1	First report and multilocus genotyping of Enterocytozoon bieneusi from Tibetan
2	pigs in southwestern China
3	Run Luo ^{1¶} , Leiqiong Xiang ^{1¶} , Haifeng Liu ^{1¶} ,Zhijun Zhong ^{1¶} , Li Liu ² ,Lei
4	Deng ¹ ,Yuan Song ¹ , Ling Liu ¹ ,Xiangming Huang ² , Ziyao Zhou ¹ , Hualin Fu ¹ ,Yan
5	Luo1,Guangneng Peng ^{1*}
6	¹ The Key Laboratory of Animal Disease and Human Health of Sichuan Province,
7	College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan
8	Province 611130, China
9	² Chengdu Giant Panda Breeding Research Base, Chengdu, Sichuan Province 625001,
10	China
11	
12	Corresponding author
13	E-mail:* pgn.sicau@163.com (GP)
14	These authors contributed equally to this work.
15	
16	
17	
18	
19	
20	
21	
22	

23 Abstract

Enterocytozoon bieneusi is a common intestinal pathogen and a major cause of 24 25 diarrhea and enteric diseases in a variety of animals. While the *E. bieneusi* genotype has become better-known, there are few reports on its prevalence in the Tibetan pig. 26 This study investigated the prevalence, genetic diversity, and zoonotic potential of E. 27 *bieneusi* in the Tibetan pig in southwestern China. Tibetan pig feces (266 samples) 28 were collected from three sites in the southwest of China. Feces were subjected to 29 PCR amplification of the internal transcribed spacer (ITS) region. E. bieneusi was 30 31 detected in 83 (31.2%) of Tibetan pigs from the three different sites, with 25.4% in Kangding, 56% in Yaan and 26.7% in Qionglai. Age group demonstrated the 32 prevalence of E. bieneusi range from 24.4% (aged 0 to 1 years) to 44.4% (aged 1 to 2 33 34 years). Four genotypes of E. bieneusi were identified: two known genotypes EbpC (n=58), Henan-IV (n=24) and two novel genotypes, SCT01 and SCT02 (one of each). 35 Phylogenetic analysis showed these four genotypes clustered to group 1 with zoonotic 36 37 potential. Multilocus sequence typing (MLST) analysis three microsatellites (MS1, MS3, MS7) and one minisatellite (MS4) revealed 47, 48, 23 and 47 positive 38 specimens were successfully sequenced, and identified ten, ten, five and five 39 genotypes at four loci, respectively. This study indicates the potential danger of E. 40 bieneusi to Tibetan pigs in southwestern China, and offers basic data for preventing 41 and controlling infections. 42

43

44 Introduction

Microsporidia are obligate intracellular eukaryotic pathogens, classified as fungi, 45 which are composed of approximately 1300 species in 160 genera[1]. To date, 17 46 microsporidia species are known to infect humans, and of these, E. bieneusi is the 47 most prevalent, accounting for over 90% of cases of human microsporidiosis[2]. 48 Since its first detection in an HIV/AIDS patient in 1985, a growing literature attests to 49 E. bieneusi expanding range of hosts [3-5]. In humans, infection by microsporidia 50 results self-limiting diarrhea in and malabsorption, most seriously, 51 immunocompromised and immunocompetent patients more susceptible to E. bieneusi 52 53 infection[6]. Normally, fecal-oral routes serve as the main infection pathways in humans and animals, while human inhalation of E. bieneusi spores has also been 54 documented[7, 8]. 55

56 PCR-based molecular techniques may be used to analyze the E. bieneusi genome, and for diagnosis. Based on the nested PCR amplification of internal transcribed 57 spacers (ITS) of small subunits of ribosomal rRNA (SSU rRNA), over 240 E. 58 59 *bieneusi* genotypes have been identified globally[9-11]. Phylogenetic analysis reveals that these genotypes clustered into nine groups. Group 1 is considered zoonotic, and is 60 composed of genotypes from humans and a few animals, while groups 2-9 have 61 particular host associations or are found in wastewater[5, 11]. To better comprehend 62 E. bieneusi genetic diversity and molecular characteristics, high-resolution multi-63 locus sequence typing (MLST) using three microsatellites (MS1, MS3 and MS7) and 64 65 one minisatellite (MS4) as markers was used to explore genotype taxonomy and transmission routes [9, 12, 13]. 66

