869, 
SE=0.939, t(11933)=7.315, p<0.001), and to the gain cue in the promotion context (b=-
2.545, SE=0.933, t(11933)= -2.727, p<0.006). 
 
Neural signatures of context-cue interactions 
 
Given our finding that context-cue integration occurs through the decision process, 
neural signatures reflecting integration should occur after both contextual and cue-level 
information are available. Further, we expected that such signatures should occur within 
the 𝛾	frequency range and along frontal or parietal sites, given that contextual traces 
predicting behavior occur in this range and space, described above, as well as previous 
work showing the role of frontoparietal 𝛾	in both context-item binding (Jensen et al., 
2007; Nyhus and Curran, 2009) as well as evidence accumulation (Polanía et al., 2014). 
 
We tested this by specifying a set of orthogonal contrasts that model the interaction 
between context and cue: specifically probing the contrast that compares context-
congruent cue (e.g. gain cues in the promotion context) against incongruent cue trials 
(see supplementary methods). Using an out-of-sample approach, we found a set of 
central electrodes were significantly related to context congruency (Figure 6a). Further 
probing this congruency interaction contrast using the left-out trials, we found that this 
central site effect is shaped by increased low-𝛾	power to context-congruent cues within 
a mid-trial period (Figure 6b).  

 
Figure 6. Mechanisms of context-cue interactions. 
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Grayscale bars show logistic (A) and linear (B) mixed-effects model estimates from the empirical data. 
The red bars show the m-SSM out-of-sample predictions. The model was able to capture key 
experimental patterns in response accuracy (A) and RT (B). C) Topographical signature of context-cue 
interactions (showing 0.25 to 0.30 s post-stimulus; see Figure S3 for the full trial time span). D) Time-
frequency analysis for the left-out trials, averaged across channels shown in the blue box in (C). Color 
heat demonstrates differences between the context-congruent and incongruent mean power differences. 
E)  The extracted neural signal from the low-𝛾 cluster in (C; 46-47 Hz, 280-300 ms) is significantly 
predicted by accumulator activation respective to the chosen alternative. Bars represent estimated means 
± 95% CI. 
 
 
Finally, to confirm that this neural signature is involved in integrative processes 
described by the computational model, we used individual participant model fits to 
compute the trial-by-trial activation of the model accumulator corresponding to the 
chosen alternative (see supplementary methods). We regressed the trial-by-trial neural 
signal, averaged over the constrained electrodes, time, and frequency windows (Figure 
6b; using the peak difference at 48-49 Hz and 280-300 ms), onto the model-predicted 
accumulator activation while controlling for any effect of RT in a linear-mixed effects 
model. We found a significant positive relationship between this low-𝛾 neural trace and 
the model accumulator activation (b=1.466, SE=0.545, t(33195)=2.689, p=0.007; Figure 
6c).  
 
Discussion 
 
To understand what influences adaptive behavior and decisions, it is necessary to 
examine the role of both proximal cues and the broader nature of the context itself. Here 
we addressed the open questions of how the brain supports contextual processes 
dissociated from the cues embedded within these contexts, and of how neural and 
computational mechanisms drive the integration of contextual information with cue-level 
information to shape choice behavior. Importantly, we exploited neural and 
computational analytic techniques, along with a value-based choice paradigm designed 
specifically to disentangle these component processes, to probe underlying choice 
strategies that are dependent upon contextual information.  
 
As predicted, our results first demonstrated that context influenced how participants 
responded to cues. Critically, we found that speed-accuracy trade-off processes aligned 
with advantageous strategies in a given context: if behavior is solely driven by the 
identity of the cued alternative and its associated outcome magnitude (i.e. by only cue-
level information), then we would expect no difference in behavior between errors 
toward the gain and no loss responses when the control cue is prompted. Instead, we 
found that under shifting contextual demands, participants demonstrated error biases 
and responded more quickly to context-congruent cues, even when the cue-level 
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information was dissociated from value. This finding provides evidence of a separate 
and distinguishable influence of context over and above cue information.  
 
Building upon these findings, we examined the neural correlates of contextual 
representations by employing an analytic approach that allowed us to dissociate the 
gain-, loss-, and information-related features of a context. This allowed us to address 
the larger question of how certain contextual attributes might be prioritized by default 
over others. If a certain contextual feature is weighted more heavily than another, we 
expected that neural systems supporting the representation of this contextual attribute 
might show stronger effects. We found that the contextual loss feature was more heavily 
represented across multiple spatial regions and frequency bands of neural oscillation. 
We found this contextual loss effect in frontal Θ, parietal Δ, and central-parietal low-𝛾 
traces. 
 
