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Abstract— Motivation: Understanding the relationship
between the sequence, structure, binding energy, binding
kinetics and binding thermodynamics of protein-protein
interactions is crucial to understanding cellular signaling,
the assembly and regulation of molecular complexes, the
mechanisms through which mutations lead to disease, and
protein engineering.
Results: We present SKEMPI 2.0, a major update to our
database of binding free energy changes upon mutation
for structurally resolved protein-protein interactions. This
version now contains manually curated binding data for
7085 mutations, an increase of 133%, including changes in
kinetics for 1844 mutations, enthalpy and entropy changes for
443 mutations, and 440 mutations which abolish detectable
binding.
Availability: The database is available at
https://life.bsc.es/pid/skempi2/

I. INTRODUCTION

Protein-protein interactions are central to almost all bio-
logical processes, from cellular signal transduction and the
assembly of mesoscopic structures such as myofilaments,
to viral adhesion and the immune response. Consequently
the effects of changes in protein sequence on the structure,
thermodynamics and kinetics of protein-protein interactions
has wide implications for constraining the permissible sub-
stitutions that accrue over the course of evolution, and for
understanding the molecular etiology of disease. Methods
which measure, predict or optimise these changes have ap-
plications in designing de novo interactions [20], enhancing
the specificity and affinity of biological therapeutics (e.g.
[3]), designing combinatorial protein libraries (e.g. [24]),
uncovering the effects of pathological mutations (e.g. [72]),
locating druggable binding sites (e.g. [68]) and binding
hotspots for drug design [25], altering binding kinetics [13],
[64], protein-protein docking (e.g. [19]), and characterising
transition states (e.g. [75]), binding pathways [61], and
sequence-affinity landscapes [2].

SKEMPI is a manually curated database of mutations
in structurally characterised protein-protein interactions and
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TABLE I
COMPARISON WITH PREVIOUS VERSION

SKEMPI 1.1 SKEMPI 2.0
Entries 3047 7085
Unique entries 2792 6187
kon and koff 713 1844
∆H and ∆S 127 443
Inequalities / no binding 0 440
Number of interactions 87 237
Number of PDB entries 158 345
Number of papers cited 66 295

the effect of those mutations on binding affinity and other
parameters [47]. The first release has been used as a basis for
many further studies, including the development of energy
functions [48], [46] which were subsequently implemented in
the CCharPPI web server for characterising protein-protein
interactions [49], as well as being used for ranking docked
poses [45], [58], [6], [50]. SKEMPI has also been used
to study human disease [56], [16], [55], assessing the role
of dynamics on binding [69], exploring the conservation
of binding regions [28], evaluating experimental affinity
measurement methods [22], as well serving as a data source
for models which predict dissociation rate changes upon
mutation [1], pathological mutations [23], hotspot residues
(e.g. [30], [44], [42], [66]) and changes in binding energy
(e.g. [60], [17], [78], [7], [53], [51], [57], [18], [39], [76],
[54], [77], [37], [5]).

Here we present a major update to the benchmark in
terms of the number of mutations in the database and the
number of different systems included (Table I). We now also
include details of the experimental method for all entries,
based on the categories of [22], as well as mutations which
abolished detectable binding or for which only an upper or
lower affinity limit could be ascertained for the wild-type or
mutant.

II. METHODS

A. Data sources

Just over two fifths of the data come from the previous
version of SKEMPI [47], comprised mostly of data found
in literature sources which came to the authors’ attention,
in some cases during the data collection for the structural
affinity benchmark [33] and following references therein.
Some entries in SKEMPI 1.1 were found by checking the
references in the ASEdb [71] and PINT [36] databases,
although not all the data passed the checks required for
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inclusion (see section II-B). Similarly, most of the new data
in SKEMPI 2.0 was found by searching the literature, partly
in tandem with the literature search for the more recent
structural affinity benchmark [73]. During data collection
three other relevant databases were published: ABbind [67],
PROXiMATE [31] and dbMPIKT [41]. Their references
were checked if they were not already included. Data from
these sources comprise 4%, 3% and 6% of SKEMPI 2.0
respectively. As with ASEdb and PINT, none of the data
were directly copied into SKEMPI. Moreover, the cited
papers were read and data entered using the same checks
and procedures as other entries.