In the southwest of China, Tibetan pigs are widely kept for livelihood and are 67 economically important for farmers, especially on the plateau. Tibetan pigs have firm 68 black hair which differs from that of the common pig, and are sturdy, outdoor 69 foragers. They may act as reservoirs for *E. bieneusi* spores and zoonotic transmission 70 of disease. Although much research has been carried out on E. bieneusi[14-16], few 71 studies have examined its epidemiology or Tibetan pig-associated genomes in 72 China[17, 18], and Tibetan pigs in southwestern China have been entirely unstudied. 73 Therefore, this study aimed to establish the incidence and molecular characteristics of 74 75 E. bieneusi in Tibetan pigs, to use ITS and MLST to evaluate its genetic diversity, and to assess the potential for zoonotic transmission of microsporidiosis between Tibetan 76 pigs and humans. 77

78

79 Materials and methods

80 Ethics statement

The study was conducted in accordance with the Research Ethics Committee and the Animal Ethics Committee of Sichuan Agricultural University. Prior to fecal specimen collection, permission was obtained from the keepers of the animals whenever possible.

85 Collection of Tibetan pig fecal specimens

Fresh fecal specimens were collected from 266 Tibetan pigs during June–October 2017. Samples were obtained mainly from three cities in Sichuan province, southwestern of China, including Yaan (n=50), Kangding (n=201) and Qionglai

(n=15) (Table 1). The ages of Tibetan pigs sampled ranged from 1 to 2 years.
Specimens were collected using sterile disposable latex gloves immediately after
being defecated on to the ground, and transferred into 50 ml plastic containers. All
experimental Tibetan pigs were not any diarrheic or gastrointestinal conditions.
Samples were stored at 4 °C in 2.5% (w/v) potassium dichromate.

94 **DNA extraction**

Before conducting DNA extraction, potassium dichromate was removed from the fecal samples with distilled water by centrifugation for 10 minutes at $1500 \times g$, three times. Genomic DNA was extracted from 200 mg of washed fecal matter using the EZNA1 Stool DNA kit (Omega Biotek, Norcross, GA, USA). Prior to use in PCR analysis, DNA was stored and frozen at -20 °C.

100 PCR amplification

E. bieneusi species/genotypes were determined using a nested PCR amplification of the entire ITS region, and positive specimens were further detected by MLST analyses using the MS1, MS3, MS4, and MS7 loci. The primers and cycling parameters implemented for these reactions were as previously described[12, 19]. Negative controls were included in all PCR analyses. The secondary PCR products were subjected to electrophoresis in a 1.5% agarose gel and visualized under UV light by staining the gel with GoldView (Solarbio, China).

108 Nucleotide sequencing and phylogenetic analysis

Secondary PCR amplicons of anticipated size were sequenced in both directions byLife Technologies (Guangzhou, China) with an ABI 3730DNA Analyzer (Applied

Biosystems, Foster City, CA, USA) using the BigDye® Terminator v3.1 cycle 111 sequencing kit. Sequence accuracy was confirmed by bidirectional sequencing, and 112 new PCR secondary products were re-sequenced, if necessary. To identify the E. 113 bieneusi genotype, the sequences generated were respectively aligned with known 114 reference sequences using BLAST and ClustalX 1.83. Mega 7.0 was used to construct 115 the phylogenetic tree using the neighbor-joining (NJ) method (the Kimura two 116 parameter model) with 1000 bootstrap replicates[20]. Novel genotype(s) of E. 117 bieneusi were named according to the established system of nomenclature[21]. 118

119

Statistical analysis

The variation in *E. bieneusi* infection rates in Tibetan pigs between different areas, 120 gender, and ages were compared using the Chi-square test. All tests were two-sided, 121 122 with P <0.05 indicating statistical significance. SPSS version 22.0 was used on all data. 95% confidence intervals (95% CIs) were calculated to explore the strength of 123 the association between E. bieneusi occurrence and each factor. 124

Nucleotide sequence accession numbers 125

Representative nucleotide sequences of E. bieneusi isolates were deposited in 126 GenBank under accession numbers from MG581429-MG581432 for ITS sequences 127 and MH142189-MH142213 for the microsatellite (MS1, MS3, and MS7) and 128 minisatellite (MS4) loci. 129