Importantly, we represented the neural signature of context completely independently of 
cues by regressing behavior associated with no loss cues onto context-level signal 
averaged over only trials that were not in the no loss condition. This allowed us to 
examine the effect of the central-parietal low-𝛾 signal on behavior, dissociated from cue 
information. We found that this neural trace most strongly moderated RT to no loss cue 
trials in the prevention context. Furthermore, individual differences in this neural 
response to the loss features of the context significantly predicted behaviour to prevent 
loss, particularly in the prevention context. This provides nuance to our results by 
demonstrating varied patterns of behavior across individuals, and opens up interesting 
avenues for future research. For instance, continuing work could examine whether 
these effects across people hold for non-healthy populations, such as individuals that 
have been diagnosed with a psychiatric or neurological illness, or whether they become 
more pronounced. 
 
The contrasts we specified to delineate contextual features in our neural analyses 
confer an additional ability to examine whether individuals demonstrate biases at the 
higher-order context level. Our results build on the plethora of work on loss aversion in 
decision making which has largely described biases at the choice or item level (e.g., Ito 
et al., 1998; Tversky and Kahneman, 1991; 1992). By showing that contextual loss 
features are prioritized, we extend the existing work on negativity biases to high-order 
contextual processes. We further reinforced the relevance of this bias by showing that 
the demarcated neural signatures reflecting emphasis on contextual loss features exert 
top-down influences on choice processes. Our computational modelling provides a 
mechanistic explanation: given that contextual features are integrated with cue 
information moment-by-moment in the accumulation processes, higher-level contextual 
biases will drive faster accumulation for the loss prevention choice. Our model further 
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incorporates principles like divisive normalisation (Louie et al., 2013; 2015), which allow 
values to be compressed in a manner that captures the local context of the choice set. 
Interestingly, modelling unique starting positions for the promotion and prevention 
contexts was not necessary to capture the context-dependent behavioral effects in the 
empirical data.  
 
The contextual trace across slow Θ- and Δ- frequency bands converge with previous 
work that suggest a maintenance mechanism for contextual information (Cashdollar et 
al., 2009; Hsieh and Ranganath, 2014). Indeed, processes that sustain background 
information, such as the outcome magnitudes of all the choice alternatives given by the 
current context, are necessary to explain the context-dependent behavioral error biases 
to control cues described above. The central-parietal low-𝛾	signature similarly 
converges with previous work, albeit in relation to the decision processes such as 
evidence accumulation rather than memory maintenance per se (Polanía et al., 2014). 
That 𝛾-frequency oscillations have been linked context-cue binding (Jensen et al., 2007; 
Nyhus and Curran, 2009) is of particular note given our computational findings where 
moment-by-moment integration of context and cue information within a trial can 
sufficiently capture the accuracy and RT context effects in the observed behavioral 
data. We provide evidence explicitly linking these processes to central-parietal low-𝛾	
neural signatures: this neural signature significantly predicts behavior both across and 
within participants. This finding integrates and expands beyond previous work by 
demonstrating that central-parietal low-𝛾	neural traces are involved in context-cue 
binding through evidence accumulation processes.  
 
The present research provides important insights by disentangling the effect of cues 
from the context in which they exist to observe how each influence decision making 
processes, and provide a neural and computational description of underlying 
mechanism. Despite these significant contributions, there remain some limitations that 
should be addressed by future research. First, we employed a constrained experimental 
paradigm to simplify and examine these target processes. Investigating contextual 
influences on choice in complex environments, with potentially larger numbers of 
relevant cues, will be necessary to further extrapolate these processes to real-word 
scenarios.  For instance, an initial question that arises is whether the same processes 
hold in scenarios when multiple cues of varying relevance are presented to individuals 
at once. Exciting work multidimensional decision problems (Niv et al., 2015; Wunderlich 
et al., 2011) provide some direction. Finally, future work examining different forms of 
contextual information (e.g. episodic or spatial), and whether similar processes drive 
integration with immediately encountered cue information, will be important for 
understanding the generalizability of these underlying neural and computational 
mechanisms. 
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