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Abstract 20 

The ability to track animals accurately is critical for behavioral experiments. For video-based 21 

assays, this is often accomplished by manipulating environmental conditions to increase 22 

contrast between the animal and the background, in order to achieve proper 23 

foreground/background detection (segmentation). However, as behavioral paradigms become 24 

more sophisticated with ethologically relevant environments, the approach of modifying 25 

environmental conditions offers diminishing returns, particularly for scalable experiments. 26 

Currently, there is a need for methods to monitor behaviors over long periods of time, under 27 

dynamic environmental conditions, and in animals that are genetically and behaviorally 28 

heterogeneous. To address this need, we developed a state-of-the-art neural network-based 29 

tracker for mice, using modern machine vision techniques. We test three different neural 30 

network architectures to determine their performance on genetically diverse mice under varying 31 

environmental conditions. We find that an encoder-decoder segmentation neural network 32 

achieves high accuracy and speed with minimal training data. Furthermore, we provide a 33 

labeling interface, labeled training data, tuned hyperparameters, and a pre-trained network for 34 

the mouse behavior and neuroscience communities. This general-purpose neural network 35 

tracker can be easily extended to other experimental paradigms and even to other animals, 36 

through transfer learning, thus providing a robust, generalizable solution for biobehavioral 37 

research.  38 

  39 
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Author summary 40 

Accurate tracking of animals is critical for behavioral experiments, however tracking in complex 41 

environments has been a long-standing issue in neurogenetics. If the environment changes 42 

during the test or if occlusion occurs, then tracking using existing methods often fails. These 43 

technological constraints limit the complexity of behavioral paradigms that can be carried out.  44 

Here we use modern convolutional neural networks to overcome these limitations and design a 45 

trainable mouse tracker for complex and dynamic environments. We test several neural network 46 

architectures and show that a single trained network can track all strains of mice we have tested 47 

consisting of various coat colors, body shapes, and behaviors. We provide a labeling interface, 48 

labeled training data, tuned hyperparameters, and a pre-trained network for the mouse behavior 49 

and neuroscience communities.   50 
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Introduction 51 

Behavior is primarily an output of the nervous system in response to internal or external 52 

stimuli. It is hierarchical, dynamic, and high dimensional, and is generally simplified for analysis 53 

[1, 2]. For instance, the rich locomotor movement performed by a mouse that is captured in 54 

video is routinely abstracted to either a simple point, a center of mass, or an ellipse for analysis. 55 

In order to do this well with current methods, the experimental environment is simplified to obtain 56 

optimal contrast between the mouse and background for proper segmentation. Segmentation, a 57 

form of background subtraction, classifies pixels belonging to mice from background in video 58 

and enables these high level abstractions to be mathematically calculated. During mouse 59 

experimental assays, the arena background color is often changed depending on the animal’s 60 

coat color, potentially altering the behavior itself [3-5]. Making such changes comes at a cost, as 61 

current video tracking technologies cannot be applied in complex and dynamic environments or 62 

with genetically heterogeneous animals without a high level of user involvement, making both 63 

long term experiements and large experiments unfeasible. As neuroscience and behavior moves 64 

into an era of big behavioral data [2] and computational ethology [6], current tracking methods 65 

are inadequate and improved methods are necessary that enable tracking animals in semi-66 

natural and dynamic environments over long periods of time. To address this shortfall, we 67 

developed a robust scalable method of mouse tracking in an open field using modern 68 

convolutional neural network architecture. Our trained neural network is capable of tracking all 69 

commonly used strains of mice—including mice with different coat colors, body shapes, and 70 

behaviors—under multiple experimental conditions without any user-involved adjustment of 71 

tracking parameters. Thus we present a scalable and robust solution that allows tracking in 72 

diverse experimental conditions. 73 

Results 74 
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We first used existing tracking methods to track 59 different mouse strains in multiple 75 

environments, and found them inadequate for our large-scale strain survey experiment (1,845 76 

videos, 1,691 hours). Specifically, we tracked all the videos in this experiment using Ctrax [7], a 77 

modern open-source tracking software package that uses background subtraction and blob 78 

detection heuristics, and LimeLight (Actimetrics, Wilmette, IL), a commercially available tracking 79 

software package that uses a proprietary tracking algorithm. Ctrax abstracts a mouse on a per 80 

frame basis to five metrics: major and minor axis, x and y location of center of the mouse, and 81 

the direction of the animal [7]. It utilizes the MOG2 background subtraction model, whereby the 82 

software estimates both the mean and variation of the background of the video for use in 83 

background subtraction. Ctrax uses the shape of the predicted foreground to fit ellipses. 84 

LimeLight uses a single key-frame background model for segmentation and detection. Once a 85 

mouse is detected using LimeLight, this software package abstracts the mouse to a center of 86 

mass using a proprietary algorithm. 87 

Our strain survey experiment includes videos of mice with different genetic backgrounds 88 

causing expression of different coat colors including black, agouti, albino, grey, brown, nude, 89 

and piebald (Fig. 1A, columns 1, 2, 3 and 4). We tracked all animals in the same open field 90 

apparatus, which had a white background; this yielded good results for darker mice (black and 91 

agouti mice), but poor results for lighter-colored (albino and grey mice) or piebald mice (Fig. 1A, 92 

columns 1, 2, 3 and 4, S1 Video). Examples of ideal and actual tracking frames are shown for 93 