130

Results 131

Occurrence of *E. bieneusi* in Tibetan pigs 132

133	Of the 266 Tibetan pigs sampled 83 (31.3%) were PCR-positive for <i>E. bieneusi</i> .
134	The epidemiology and genotypes of <i>E. bieneusi</i> in different areas are given in Table 2.
135	Infection rates detected in Tibetan pigs were 25.4%, 56% and 26.6% in Kang ding, Ya
136	an and Qiong lai, respectively. Infection rates by age and gender are given in Table 1.
137	Differences between the three areas were significant ($\chi 2=17.648$, df =2, p<0.01). In
138	addition, the female Tibetan pig groups (17.7%, 47/266,) had a higher E. bieneusi
139	prevalence than the male groups (13.5%, 36/266,). The difference in infection rate
140	was also significant (χ 2=8.906, df =1,P=0.003); however, in the present study, high
141	infection rates were observed in 1-2 year-old pigs (41.51%, 22/53) and 0-1 year-olds
142	(33.33%, 61/183); however, these rates were not significantly different ($\chi 2 = 1.240$, df
143	=1, P>0.05).

144 Table1 .Factors associated with prevalence of *Enterocytozoon bieneusi* in Tibetan

Factor	Category	No. tested	No. positive	(%)(95%CI)	P-Value
Region	Kangding	201	51	25.37(0.193-0.314)	
	Qionglai	15	4	26.67(0.013-0.520)	< 0.01
	Yaan	50	28	56.00(0.417-0.703)	
Age(years)	0-1	183	61	33.33(0.264-0.402)	0.318
	1-2	53	22	41.51(0.278-0.552)	
Contra	Male	82	47	57.32(0.464-0.683)	0.003
Gender	Female	184	36	19.57(0.138-0.254)	
Total		266	83	31.20(0.256-0.368)	

145 pigs in southwestern China

146

147 Genotype distribution of *E. bieneusi* in Tibetan pigs

148	Nucleotide sequences from ITS-PCR were obtained from the 83 E. bieneusi-
149	positive specimens. Four genotypes were detected, including two known genotypes
150	(EbpC, Henan-IV) and two novel genotypes, which were named SCT01 and SCT02
151	(Table2). Genotype EbpC was the most prevalent (21.8%, 58/266), and was detected
152	in samples from all three cities. Genotype Henan-IV was only found in Kang ding
153	(8.6%, 23/266). The novel genotypes SCT01 (0.3%, 1/266) and SCT02 (0.3%, 1/266)
154	were only found in single specimens, both of which came from Ya an, and are the first
155	newly-detected E. bieneusi genotypes from Tibetan pigs.

Table 2. Occurrence and genotypes of *E. bieneusi* in Tibetan pigs from different citiesin southwest China.

Region	Farm ID	Prevalence (%)	Genotypes (n)
Variation	Farm 1	31/102(30.40)	EbpC(18),Henan-IV(n=13)
Kangding	Farm 2	20/99(20.20)	EbpC(12),Henan-IV(n=8)
N/	Farm 3	14/28(50.00)	EbpC(n=14)
Yaan	Farm 4	10/22(45.45)	EbpC(n=12),SCT01(n=1),SCT02(n=1)
Qionglai	Farm 5	4/15(26.67)	EbpC(n=4)
T . 1		00/065/01 00	EbpC(58),Henan-
Total	83/266(31.20)		IV(n=23),SCT01(n=1),SCT02(n=1)

158

159 Phylogenetic relationships of *E. bieneusi* ITS genotypes

Phylogenetic analysis based on ITS gene sequences, the four *E. bieneusi* genotypes obtained from the present study (two known and two novel genotypes) were classed as a single group (group 1) and further clustered into subgroup 1d, indicating zoonotic potential (Fig 1).

164	Fig 1. Phylogenetic relationship of <i>Enterocytozoon bieneusi</i> groups, the relationship between E.
165	bieneusi genotypes identified in this study and other known genotypes deposited in the GenBank
166	was inferred by a neighbor-joining analysis of ITS sequences based on genetic distance by the
167	Kimura-2-parameter model. The numbers on the branches represent percent bootstrapping values
168	from 1,000 replicates, with more than 50% shown in tree. Each sequence is identified by its
169	accession number, genotype designation, and host origin. Genotypes with black triangles and open
170	triangle are novel and known genotypes identified in this study, respectively.