B. Data collection
Each entry was found in the literature and manually

vetted. To ensure quality, a number of stringent checks were
applied. Firstly, we ensured that the structure and the paper
reporting the affinities refer to the same protein in the same
species, and that structural and affinity data matched in
terms of cofactors, ancillary chains and post-translational
modifications. For instance, we distinguish between RasGTP

and RasGppNHp, as the nucleotide modulates the affinity of
Ras with its effectors. Where the full length protein was not
used, we checked to ensure that the fragment in the crystal
structure matched that for which affinities are reported.

Once the checks are passed, the data is collected, including
the PDB file, the chains of the interacting subunits, the
mutation, the wild-type and mutant affinities (KD, M ), the
reference, the names of the proteins, the temperature at
which the experiment is performed (T , K), the experimental
method used (an extension of the category scheme of [22]),
notes on the entry and, when available, the association
rate (kon, M−1s−1), dissociation rate (koff, s−1), enthalpy
(∆H , kcal.mol−1) and entropy (∆S, cal.mol−1.K−1). For
cases where multiple PDB entries are available, the higher
resolution structure is chosen. Where affinities or kinetic or
thermodynamic parameters are reported in different units,
these are converted to the units specified above. In some
cases, when not reported directly, KD, kon, koff, ∆H and
∆S were calculated using the relationships ∆G = ∆H −
T∆S = RT ln(KD) and KD = 1/KA = koff/kon. To
ensure consistency, the residue numbering in SKEMPI is the
same as that reported in the PDB file. Thus the numbering
is often shifted or altered compared to that in the cited paper
such that, for instance, if a crystal structure of an antibody
is reported in the Kabat numbering scheme but the mutation
data is not, then the mutation data is converted before entry
into SKEMPI. For all entries it is the case that the the
affinity reported in the ”wild-type” column corresponds to
that of the PDB file, and the affinity in the ”mutant” column
is that after applying the specified mutation to the protein
in the PDB file. Thus, where there are cases in which the
PDB reports a mutant form and the entry corresponds to the
reverse mutation back to the wild-type, the affinity of the
former appears in the ”wild-type” column and the latter in
the ”mutant” column. Such cases are noted in the database.

In addition to checking new entries, we reappraised the
papers cited in SKEMPI 1.1 to collect data that were

not collected previously, specifically to find mutants which
abolish binding and to classify the experimental method used
when not already included in the subset of SKEMPI covered
in [22]. It is worth noting that often an author’s decision to
report an interaction of affinity below the detection threshold
as either non-binding, or as less affine than the weakest
affinity presented in the paper, is arbitrary. Thus, those
wishing to use the non-binding data as an inequality on the
affinity may do so. We also corrected entries for 5 wild-type
and 4 mutant affinities identified by [22].

C. Post-processing and annotation

In addition to the above data, SKEMPI 2.0 also provides
data on the location of the mutated residues, the homology
between interactions in the data set, and processed PDB files
which can be easily parsed.

Residue location: Each mutated residue is classified
according to the scheme proposed by [38]; residues at
the interface are classified as support (mostly buried when
unbound and entirely buried upon binding), core (mostly
solvent exposed when unbound but buried upon binding) and
rim (partly buried upon binding), while residues away from
the binding site are classified as interior or surface. Solvent
exposed surface area was calculated using CCP4 [74].

Processed PDB files: The PDB files for the interactions,
as downloaded from the Protein Data Bank [8], often contain
multiple copies of the interacting proteins in the unit cell or
other chains irrelevant to the interaction. In one instance,
the binding of dimeric myostatin to follistatin-like 3, the
myostatin dimer must be created by tessellating the unit
cell. Further, some PDB files contain features that are not
readily parsed by some software, such as residue insertion
codes or negative residue numbers. To help users we pro-
vide ”cleaned” PDB files which contain only the chains of
interest, renumbered from one, as well as waters and other
molecules with a non-hydrogen atom within 5 Å of a non-
hydrogen atom of any of the chains of interest. Consequently
each mutation is reported with both PDB numbering and
renumbered.