the various coat colors (Fig. 1A, row 3 and 4 respectively).  94 

Fig. 1. Proposed solutions for our tracking problem. (A) A representation of the environments 95 
analyzed by existing approaches. A black mouse in a white open field achieves high foreground-96 
background contrast, and therefore actual tracking closely matches the ideal (column 1). Grey mice are 97 
visually similar to the grey-colored arena walls and therefore often have their noses, which are grey, 98 
removed while rearing on walls (column 2). Albino mice are visually very similar to the white arena floor 99 
and are frequently not found during tracking (column 3). Piebald mice are broken in half by the tracking 100 
software due to their patterned coat color (column 4). Placing a food cup, that is visually similar to the 101 
mouse, into the arena causes tracking issues when the mouse climbs on top of the food cup (column 5). 102 
Arenas with reflective surfaces also produce errors with tracking algorithms (column 6). (B) We identified 103 
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the cause of bad tracking as poor segmentation. However, testing a variety of difficult frames with multiple 104 
background subtraction algorithms from the background subtraction library, we did not resolve this 105 
segmentation issue. From top to bottom the background subtraction algorithms shown are: SuBSENSE, 106 
Adaptive Median, Adaptive Background Learning, MultiCue BGS, and LOBSTER. (C) Our objective 107 
tracking takes the form of an ellipse description of a mouse. For clarity, we show a cropped frame as input 108 
into the networks, whereas the actual input is an unmarked full frame. (D) The structure of the 109 
segmentation network architecture functions similarly to classical tracking approaches in which the 110 
network predicts the segmentation mask for the mouse and then fits an ellipse to the predicted mask. (E) 111 
The structure of the binned classification network architecture predicts a probability distribution of the 112 
value for each ellipse-fit parameter, represented by the table where a max value is selected. Only three 113 
parameters of the six ellipse-fit parameters are visually shown (X = center x-location, Major = major axis 114 
length, Angle = direction of the mouse’s nose). (F) The structure of the regression network architecture 115 
directly predicts the 6 parameters used to describe an ellipse for tracking. 116 

We also carried out video analysis of behavior in challenging environments including 117 

both 24-hour experimental videos that added bedding and a food cup to our open field arena, 118 

and videos from the open field experiment carried out as part of The Jackson Laboratory 119 

KOMP2 (Knockout Mouse Phenotyping Project) [8] Phenotyping Center (Fig. 1A, column 5, 6, 120 

respectively). In the 24-hour experiment, we collected data over multiple days in which mice 121 

were housed in the open field with white paper bedding and food cup. The mice were kept in the 122 

open field in this multiday data collection paradigm, and continuous recording was carried out in 123 

light and dark conditions using an infrared light source. The bedding and food cups were moved 124 

by the mouse and the imaging light source alternated between infrared and visible light over the 125 

course of each day. The KOMP2 experiment uses a beam-break system in which mice are 126 

placed in a clear acrylic arena with infrared beams on all sides. Since the floor of the arena is 127 

clear acrylic, the surface of the table on which the arenas were placed shows through as dark 128 

grey. In addition, one arena was placed on the junction between two tables, leaving the joint 129 

visible. Further, the LED lights overhead caused a very high glare unique to each arena (S2 130 

Video). This KOMP2 program has collected over five years of data using this system, and we 131 

wanted to carry out video-based recording as an added analysis modality to detect gait affects 132 

that cannot be identified by beam-break systems. Since environmental alterations could affect 133 

the behavioral output and legacy data interpretation, we could not optimize or otherwise alter the 134 

environment for video data collection. Instead, we simply added a camera on top of each arena. 135 
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Traditionally, contrast and reflection hurdles could be overcome by changing the environment 136 

such that video data collection is optimized for analysis. For instance, to track albino mice, one 137 

can increase contrast by changing the background color of the open field to black. However, the 138 

color of the environment can effect the behavior of both mice and humans, and such 139 

manipulations can potentially confound the experimental results [3, 4]. Regardless, such 140 

solutions will not work for piebald mice in a standard open field, or any mice in either the 24-hour 141 

data collection experiment or the KOMP2 arena.  142 

We found that the combination of mouse coat colors and environments were difficult to 143 

handle with Ctrax (S1 Video) and LimeLight. We optimized and fine-tuned Ctrax for each video 144 

(Methods) in each of the three experiments and still found a significant number frames with poor 145 

tracking performance (Fig. 1A, row 4). Such optimization or tuning of background model was not 146 

feasible with LimeLight. The frequency of poor tracking instances in an individual video 147 

increased as the environment became less ideal for tracking. We discovered these errors in 148 

ellipse fitting lead to larger errors in classifying behaviors using the Ctrax tracking output in 149 

supervised classification using Janelia Automatic Animal Behavior Annotator (JAABA)[9]. Thus, 150 

even the seemingly minor errors seen in grey and black mice (S1 Video) decreased 151 

performance when the tracking data were used for behavior classification. Furthermore, the 152 

distribution of the errors was not random; for example, tracking was highly inaccurate when mice 153 

were in the corners, near walls, or on food cups (Fig. 1A, row 4), and less inaccurate when 154 

animals were in the center (S1 Video). While it is feasible to discard poorly tracked frames, this 155 

can lead to biased sampling and skewed biological interpretation.  156 

We explored the cause of bad tracking across our three experiments and discovered 157 

that, in most cases, improper tracking was due to poor segmentation of the mouse from the 158 

background. This included both types of errors: Type I, instances when portions of the 159 
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background are included as the foreground (e.g. shadows), and Type II, instances when 160 

portions of the mouse are removed from the foreground (e.g. albino mouse matching the 161 

background color). Since Ctrax uses a single background model algorithm, we tested whether 162 

other background model algorithms could improve tracking results. We tested 26 different 163 

segmentation algorithms [10] and discovered that each of these traditional algorithms performs 164 

well under certain circumstances and fail in others (Fig. 1B). Other available tracking software 165 

packages including CADABRA [11], EthoVision [12], idTracker [13], MiceProfiler [14], MOTR 166 

[15], Cleversys TopScan (http://cleversysinc.com/CleverSysInc/), Autotyping [16], and 167 

Automated Rodent Tracker [17], all of which rely on background subtraction approaches for 168 

tracking. Since all 26 background subtraction methods failed in some circumstances, we 169 

postulate that our results for Ctrax and LimeLight will hold true for these other technologies. In 170 

sum, although many video tracking solutions exist, none address the fundamental problem of 171 

mouse segmentation appropriately and generally rely on environmental optimization to achieve 172 

proper segmentation, therefore creating potential confounds with respect to robust data 173 

sampling and analysis. Thus, we could not overcome the fundamental issue of proper mouse 174 

segmentation in order to achieve high-fidelity mouse tracking with existing solutions. 175 