- 171
- 172

173 Multilocus genotyping of *E. bieneusi*

Positive specimens were further characterized by PCR analyses of MS4, MS1, MS3 174 175 and MS7 to improve taxonomy and population genotypes of E. bieneusi. 47, 48, 23 and 47 E. bieneusi isolates were amplified at the MS1, MS3, MS4, and MS7 loci, 176 respectively, but only 12 samples were PCR-positive simultaneously at all four loci. 177 Four distinct MLGs were observed in Henan-IV and six distinct MLGs in EbpC, 178 named MLG1-4 and MLG5-10, respectively (Table 3). These results reveal high 179 genetic diversity in the Henan-IV and EbpC genotypes of *E. bieneusi* in Tibetan pigs. 180 Table3 Multilocus characterization of Enterocytozoon bieneusi isolates in Tibetan 181 pigs in Southwestern China 182

183

184 **Discussion**

In the present study, infection rates of varied between 25.4%-56% in different 185 districts, with an overall infection rate of 31.2%. This rate is lower than the 186 documented prevalence of E. bieneusi for: wild boars in Sichuan province, China 187 (41.2%), domestic pigs in Jilin province, China (45.1%), wild boars in central Europe 188 (33.3%) and pigs in the State of Rio de Janeiro, Brazil (59.3%)^[14, 15, 22, 23]. However, 189 infection rates recorded in this study were higher than those for pigs in Jilin, China 190 (16.4%), central Thailand (28.1%) and Japan (30%)[14, 16, 22]. Differences in 191 infection rates between these studies may be largely attributable to climate and 192 farming mode. Prevalences also varied across sample sites. Kang ding, the only site 193 194 on the Western Sichuan Plateau, had a prevalence of 25.4%, possibly reflecting the

ITC constants	Multilocus genotype						No. of MLGs
ITS genotype	MS1	MS3	MS4	MS7	GenBank accession Nos.	MLGs	
Henan-IV	Type II*	Type I*	Type III	Type II	MH142190,MH142204,MH142200,MH142212	MLG1	1
Henan-IV	Type I	Type III*	Type III	Type II	MH142193,MH142205,MH142200,MH142212	MLG2	1
Henan-IV	Type I	Type I*	Type II*	Type I*	MH142193,MH142204,MH142199,MH142210	MLG3	1
Henan-IV	Type II*	Type II*	Type II*	Type II	MH142195,MH142206,MH142199,MH142212	MLG4	2
Ebpc	Type II*	Type I*	Type II*	Type II	MH142196,MH142204,MH142199,MH142209	MLG5	2
Ebpc	Type X*	Type I*	Type IV*	Type I*	MH142189,MH142204,MH142203,MH142213	MLG6	1
Ebpc	Type I	Type I*	Type II*	Type II	MH142193,MH142204,MH142199,MH142212	MLG7	1
Ebpc	Type II*	Type I*	Type I	Type IV*	MH142196,MH142204,MH142201,MH142213	MLG8	1
Ebpc	Type III*	Type IV*	Type I	Type III*	MH142194,MH142207,MH142201,MH142209	MLG9	1
Ebpc	Type I	Type IV*	Туре І	Type II	MH142193,MH142207,MH142201,MH142209	MLG10	1

area's high temperatures, and UV radiation, which may limit survival of *E. bieneusi* spores and reduce transmission. Other factors influencing infection levels may include geo-ecological conditions, feeding/herd densities, herd management, sample size, and the condition of host animals. Differences in prevalence in Tibetan pigs between Ya an and Kang ding are thought to reflect differences between traditional and modern herd management and breeding technologies.

Of the four genotypes identified in this study EbpC was the most prevalent (21.8%, 201 58/266), and has been found in a number of animals, including cattle, dogs, cats, 202 203 birds, non-human primates, bears, squirrels, sheep, foxes, deer, and humans[3, 5, 13, 23-28]. EbpC is the prevalent E. bieneusi genotype associated with pig infection in 204 China, reflecting E. bieneusi's dominance as a porcine parasite. In addition, we also 205 206 detected 26 records of Henan-IV (solely in Ya an), a zoonotic genotype associated with human infections in Henan province in China, and thus far only recorded from 207 China, where it demonstrates strict host specificity[29], occurring only in pigs and 208 humans. To the best our knowledge, the two genotypes EbpC and Henan-IV, which 209 were examined for the first time in Tibetan pigs in the present study, which may be a 210 key reservoir host of these genotypes (Table 4). 211