Defining homologous interactions: Each entry also spec-
ifies which other entries are mutations to homologous in-
teractions. Two interactions are deemed homologous if they
have a shared binding partner or homologous binding partner
and at least 70% of the corresponding interface residues are
common to both interactions. We determine the homology
between proteins using the GAP4 program [29], and define
homologous proteins as those with a similarity score greater
than 50 and at least 30% sequence identity. Interface residues
are defined as those with a non-hydrogen atom within 10 Å
of a non-hydrogen atom on the binding partner. Interactions
falling within manually assigned clusters of homologous
interactions are designated as pMHC/TCR, antibody/antigen
or protease/inhibitor. While the names of these clusters have
been chosen to reflect the predominant function of their
constituent interactions, they reflect the homologies within
the data set and are not functional assignments. Thus, for
instance, some nanobodies are classified as antibodies as they
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bind to the same site as cetuximab, 14.3.d is classified as
TCR, even though it is only the β chain, and its binding
partner, enterotoxin C3, is classified as a pMHC.

III. RESULTS & DISCUSSION

A. Diversity, bias and interrelationships within SKEMPI

In total 7085 entries were collected, summarised in Ta-
ble I and Figure 1A. These data were derived from the
literature and consequently, while encompassing a broad
range of residues, proteins, interactions and systems, are
biased toward the interests and capabilities of the research
community. These biases are evident in the composition of
the database according to parameters shown in Figure 1. The
∆∆G values span a large range, but mostly fall within -3 to
7 kcal.mol−1 (Figure 1B), for both biophysical and technical
reasons (see Section III-C). Almost three quarters of the data
correspond to single point mutations, and more than half
of those are mutations to alanine (Figure 1C). Charge swap
mutations and mutations between aromatic residues are also
over-represented. Most single point mutations are located at
the binding site, and most of those are at the core of the
interface. Similarly, most double mutations are both in the
binding site, and most of those are both in the core. By far the
most popular methods for measuring binding affinity were
surface plasmon resonance and spectroscopic methods such
as fluorescence. Large biases towards specific interactions
and classes of interaction are also present, such as early
studies into protease inhibition and immunological interac-
tions such as antibody-antigen complexes, the recognition
of peptides presented on cell surfaces by T-cell receptors,
cytokine signalling and the complement system. Indeed,
almost half of the data corresponds to protease-inhibitor,
antibody-antigen and pMHC/TCR interactions alone. While
many interactions within these classes share common binding
sites or homologous binding sites (Figure 2), there are also
connections between these groups, for instance via inhibitory
antibodies which bind to a protease active site, or due to
common binding regions of proteins in the immuoglobulin
superfamily, such as antibodies, TCRs, MHCs and β-2
microglobulin. Also present in the data are smaller clusters
of shared and homologous interactions, such as the Ras-
effector cluster. These relationships are noted in the database
and may be useful for avoiding overfitting when developing
models or for validation and estimating generalisation error,
as described previously [47].

The entries also vary in the degree of structural order.
While most correspond to interactions between folded do-
mains, the database contains entries in which structuring
occurs upon binding, such as protein-peptide interactions
and, in the extreme case, the ACTR/NCBD interaction in
which both binding partners become ordered upon binding
[32]. Indeed, the requirements of having a structure in order
to be included in the data set, ipso facto biases the data, and
means that there is no representation of ”fuzzy” complexes
in which a diffuse structural ensemble in the bound state
prevents the formation of a resolvable crystal.