A drawback in addition to the problem of inadequate mouse segmentation was the time 176 

cost for fine-tuning Ctrax’s settings or another background subtraction algorithm’s parameters. 177 

Fine-tuning the tracking settings for each video added significant time to our workflow when 178 

analyzing thousands of videos. For example, in tracking data from the 24-hour experiment, when 179 

mice were sleeping in one posture for an extended period of time, the mouse became part of the 180 

background model and could not be tracked. Typical supervision, such as using the Ctrax 181 

settings supervision protocol we outline in our methods, would take an experienced user 5 182 

minutes of interaction for each hour of video to ensure high-quality tracking results. While this 183 
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level of user interaction is tractable for smaller and more restricted experiments, large-scale and 184 

long-term experiments require a large time commitment to supervise the tracking performance. 185 

We sought to overcome these difficulties by building a robust-next generation mouse 186 

tracker that uses neural networks and achieves high performance under complex and dynamic 187 

environmental conditions, is indifferent to coat color, and does not require persistent fine tuning 188 

by the user. Convolutional neural networks are computational models that are composed of 189 

multiple spatial processing layers that learn representations of data with multiple levels of 190 

abstraction. These methods have dramatically improved the state-of-the-art in speech 191 

recognition, visual object recognition, object detection, and many other domains such as drug 192 

discovery and genomics [18]. One of the key advantages of neural networks is that once an 193 

efficient network with suitable hyperparameters has been developed, it can easily be extended 194 

to other tasks by simply adding appropriate training data [19]. Thus, we sought to build a highly 195 

generalizable solution for mouse tracking.  196 

We tested three primary neural network architectures for solving this visual tracking 197 

problem (Fig. 1D-E). Each approach attempted to describe the location of the animal through six 198 

variables: x and y location of the mouse in the matrix, major and minor axes of the mouse, and 199 

the angle the head is facing (Fig. 1C). To avoid the discontinuity of equivalent repeating angles, 200 

the networks predict the sine and cosine of the angle. 201 

The first architecture is an encoder-decoder segmentation network that predicts a 202 

foreground-background segmented image from a given input frame (Fig. 1D). This network 203 

predicts on a pixel-wise basis whether there is a mouse or no mouse, with the output being a 204 

segmentation mask. The segmentation mask identifies all the pixels in the image that belong to 205 

the mouse. The primary structure of this architecture starts with a feature encoder, which 206 

abstracts the input image down into a small-spatial-resolution set of features. The encdoded 207 
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features are then passed to a feature decoder that converts this set of features back into the 208 

same shape as the original input image. Additionally, the encoded features are also passed to 209 

three fully connected layers to predict which cardinal direction the ellipse is facing. We trained 210 

this feature decoder to produce a foreground-background segmented image. After the network 211 

produces this segmented image, we applied an ellipse-fitting algorithm for tracking (Note A in S1 212 

Information).  213 

The second network architecture is a binned classification network, whereby a probability 214 

distribution across a pre-defined range of possible values is predicted for each of the 6 ellipse-fit 215 

parameters (Fig. 1E). This network architecture begins with a feature encoder that abstracts the 216 

input image down into a small-spatial-resolution set of features. The encoded features are 217 

flattened and connected to additional fully connected layers whose output shape is determined 218 

by the desired resolution of the output. For instance, at a desired resolution of 1 pixel for the x-219 

coordinate location of the mouse, there are 480 possible x-values to select from for a 480 x 480 220 

px image. As such, the network contains 480 values (bins) to select from, one bin for each x-221 

column in the 480 x 480 px image. When the network is run, the largest value in each heatmap 222 

is selected as the most probable value of the corresponding parameter. Each desired output 223 

parameter is realized as an independent set of trainable fully connected layers connected to the 224 

encoded features.  225 

The third architecture is a regression network that predicts the numerical ellipse values 226 

directly from the input image (Fig. 1F). The network architecture begins with a feature encoder 227 

that abstracts the input down into a small spatial resolution. These encoded features are then 228 

flattened and connected to fully connected layers to produce an output shape of 6, the number 229 

of values that we ask the network to predict to fit an ellipse. We tested a variety of currently 230 

available general purpose feature encoders, and present data from the feature encoder Resnet 231 
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V2 [20] with 200 convolutional layers, which achieved the best performing results for this 232 

architecture. 233 

To test the neural network architectures, we built a training dataset of 16,234 training 234 

images and 568 separate validation images across multiple mouse strains and experimental 235 

setups (Note B in S1 Information). Annotated training images were augmented eightfold during 236 

training by applying reflections. Additionally, training images were further augmented by adding 237 

small random changes in contrast, brightness, and rotations to make the network robust to minor 238 

fluctuations in input data. We created an OpenCV-based labeling interface for creating our 239 

training data (Methods) that allows us to quickly label foreground and background, and fit an 240 

ellipse (S1 Fig.). This labeling interface can be used to quickly generate annotated training data 241 

in order to adapt any network to new experimental conditions through transfer learning. 242 

Our network architectures were built, trained, and tested in Tensorflow v1.0, an open-243 

source software library for designing applications that use neural networks [21]. Training 244 

benchmarks presented were conducted on the Nvidia P100 GPU architecture. We tuned the 245 

hyperparameters through several training iterations. After the first training of networks, it was 246 

observed that the networks performed poorly under particular circumstances that had not been 247 

included in the annotated data, including mid-jump, odd postures, and urination in the arena.We 248 

identified and incorporated these difficult frames into our training dataset to further improve 249 

performance. A full description of the network architecture definitions and training 250 

hyperparameters are available (Methods, Table A in S1 Information). Overall, training and 251 

validation loss curves indicated that each of the three network architectures trains to a 252 

performance with an average error between 1 and 2 pixels (Fig. 2A). The encoder-decoder 253 

segmentation architecture converged to a validation error of 0.9px (Fig. 2 A, B, C). Surprisingly, 254 

upon inspection of the validation curve for the binned classification network we found that it 255 
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displayed unstable loss curves, indicating overfitting and poor generalization (Fig. 2B, E). The 256 

regression architecture converged to a validation error of 1.2 px, showing a better training than 257 