ITS gene sequence analysis revealed two novel genotypes, SCT01 (n=1) and SCT02 (n=1), both of which were detected in Ya an and clustered into group 1 zoonotic genotypes with public health significance. Other genotypes in this group include Henan-III in humans and EbpC from humans or wild boars [13, 29, 30]. Modes of transmission and zoonotic potential of *E. bieneusi* genotypes remain poorly

217	known, and further molecular epidemiology studies are required. MLST holds
218	promise for ongoing investigation of <i>E. bieneusi</i> taxonomy and genetic diversity[12].
219	Nine, five, three and four novel genotypes were detected at MS1, MS3, MS4 and MS7
220	loci, respectively. Analysis of 12 samples at four gene loci identified eight novel

Genotype (Synonym)	Host	Location	Isolate	Reference
EbpC (E, Peru4,	Pig	Shanghai	3	[12]
WL13, WL17)	Pig	Heilongjiang	10	[12]
	Pig	Heilongjiang	3	[31]
	Pig	Heilongjiang	3	[32]
	Pig	Jilin	1	[33]
	Pig	Mongolia	1	[33]
	Tibetan pig	Sichuan	58	This study
	Red panda	Shanxi	5	[34]
	Human	Shanghai	1	[35]
	Human	Henan	39	[29]
	Human	Heilongjiang	11	[36]
	Human,pig,Monkey	Guangxi	4	[37]
	Squirrel	Sichuan	3	[25]
	Wild boar	Sichuan	85	[30]
	nonhuman primates	Hebei	1	[38]
	nonhuman primates	Hubei	3	[38]
	nonhuman primates	Hunan	4	[38]
	nonhuman primates	Being	2	[38]
		type EbpC MLGs and	five genotype Henan	-IV MLGs
222 (Table 3).			
223				
224				
225				

Table4. Host ranges and geographical distribution of *Enterocytozoon bieneusi*genotype in this study in China

	nonhuman primates	Henan	5	[39]
	Water	Shanghai	37	[40]
	Wastewater	Shanghai	2	[41]
	Wastewater	Shanghai	2	[42]
	Wastewater	Shandong	1	[41]
	Wastewater	Hubei	5	[41]
	Camel	Xinjiang	23	[43]
	Fox	Heilongjiang	5	[44]
	Chicken	Heilongjiang	2	[31]
	Dog	Heilongjiang	2	[45]
	Dog	Shanxi	1	[46]
	Cattle	Henan, Ningxia	6	[47]
	Cattle	Hubei, Tianjin	1	[48]
	Calve	Xinjiang	2	[49]
	Deer	Henan	4	[50]
	Deer	Henan	3	[51]
	Deer	Jilin	1	[51]
	Human	Henan	1	[29]
	Human	Heilongjiang	3	[36]
	Chicken	Jilin	2	[31]
	Camel	Xinjiang	1	[43]
	Horse	Xinjiang	21	[52]
Henan-IV	Cattle	Xinjiang	2	[49]
	nonhuman primates	Hebei	2	[38]
	nonhuman primates	Shanxi	1	[38]
	nonhuman primates	Shanghai	1	[38]
	Pig	Heilongjiang	5	[32]
	Tibetan pig	Sichuan	23	This study
SCT01	Tibetan pig	Sichuan	1	This study
SCT02	Tibetan pig	Sichuan	1	This study

228

Conclusions 229

This study revealed an average E. bieneusi infection rate of 31.2% in three cities 230 in Sichuan province, and is the first report of EbpC and Henan-IV in Tibetan pigs in 231