Another source of variation is the origins of the inter-
acting proteins. While entries range from viral and bac-
terial to the higher eukaryotes, biases are evident in the
over-representation of model organisms including humans.
With the exception of the pMHC-TCR, antibody-antigen
and protease-inhibitor classes, most of the interactions are
endogenous. Nevertheless, the set also includes exogenous
interactions ranging from those between proteins from dif-
ferent individuals within the same species, namely the sex
fusion proteins Juno and Izumo1 from human sperm and
egg respectively [4], to host-pathogen interactions such as
adenovirus and coronavirus interactions with human recep-
tors during viral entry [65], [27], to the inhibition of acetyl-
cholinesterase by the snake venom neurotoxin fasciculin
[2]. For the pMHC-TCR interactions there are a variety
of presented antigens, including exogenous viral peptides
and gluten, as well as endogenous autoimmune and cancer
peptides. The antibody interactions include pathogen anti-
bodies, as well as antibodies raised and optimised to target
extracellular therapeutic targets. The protease interactions are
mostly exogenous, arising from their inherent cross-reactivity
due to the convergent evolution of their canonical inhibitory
loop.

B. Notable studies comprising SKEMPI 2.0

The investigations from which SKEMPI data is derived
are diverse, spanning many biological processes and reported
in 295 publications including systematic scans, alanine and
homolog scanning, design studies including computational
design and designs derived from phage display, double
mutant cycle studies, antibody engineering, biologic drug
design and the evaluation of pathological mutations. The
largest contribution comes from the group of the late Michael
Laskowski Jr., a systematic study of all possible mutations
at selected sites in the turkey ovomucoid third domain and
its inhibitory interactions with four proteases [43], as well
as studies of interactions of the same domain in other bird
species and the design of ultra-high affinity broad-spectrum
inhibitors. Substantial data also come from investigations
into the inhibitory interactions of class A β-lactamases from
the groups of Gideon Schreiber (e.g. [62]) and Timothy
Palzkill (e.g. [10]), as well as cytokine receptor interactions,
in particular studies of type I interferons also from the
Schreiber group (e.g. [63]) and that of K. Christopher Garcia
[70], but also the study of the GM-CSF / GMRα interaction
from the group of Michael W. Parker [9]. Other prominent
sources of data are studies into hormone receptor inter-
actions, in particular the human growth hormone receptor
from the group of Jim Wells (e.g. [14]) and the prolactin
receptor from the group of Michael E. Hodsdon [35], as well
as studies into antigen recognition including the combined
computational and experimental design study to enhance
affinity of the AQC2 antibody to integrin α-1 from the
group of Herman Van Vlijmen [12], the dissection of the
interactions of broadly neutralising antibodies targeting HIV
gp120 [11] from the group of Richard A. Friesner, and
various investigations from the group of Roy A. Mariuzza
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Fig. 1. An overview of SKEMPI 2.0. (A) Mutations partitioned according to their origin, the number of altered residues, location within the complex,
by the availability of additional kinetic and thermodynamic data, according to the experimental method used, and by category. (B) Distribution of ∆∆G.
(C) Source and target amino acids for single point mutations.

(e.g. [15]). Also notable is the alanine scanning of the
urokinase-type plasminogen activator and its receptor from
the group of Michael Ploug [21], studies of Ras effector
interactions from the group of Christian Herrmann (e.g.
[34]), investigations of pMHC/TCR interactions from the
group of Brian Baker (e.g. [59]), and investigations into the
congate and non-cognate recognition of E. coli colicin DNase
bacteriotoxins by their immunity proteins from the group of
Colin Kleanthous (e.g. [40]).

C. Range and error

Range: The changes in binding free energy upon mutation
range from -12.4 to 12.4 kcal.mol−1, as in SKEMPI 1.1,

with ∆ log10 kon ranging from -3.6 to 2.4, ∆ log10 koff
ranging from -6.0 to 6.8, ∆∆H ranging from -18.3
to 26.5 kcal.mol−1, and ∆∆S ranging from -61 to 80
cal.mol−1.K−1. Around 60 mutant are very destabilising,
reducing binding energy by 8 kcal.mol−1 or more. These are
all in enzyme/inhibitor complexes such as the inhibition of
acetylcholinesterase by the snake venom fasciculin, or the
inhibition of enzymes which would be detrimental should
they unbind and become active in the wrong location, such as
nucleases (barnase / barstar, colicin E9 DNase / Im9, RNase
A / angiogenin) and proteases (such as trypsin / BPTI). These
interactions tend to be around picomolar affinity and are at
the upper limit of what can be detected, due to the time
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Fig. 2. Overview of the interactions in SKEMPI. Nodes indicate proteins, scaled by the number of mutations of that protein and coloured according to
category. Edges show direct interactions, as well as relationships between proteins that share a common or homologous binding site.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2018. ; https://doi.org/10.1101/341735doi: bioRxiv preprint 