validation performance (Fig. 2A, B, D).  258 

Fig. 2. Neural network performance metrics. (A-E) Performance of our tested network architectures 259 
during trainings. (A) Training curves show comparable performances of the three architectures during 260 
training, independent of the network architecture. (B) Validation curves show different performances 261 
across the three network architectures. The encoder-decoder segmentation network performs the best. 262 
(C, D, E) Comparison of training and validation performance curves, by network architecture type. (C) 263 
Performance increases for validation in our encoder-decoder segmentation network architecture. (D) 264 
Performance decreases for validation in our regression network architecture, but a good generalization 265 
performance is maintained by asymptotically converging to a value. (E) The binned classification network 266 
architecture becomes unstable at 55 epochs of training, even though the training curve shows continued 267 
improved performance at this timepoint. (F) Comparing our encoder-decoder segmentation network 268 
architecture with a beam break system, we observe a high correlation. Each point represents an individual 269 
video tracked using both our neural network and a beam break system. Our network performs 270 
consistently, even though the arenas are visually different from one another. We identify two videos of 271 
individual mice that deviate the from this trend (red arrows). (G) Predictions from two approaches yield 272 
high agreement on environments with high contrast between the mouse and background (black, grey, and 273 
piebald mice in the white background open-field assay). As the segmentation problem becomes more 274 
computationally difficult, the relative error increases (albino mice in the white background open-field assay 275 
black mice in the 24-hr assay, KOMP2 experiment). Due to low activity in the 24-hr setup, minor errors in 276 
tracking have a large influence on measurements of thetotal distance traveled. Points indicate individuals 277 
in a group, bars indicate mean +/- standard deviation. (H) Relative standard deviation of the minor axis 278 
maintains a high correlation when the mouse and environment have a high contrast (black mice in the 279 
white background open-field assay). When segmentation includes shadows, includes reflections, or 280 
removes portions of the mouse, the minor axis length is not properly predicted and increases the relative 281 
standard deviation (grey, piebald, and albino mice in the white background open-field assay, black mice in 282 
the 24-hour assay, KOMP2 experiment). Points indicate individuals in a group, bars indicate mean +/- 283 
standard deviation. 284 

Not only does the encoder-decoder segmentation architecture perform well, but it also is 285 

computationally efficient for GPU compute, requiring an average processing time of 5-6ms per 286 

frame. With the encoder-decoder segmentation architecture, our video data could be processed 287 

at a rate of up to 200 frames per second (fps) (6.7X realtime) on a Nvidia P100, which is a 288 

server-grade GPU.; and a rate of up to 125 fps (4.2X realtime) on a Nvidia TitanXP, a consumer-289 

grade GPU. This high processing speed is likely due to the structure of the encoder-decoder 290 

segmentation architecture, as it is only 18 layers deep and contains only 10.6 million trainable 291 

parameters. In comparison, Resnet V2 200, the feature extractor that gave the best results for 292 

the regression architecture, is a large and deep network with over 200 layers and 62.7 million 293 
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trainable parameters and leads to a substantially longer processing time per frame (33.6ms on a 294 

Nvidia P100). Other pre-built general-purpose networks [22] achieve similar or worse 295 

performances at a tradeoff of faster compute time. Thus, regression networks are an accurate 296 

but computationally expensive solution. 297 

We also tested the minimum training dataset size required to train the encoder-decoder 298 

segmentation network, by randomly subsetting our training dataset to smaller numbers of 299 

annotated images (10,000 to 500) and training the network from the beginning. Surprisingly, we 300 

obtained good results from a network trained with only 2,500 annotated images, a task that 301 

takes approximately three hours to generate with our labeling interface (S2 Fig.). Given the 302 

computational efficiency, accuracy, and training stability of the encoder-decoder segmentation 303 

architecture, and the small training dataset size that it requires, we concluded that this 304 

architecture is optimal for our needs. We used this trained neural network to predict the location 305 

of mice for entire videos and compare tracking performance with other non-neural network 306 

approaches including a beam-break system (KOMP2) and a video tracking system (Ctrax). 307 

We evaluated the quality of the encoder-decoder segmentation neural network tracking 308 

architecture by inferring entire videos from mice with disparate coat colors and data collection 309 

environments (Fig. 1A) and visually evaluating the quality of the tracking. We also compared this 310 

neural network-based tracking architecture with an independent modality of tracking, the 311 

KOMP2 beam-break system (Fig. 1A, column 6). We tracked 2,002 videos of individual mice 312 

comprising 700 hours of video from the KOMP2 experiment using the encoder-decoder 313 

segmentation neural network architecture and compared the results with the tracking data 314 

obtained using the KOMP2 beam-break system (Fig. 2F). These data comprised mice of 232 315 

knockout lines on the C57BL/6NJ background that were tested in 20-minute open field assay in 316 

2016 and 2017. Since each KOMP2 arena has slightly different background due to the 317 
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transparent and reflective walls, we compared tracking performances of the two approaches for 318 

each of the eight testing arenas used in the 2016 and 2017 KOMP2 open-field assays (Fig. 2F, 319 

colors shows arena), and compared tracking performances for all the arenas combined (Fig. 2F, 320 

black line). We observed a very high correlation between the total distance traveled in the open 321 

field as measured by the two approaches across all eight KOMP2 testing arenas (R = 96.9%, 322 

Fig. 2F). We observed two animals with high discordance from this trend (Fig. 2F, red arrows). 323 

Observation of the video showed odd behaviors for both animals, with a waddle gait in one and 324 

a hunched posture in the other (S2 Video). We postulate that these behaviors led to abnormal 325 

beams breaks causing erroneously high total distances traveled measured via the beam break 326 

system. This example highlights an important advantage of the neural network, as it is 327 

unaffected by the behavior of the animal. 328 

We then compared the performance of our trained segmentation neural network with the 329 

performance of Ctrax across a broad selection of videos from the various testing environments 330 

and coat colors previously tracked using Ctrax and LimeLight (Fig. 1A). We wish to emphasize 331 

that we compared the performance of our network with that of Ctrax because Ctrax is one of the 332 

best conventional tracking software packages that allows fine tuning of the many tracking 333 

settings, is open source, and provides user support. Given the results with the 26 background 334 

subtraction approaches (Fig. 1B), we expected similar or worse performances from other 335 

tracking systems. We tracked 72 videos, broken into 6 groups (Fig. 1A) with 12 animals per 336 

group, with both our trained encoder-decoder segmentation neural network and Ctrax. The 337 

settings for Ctrax were fine-tuned for each of the 72 videos, as described in ‘Ctrax Settings 338 

Supervision Protocol’ in Methods. Videos from the 24-hr experiment showing that animals that 339 

were sleeping continually for the full video duration (one hour) were manually omitted from 340 

comparison, as Ctrax will incorporate the mouse as part of the background model. We 341 
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calculated a cumulative relative error of total distance traveled between Ctrax and our neural 342 

network (Fig. 2G). Specifically, for every minute in the video, we compared the distance-traveled 343 

prediction of the neural network with that of Ctrax. This metric measures the accuracy of center 344 

of mass tracking of each mouse. Tracking for black, gray, and piebald mice in the white-345 

background open-field apparatus showed errors less than 4%; however, significantly higher 346 

levels of error were seen in albino mice in the open-field arena with a white floor (14%), black 347 

mice in the 24-hour arena (27%), and black mice in the KOMP2 testing arena (10%) (Fig. 2G 348 

and S1 Video). Thus, we could not adequately track albino mice in the open-field arena with a 349 

white floor, black mice in the 24-hour arena, or black mice in the KOMP2 testing arena without 350 

the neural network tracker.  351 

We also observed, using Ctrax, that when foreground segmentation prediction is 352 

incorrect, such as when shadows are included in the prediction, the ellipse fit does not correctly 353 

represent the posture of the mouse (S1 Video). In these cases, even though the center of mass 354 

tracking was acceptable, the ellipse fit itself was highly variable. Modern machine learning 355 

software for behavior recognition, such as the Janelia Automatic Animal Behavior Annotator 356 

(JAABA)[9], utilize the time series of ellipse fit tracking for classification of behaviors. We 357 

quantitated the stability of ellipse tracking through measuring the relative standard deviation of 358 

the minor axis and comparing approaches. This metric shows the least variance across all sizes 359 

of laboratory mice, as the width of an individual mouse remains similar through a wide range of 360 

postures expressed in behavioral assays when tracking is accurate. We observed a high level of 361 

tracking variation with grey and piebald mice in the white open field arena (Fig. 2H) even though 362 

there is low cumulative relative error of total distance traveled (Fig. 2G). As expected, we 363 

observed a high relative standard deviation of the minor axis for albino mice (white open field 364 

arena) and KOMP2 tracking. Thus, for both center of mass tracking and variance of ellipse fit we 365 
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find that the neural network tracker outperforms traditional background subtraction-based 366 

trackers. 367 

Having established the encoder-decoder segmentation neural network as a highly 368 

accurate tracker, we tested its performance using two large behavioral experiments. For the first 369 

experiment, we generated white-surfaced open-field video data with 1,845 mice, including 58 370 

strains of mice including mice with diverse coat colors, piebald mice, nude mice, and obese 371 

mice; and covering a total of 1,691 hours (Fig. 3A). This dataset consists of 47 inbred strains 372 

and 11 isogenic F1 strains and is the largest open-field dataset generated, based on the data in 373 

the Mouse Phenome Database[23]. Using a single trained network without any user tuning, we 374 

were able to track all mice with high accuracy. We visually checked mice from a majority of the 375 

strains for fidelity of tracking and observed excellent performance. The activity phenotypes that 376 

we observed agree with previously published datasets of mouse open-field behavior[23]. For the 377 

second dataset, we tracked 24-hour video data collected for four C57BL/6J and two BTBR T+ 378 

ltpr3tf/J mice (Fig. 1A, column 5). These mice were housed with beddingand a food cup over 379 

multiple days during which the food changed location and under 12:12 light-dark conditions. 380 

Video data were recoded using visible and infrared light sources. We tracked activity across all 381 

animals under these conditions using the same encoder-decoder segmentation neural network 382 

architecture used for the first experiment, and observed very good performance under light and 383 

dark conditions (Fig. 3B, light and dark blue points, respectively). As expected, we observed 384 

daily activity rhythm with high levels of locomotor activity during the dark phase (Fig. 3B, red 385 

curve).  386 

Fig. 3. Highly scalable tracking with a single neural network. (A) A large strain survey showing 387 
genetically diverse animals traced with our encoder-decoder segmentation network. 1,845 animals 388 
including 58 inbred and F1 isogenic strains, totaling 1,691 hours of video, were processed by a single 389 
trained neural network without any user-involved fine-tuning. Total distance traveled in a 55-minute open 390 
field assay is shown. Points indicate individuals in a strain, bars indicate mean +/- standard deviation. Two 391 
reference mouse strains are shown in bold, C57BL/6J and C57BL/6NJ (B) Daily activity rhythms were 392 
observed in six animals continuously tracked over 4 days in a dynamic environment with our encoder-393 
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decoder segmentation neural network. Points indicate distance traveled in an epoch. Red line indicates 394 
polynomial fit showing daily activity rhythms. 395 

Discussion 396 

Video-based tracking of animals in complex environments has been a long-standing 397 

challenge in the field of animal behavior [24]. Current state-of-the-art animal-tracking systems do 398 

not address the fundamental issue of animal segmentation and rely heavily on visual contrast 399 

between the foreground and background for accurate tracking. As a result, the user must restrict 400 

the environment to achieve optimal results. Here we describe a modern neural network-based 401 

tracker that is able to function in complex and dynamic environments. Our network addresses a 402 

fundamental issue in tracking—foreground and background segmentation—by using a trainable 403 

neural network. We test three different architectures and find that an encoder-decoder 404 

segmentation network architecture achieves the highest level of accuracy and functions at a 405 

high speed (over 6X real time). Furthermore, we provide a labeling interface that allows the user 406 

to train a new network for their specific environment by labeling as few as 2,500 images, which 407 

takes approximately 3 hours. We compare our network to two existing solutions and find that it 408 

vastly outperforms them in complex environments. We expect similar results with any off-the-409 

shelf system that utilizes traditional background subtraction approaches. In fact, when we tested 410 