https://doi.org/10.1101/341735
http://creativecommons.org/licenses/by-nc-nd/4.0/


required to reach equilibrium and the low concentrations
required by the mass action law to probe informative regions
of the binding curve. These very destabilising mutations
reduce affinity into the micromolar range, near the lower
limit of what can be quantified using standard methods. As
a consequence of both mutant and wild-type affinities being
near detection thresholds, errors in these entries are typically
large. Further, while some mutations may cause changes in
affinity larger than seven orders of magnitude, the absence
of affinities for such mutations in the benchmark can be
explained by the fact that such mutations would involve
affinities beyond the upper or lower limit. Indeed, there are
new entries in which single or double substitutions reduce
binding from tens of picomolar to having no detectable
binding. For many of the highly destabilising mutations a
crystal structure for the mutant has also been solved, and
the 30 most stabilising mutations in the database (∆∆G ¡
-5 kcal.mol−1) consist of the reverse mutation applied to
these structures. These are mostly single or double mutants,
but include mutations to up to 27 residues of the non-cognate
Colicin E2/Im9 complex, which move it toward the cognate
E9/Im9 in sequence space [40].

Errors: Standard errors in KD are typically reported in the
order of 50%, around 0.25 kcal.mol−1. These estimates are
derived by repeat measurements using the same equipment,
environment and protocol, and thus do not include errors
arising from systematic bias. Such biases can, however, be
estimated from pairs of entries in which the same mutation is
evaluated by different groups or using different techniques.
For 84% of 1741 such pairs, both entries give a ∆∆G value
within 1 kcal.mol−1 of each other. For 704 pairs for which
kon is available for both, 80% have ∆ log10(kon) within
0.5 of each other. For 702 pairs for which koff is available,
83% have ∆ log10(koff) within 0.5. For the 62 pair with
both ∆∆H and ∆∆S values, 61% have ∆∆H within 3.0
kcal.mol−1 of each other and 58% have ∆∆S within 10
cal.mol−1.K−1 of each other.

D. Mutant Cycles
Within SKEMPI some entries can be combined to con-

struct mutant cycles, which quantify the interactions be-
tween residues, the dependence of these interactions on
other residues, and other higher order effects. The most
common instances are double mutant cycles, where affinities
are available for the wild type, A, B and AB mutations,
of which there are 610 examples. Of these, 53 involve at
least one mutant for which binding was not observed, or
only an inequality is available, and 235 involve mutations
reported in the same reference, and thus the affinities are
likely to have been measured using the same technique
and conditions. A further 218 double mutant cycles can be
constructed in the background of a third mutation (i.e. C,
AC, BC and ABC mutations are available), of which 209 are
not composed of non-binding mutations or mutations with
inequalities, and 131 involve affinities coming from the same
reference. Of the 766 double mutant cycles containing neither
inequalities nor non-binding mutants, a number of parame-
ters can be calculated, including ∆∆Gab→Ab, ∆∆Gab→aB