26 different background subtraction methods we discovered that each failed under certain 411 

circumstances. However, a single neural network architecture functions for all coat colors of 412 

mice under multiple environments without the need for fine tuning or user input. Our machine 413 

learning approach enables long-term tracking under dynamic environmental conditions with 414 

minimal user input, thus establishing the basis of the next generation of tracking architecture for 415 

behavioral research.  416 

Materials and methods 417 
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Experimental arenas 418 

Open Field Arena 419 

Our open field arena measures 52cm by 52cm by 23cm. The floor is white PVC plastic 420 

and the walls are grey PVC plastic. To aid in cleaning maintenance, a white 2.54cm chamfer 421 

was added to all the inner edges. Illumination is provided by an LED ring light (Model: F&V 422 

R300). The ring light was calibrated to produce 600 lux of light in each of our 24 arenas. 423 

24-Hour monitoring open field arena 424 

We augmented 6 of our open field arenas for multiple day testing. We set our overhead 425 

LED lighting to a standard 12:12 light-dark cycle. ALPHA-dri was placed into the arena for 426 

bedding. To provide food and water, a single Diet Gel 76A food cup was placed in the arena. 427 

This nutritional source was monitored and replaced when depleted. Each arena was illuminated 428 

at 250 lux during the day and <5 lux during the night. For recording videos during the night, 429 

additional IR LED (940nm) lighting was added. 430 

KOMP2 open field arena 431 

In addition to our custom arenas, we also benchmarked our approach on a commercially 432 

available system. The Accuscan Versamax Activity Monitoring Cages is constructed using clear 433 

plastic walls. As such, visual tracking becomes very difficult due to the consequent reflections. 434 

The cage measures 42cm by 42cm by 31cm. Lighting for this arena was via LED illumination at 435 

100-200 lux. 436 

Video acquisition 437 

Imaging hardware 438 

All data was acquired using the same imaging equipment. Data was acquired at 439 
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640x480px resolution, 8-bit monochrome depth, and 30fps using Sentech cameras (Model: 440 

STC-MB33USB) and Computar lenses (Model: T3Z2910CS-IR). Exposure time and gain were 441 

controlled digitally using a target brightness of 190/255. Aperture was adjusted to its widest so 442 

that lower analog gains were used to achieve the target brightness. This in turn reduced 443 

amplification of baseline noise. Files were saved temporarily on a local hard drive using the “raw 444 

video” codec and “pal8” pixel format. Our typical assays run for two hours, yielding a raw video 445 

file of approximately 50GB. Overnight, we use FFmpeg software (https://www.ffmpeg.org/) to 446 

apply a 480x480px crop, de-noise filter, and compress using the mpeg4 codec (quality set to 447 

max), which yields a compressed video size of approximately 600MB. 448 

One camera and lens was mounted approximately 100cm above each arena to alleviate 449 

perspective distortion. Zoom and focus were set manually to achieve a zoom of 8px/cm. This 450 

resolution both minimizes the unused pixels on our arena border and yields approximately 800 451 

pixels area per mouse. Although the KOMP2 arena is slightly smaller, the same zoom of 8px/cm 452 

target was utilized. 453 

Ctrax settings supervision protocol 454 

Ctrax contains a variety of settings to enable optimization of tracking [7]. The authors of 455 

this software strongly recommend, first and formost, ensuring that he arena is set up under 456 

specific criteria to ensure good tracking. In most of our tests, we intentionally use an 457 

environment in which Ctrax is not designed to perform well (e.g., albino mice on a white 458 

background). That being said, with well-tuned parameters, a good performance is still 459 

achievable. However, with a large number of settings to manipulate, Ctrax can easily require 460 

substantial time to achieve a good tracking performance. Here, we describe our protocol for 461 

setting up Ctrax for tracking mice in our environments. 462 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 1, 2018. ; https://doi.org/10.1101/336685doi: bioRxiv preprint 

https://doi.org/10.1101/336685
http://creativecommons.org/licenses/by/4.0/


 20 

First, we create a background model. The core of Ctrax is based on background 463 

subtraction, and thus a robust background model is essential for functionality. Models function 464 

optimally when the mouse is moving. To create the background model, we seek to a segment of 465 

the video in which the mouse is clearly moving, and we sample frames from that section. This 466 

ensures that the mouse is not included in the background model. This approach significantly 467 

improves Ctrax’s tracking performance on our 24-hour data, as the mouse moves infrequently 468 

due to sleeping and would typically be incorporated into the background model. 469 

The second step is to set the settings for background subtraction. Here, we use the 470 

Background Brightness normalization method with a Std Range of 254.9 to 255.0. The 471 

thresholds applied to segment out the mouse are tuned on a per-video basis, as slight changes 472 

in exposure and coat color will influence the performance. To fine-tune these thresholds, we 473 

apply starting values based on previous videos analyzed and adjust values by checking multiple 474 

portions of the video. Every video is inspected for proper segmentation on difficult frames, such 475 

as the mouse rearing on the wall. Additionally, we apply morphological filtering to both remove 476 

minor noise in the environment as well as remove the tails of mice for fitting an ellipse. We use 477 

an opening radius of 4 and a closing radius of 5. 478 

Lastly, we manually set a variety of tracking parameters that Ctrax enables to ensure that 479 

the observations are in fact mice. For optimal time efficiency, these parameters were tuned well 480 

once and then used for all other mice tracked. If a video was performing noticeably poorly, the 481 

general settings were tweaked to improve performance. For the shape parameters, we 482 

computed bounds based on two standard deviations from an individual black mouse video. We 483 

lowered the minimum values further because we expected that certain mice would perform 484 

poorly on the segmentation step. This allows Ctrax to still find a good location of the mouse 485 

despite not being able to segment the entire mouse. This approach functions well, as all of our 486 
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setups have the same zoom of 8, and the mice tested are generally the same shape. Motion 487 

settings are very lenient, because our experimental setup tracks only one mouse in the arena at 488 

a time. Under the observation parameters, we primarily utilize the “Min Area Ignore” setting to 489 

filter out detections larger than 2,500 pixels. Under the hindsight tab, we use the “Fix Spurious 490 

Detections” setting to remove detections with a length shorter than 500 frames. 491 

Training sets 492 

Labeling software 493 

We annotated our own training data using custom software that was written to 494 

accommodate obtaining the necessary labels. We used the OpenCV library (https://opencv.org/) 495 

to create an interactive watershed-based segmentation and contour-based ellipse-fit. Using the 496 

software GUI we developed, the user left-clicks to mark points as the foreground (a mouse) and 497 

right-clicks to label other points as the background (S1 Fig.). Upon a keystroke, the watershed 498 

algorithm is executed to predict a segmentation and ellipse. If users need to make edits to the 499 

predicted segmentation and ellipse, they can simply mark additional areas and run the 500 

watershed again. When the predictions are of sufficiently high quality, users then select the 501 

direction of the ellipse. They do this by selecting one of four cardinal directions: up, down, left, 502 

right. Since the exact angle is selected by the ellipse-fitting algorithm, users need only to identify 503 

the direction ±90 degrees. Once a direction is selected, all the relevant data is saved to disk and 504 

users are presented with a new frame to label. Full details on the software controls can be found 505 

in the software documentation. 506 

The objective of our annotated dataset is to identify good ellipse-fit tracking data for 507 

mice. While labeling data, we optimized the ellipse-fit such that the ellipse was centered on the 508 

mouse’s torso with the major axis edge approximately touching the nose of the mouse. 509 
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Frequently, the tail was removed from the segmentation mask to provide a better ellipse-fit. For 510 

training networks for inference, we created three annotated training sets. Each training dataset 511 

includes a reference frame (input), segmentation mask, and ellipse-fit. Each training set was 512 

generated to track mice in a different environmental setup.  513 

Neural network models 514 

The neural networks we trained fall into three categories: segmentation, regression, and 515 

binning. Our tested models can be viewed visually in Fig. 1D-F. 516 

The first network architecture is modeled after a typical encoder-decoder structure for 517 

segmentation (Fig. 1D). The first half of the network (encoder) utilizes 2D convolutional layers 518 

followed by batch normalization, a ReLu activation, and 2D max pooling layers. We use a 519 

starting filter size of 8 that doubles after every pooling layer. The kernels used are of shape 5x5 520 

for 2D convolution layers and 2x2 for max pooling layers. Our input is of shape 480x480x1 and 521 

after six of these repeated layers, the resulting shape is 15x15x128. We apply another 2D 522 

convolutional layer (kernel 5x5, 2x filters) followed by a 2D max pool with a different kernel of 523 

3x3 and stride of 3. One final 2D convolutional layer is applied to yield our feature bottleneck 524 

with a shape of 5x5x512. This feature bottleneck is then passed to both the segmentation 525 

decoder and angle predictor. The segmentation decoder reverses the encoder using strided 526 

transpose 2D convolutional layers and carries over pre-downsampled activations through 527 

summation junctions. It should be noted that this decoder does not utilize ReLu activations. After 528 

the layers return to the 480x480x8 shape, we apply one additional convolution, with a kernel 529 

size of 1x1, to merge the depth into two images: background prediction and foreground 530 

prediction. We apply a softmax function across this depth. From the feature bottleneck, we also 531 

create a prediction for angle prediction. We achieve this by applying two 2D convolution layers 532 

with batch normalization and ReLu activations (kernel size 5x5, feature depths 128 and 64). 533 
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From here, we flatten and use one fully connected layer to yield a shape of four neurons, which 534 

function to predict the quadrant in which the mouse’s head is facing. Since the angle is predicted 535 

by the mask, we need only to select the correct direction (± 180 deg). The four possible 536 

directions that the network can select are 45-135, 135-225, 225-315 and 315-45 degrees on a 537 

polar coordinate grid. These boundaries were selected to avoid discontinuities in angle 538 

prediction. 539 

The second network architecture is a binned regression approach (Fig. 1E). Instead of 540 

predicting the parameters directly, the network instead selects the most probable value from a 541 

selection of binned possible values. The major difference between this structure and a 542 

regression structure is that the binned regression network training relies on a cross entropy loss 543 

function whereas a regression network relies on a mean squared error loss function. Due to 544 

memory limitations, we tested only custom VGG-like networks with reduced feature dimensions. 545 

Our best-performing network is structured with two 2D convolutional layers followed by a 2D 546 

max pooling layer. The kernels used are of shape 3x3 for 2D convolutional layers and 2x2 for 2D 547 

max pooling layers. We start with a filter depth of 16 and double after every 2D max pool layer. 548 

This two convolutional plus max pool sequence is repeated five times to yield a shape of 549 

15x15x256. This layer is flattened and connected to a fully connected layer for each output 550 

ellipse-fit parameter. The shape of each output is dictated by the desired resolution and range of 551 

the prediction. For testing purposes, we observed only the center location and trained with a 552 

range of the entire image (0-480). Additional outputs, such as angle prediction, could simply be 553 

added as additional output vectors. 554 

The third network architecture is modeled after a typical regression predictor structure 555 

(Fig. 1F). While the majority of regression predictors realize the solution through a bounding box, 556 

an ellipse simply adds one additional parameter: the angle of the mouse’s head direction. Since 557 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 1, 2018. ; https://doi.org/10.1101/336685doi: bioRxiv preprint 

https://doi.org/10.1101/336685
http://creativecommons.org/licenses/by/4.0/


 24 

the angle is a repeating series with equivalence at 360deg and 0deg, we transform the angle 558 

parameter into its sine and cosine components. This yields a total of six parameters regressed 559 

from the network. The first half of this network encodes a set of features relevant to correctly 560 

predicting the six parameters. From the encoded feature set, we flatten the network and applied 561 

a fully convolutional layer to regress the parameters for the ellipse-fit. We tested a wide variety 562 

of pre-built feature detectors including Resnet V2 50, Resnet V2 101, Resnet V2 200, Inception 563 