and ∆∆Gab→AB , the binding free energy change of both
single and the double mutation respectively, as well as
∆∆GaB→AB and ∆∆GAb→AB , the energy of a single
mutation within the context of the other mutation, and
∆∆Gint = ∆∆GaB→AB - ∆∆Gab→Ab = ∆∆GAb→AB −
∆∆Gab→aB , the interaction energy of the two mutations
[26]. From these, it can be deduced that 345 are additive
(∆∆Gint < 0.5kcal.mol−1). Of the non-additive cycles,
293 exhibit tighter binding in the double mutant than the sum
of the single mutants (positive epistasis), of which 6 result
in even tighter binding than individual effects of two single
mutations that strengthen the interaction (synergistic posi-
tive), while 273 correspond to double mutants which reduce
binding by less than the sum of two single mutants which
reduce binding (antagonistic positive). Similarly, 128 cycles
have double mutants exhibiting weaker binding than the
sum of the two single mutants (negative epistasis), of which
58 contain two destabilising single mutations (synergistic
negative) and 26 contain two stabilising single mutations
(antagonistic negative). The range of ∆∆Gint values rarely
fall outside of the -5 to 3 kcal.mol−1 range. Of the 421 non-
additive cycles, 151 show noticeable sign epistasis, in which
the sign of the effect of either the A or B mutation flips
depending on the presence or absence of the background
mutation (i.e., for the A mutation, |∆∆Gab→Ab| > 0.2
kcal.mol−1 and |∆∆GaB→AB | > 0.2 kcal.mol−1 and
|∆∆Gab→Ab −∆∆GaB→AB | > 0.4 kcal.mol−1). Of these,
38 correspond to mutations which destabilise the complex in
the presence of the background mutation, but stabilise in its
absence (destabilising sign epistasis), while 113 correspond
to mutations which stabilise the complex in the mutant
background but otherwise destabilise the complex (stabilising
sign epistasis). Only 8 cycles exhibit the more extreme
reciprocal sign epistasis, which in 6 cases are where both
single mutations are stabilising (< −0.2 kcal.mol−1), but the
double mutant is destabilising (> 0.2 kcal.mol−1), and the
remaining two correspond to two destabilising mutations (>
0.2 kcal.mol−1) for which the double mutation is stabilising
(< −0.2 kcal.mol−1). The types of substitutions that can
give rise to extreme effects such as stabilising reciprocal sign
epistasis can be illustrated with the Mlc-IIBGlc interaction
in E. coli [52], in which the removal of the F136 side-chain
of MlC creates a large cavity at the binding interface, the
addition of a phenylalanine at the A451 position of IIBGlc

creates a large clash, however the double mutation creates
an interaction that is even more stable than the wild-type
by creating an anchor residue across the binding interface in
which the cavity in MlC is filled by the new side-chain of
IIB.

Higher order interaction terms can be garnered from
higher cycles, such as triple mutant cubes, constructed from
the energies of the wild-type, three single mutants, three
corresponding double mutants and the triple mutant [26].
In SKEMPI, 45 triple mutant cubes can be made, with
10 coming from the same reference. For these, third order
interaction energies fall within the -1 to 1 kcal.mol−1 range.
For fourth order interactions, constructed from energies of
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the wild-type, four single mutants, six double mutants, four
triple mutants and the quadruple mutant, 14 examples exist
within SKEMPI. However, care should be taken in ascribing
meaning to fourth order residue coupling energies due to
the accumulations of errors, which in these cases are ex-
acerbated by the affinities having been reported in different
publications. No fifth or higher order interactions are present.

E. The SKEMPI website

The database is accessible online at
https://life.bsc.es/pid/skempi2/, where the raw CSV
(comma-separated values) file containing all the data can be
downloaded. The data can also be browsed online, ordered
and searched by any field, such as the experimental method
or the location of the mutation, or searching for a specific
protein by its name or PDB code, and structures may be
visualised. Other pages on the web site offer a summary
of the data, an FAQ and help page, and a page for user
contributions which will be evaluated to appear in future
releases. Before you begin to format your paper, first write
and save the content as a separate text file. Keep your
text and graphic files separate until after the text has been
formatted and styled. Do not use hard tabs, and limit use of
hard returns to only one return at the end of a paragraph.
Do not add any kind of pagination anywhere in the paper.
Do not number text heads-the template will do that for you.

Finally, complete content and organizational editing before
formatting. Please take note of the following items when
proofreading spelling and grammar:

F. Abbreviations and Acronyms

Define abbreviations and acronyms the first time they are
used in the text, even after they have been defined in the
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc,
and rms do not have to be defined. Do not use abbreviations
in the title or heads unless they are unavoidable.
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