V3, Inception V4, VGG, and Alexnet. In addition to these pre-built feature detectors, we also 564 

surveyed a wide array of custom networks. Of these general purpose feature encoders and 565 

custom networks, Resnet V2 200 performed the best. 566 

Neural network training 567 

This section describes all of the procedures pertaining to training our neural network 568 

models. The three procedures described here are training set augmentation, training 569 

hyperparameters, and a benchmark for training set size. 570 

Training set augmentation has been an important aspect of training neural networks 571 

since Alexnet [25]. We utilize a handful of training set augmentation approaches to achieve good 572 

regularization performance. Since our data is from a birds-eye view, it is straightforward to apply 573 

horizontal, vertical, and diagonal reflections for an immediate 8x increase in our equivalent 574 

training set size. Additionally, at runtime, we apply small rotations and translations for the entire 575 

frame. Rotation augmentation values are sampled from a uniform distribution. Finally, we apply 576 

noise, brightness, and contrast augmentations to the frame. The random values used for these 577 

augmentations are selected from a normal distribution. 578 

Hyperparameters, such as training learn rate and batch size, were selected 579 

independently for each network architecture trained. While larger networks, such as Resnet V2 580 
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200, can run into memory limitations for batch sizes at an input size of 480x480, good learn rate 581 

and batch size were experimentally identified using a grid search approach [26]. Table A in S1 582 

Information summarizes all the hyperparameters selected for training these network 583 

architectures. 584 

We also benchmarked the influence of training set size on network generalization in 585 

order to determine the approximate amount of annotated training data required for good network 586 

performance of the encoder-decoder segmentation network architecture (S2 Fig.). We tested 587 

this benchmark by shuffling and randomly sampling a subset of the training set. Each 588 

subsampled training set was trained and compared to an identical validation set. While the 589 

training curves appear indistinguishable, the validation curves tained with fewer than 2,500 590 

training annotations diverge from the group. This suggests that the training set is no longer large 591 

enough to allow the network to generalize well. While the exact number of training samples will 592 

ultimately rely on the difficulty of the visual problem, a recommended starting point would be 593 

around 2,500 training annotations. 594 

Animals used 595 

All animals were obtained from The Jackson Laboratory production colonies. Adult mice 596 

aged 8 to 14 weeks were behaviorally tested in accordance with approved protocols from The 597 

Jackson Laboratory Institutional Animal Care and Use Committee guidelines. Open field 598 

behavioral assays were carried out as previously described [27]. Briefly, group-housed mice 599 

were weighed and allowed to acclimate in the testing room for 30-45 minutes before the start of 600 

video recording. Data from the first 55 minutes of activity are presented here. Where available, 8 601 

males and 8 females were tested from each inbred strain and F1 isogenic strain.  602 

Code and training set availability 603 
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Neural network training and inference code as well as annotated datasets will become 604 

available upon publication. 605 
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Supporting information 683 

S1 Information. (Note A) Description of the ellipse-fit function. (Note B) Annotated 684 

dataset descriptions. (Table A) Training hyperparameters. 685 

S1 Fig. Example of our labeling GUI software. (A) Our software allows the user to  686 

zoom into the the region of interest for annotation (mouse) and placed two marks: one 687 

for foreground (green) and one for background (red). (B) Upon a keystroke, the software 688 

provides the resulting segmentation (magenta), ellipse-fit (cyan), and the old 689 

background annotations (yellow). 690 

S2 Fig. Training set size scaling benchmark. We benchmarked how the training-set 691 

size influences the performance of a trained encorder-decoder segmentation network. 692 

Full training set includes 16,234 annotated frames. (A) Training-set size does not impact 693 

training set error rate. (B) Validation performance converges to the same value above 694 

2,500 training samples, but the error rate increases when 1,000 or fewer training 695 
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samples are used. (C-F) Validation accuracy outperforms training accuracy when 2,500 696 

or more training samples are used. (G) Validation accuracy begins to show signs of 697 

weak generalization by only matching, and not exceeding, training accuracy at 1,000 698 

training samples. (H) A network trained using only 500 training samples is clearly 699 

overtraining, shown by the diverging and increasing validation error rate. 700 

S1 Video. Comparison of mouse tracking. A comparison of mouse tracking across a 701 

variety of coat colors and environments using both our proposed encoder-decoder 702 

segmentation neural network (red) and Ctrax (blue). (0-22s) Black mice and (22-45s) 703 

grey mice in a white environment have strong agreement across approaches. When 704 

rearing on the wall, Ctrax starts to not properly fit the ellipse. (45-66s) Piebald mice in a 705 

white environment have strong tracking concordance, but depending upon the unique 706 

coat pattern may have incorrect shape predicted by Ctrax. (66-90s) Albino mice on a 707 

white background are a difficult problem for background subtraction approaches (Ctrax), 708 

while a neural network approach tracks appropriately. (90-112s) Black mice in the 24-hr 709 

setup, which contains bedding and a food cup, are difficult for background subtraction 710 

approaches (Ctrax) to create adequate background models for tracking. A neural 711 

network approach learns to handle this difficulty. (112-134s) Black mice in the KOMP2 712 

arena, which has reflective floors and walls, poses a difficult situation for background 713 

subtraction approaches (Ctrax). A neural network approach learns to not include 714 

reflections without any tuning of parameters. Playback for all clips in this video are at 715 

half-speed to better observe and compare tracking performance. 716 

S2 Video. KOMP2 observed odd behavior. A 1-minute sample from the two off-717 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 1, 2018. ; https://doi.org/10.1101/336685doi: bioRxiv preprint 

https://doi.org/10.1101/336685
http://creativecommons.org/licenses/by/4.0/


 30 

diagonal KOMP2 videos. In the first clip (0-62s), we observe a high degree of waddle in 718 

the animal’s gait as well as odd stride frequency. In the second clip (62-125s), we 719 

observe a hunched posture during locomotion as well as a frequent sideways motion. 720 

Red ellipse denotes our neural network tracker prediction. 721 
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