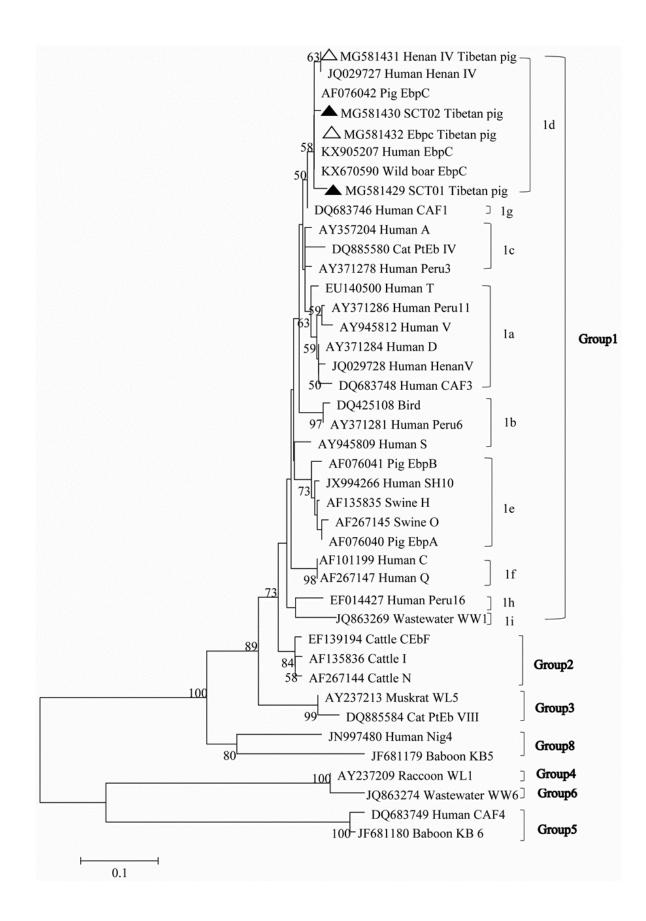
232 China. Genetic diversity was characterized using MLST, and ten MLGs were 233 identified. These results identify Tibetan pigs as possible vectors for zoonotic 234 transmission of human microsporidiosis; Tibetan pigs widespread use and frequency 235 of human contact make them a significant public health risk in southwest China. 236 Thus, measures are needed to control the transmission of *E. bieneusi* and to develop 237 effective vaccines and drugs for use in the event of widespread human 238 microsporidiosis.

239

240 **Reference**

242	1.	Didier ES, Weiss LM: Microsporidiosis: current status. Current Opinion in
243		Infectious Diseases 2006, 19(5):485.
244	2.	Didier ES, Weiss LM: Microsporidiosis: not just in AIDS patients. Current
245		Opinion in Infectious Diseases 2011, 24(5):490-495.
246	3.	Wu J, Han JQ, Shi LQ, Zou Y, Li Z, Yang JF, Huang CQ, Zou FC:
247		Prevalence, genotypes, and risk factors of Enterocytozoon bieneusi in Asiatic
248		black bear (Ursus thibetanus) in Yunnan Province, Southwestern China.
249		Parasitology Research 2018(6):1-7.
250	4.	Zhang Q, Cai J, Li P, Wang L, Guo Y, Li C, Lei M, Feng Y, Xiao L:
251		Enterocytozoon bieneusi genotypes in Tibetan sheep and yaks. Parasitology
252		Research 2018, 117(1-2):1-7.
253	5.	Zhang XX, Cong W, Lou ZL, Ma JG, Zheng WB, Yao QX, Zhao Q, Zhu XQ:
254		Prevalence, risk factors and multilocus genotyping of Enterocytozoon bieneusi
255		in farmed foxes (Vulpes lagopus), Northern China. Parasites & Vectors 2016,
256		9(1):1-7.
257	6.	Santã-N M, Fayer R: Microsporidiosis: Enterocytozoon bieneusi in

258		domesticated and wild animals. Research in Veterinary Science 2011,
259		90(3):363-371.
260	7.	Zhao GH, Du SZ, Wang HB, Hu XF, Deng MJ, Yu SK, Zhang LX, Zhu XQ:
261		First report of zoonotic Cryptosporidium spp., Giardia intestinalis and
262		Enterocytozoon bieneusi in golden takins (Budorcas taxicolor bedfordi).
263		Infection Genetics & Evolution 2015, 34:394-401.
264	8.	Yan Z, Koehler AV, Tao W, Haydon SR, Gasser RB: First detection and
265		genetic characterisation of Enterocytozoon bieneusi in wild deer in
266		Melbourne's water catchments in Australia. Parasites & Vectors 2018,
267		11(1):2.
268	9.	Zhong Z, Tian Y, Song Y, Deng L, Li J, Ren Z, Ma X, Gu X, He C, Geng Y:
269		Molecular characterization and multi-locus genotypes of Enterocytozoon
270		bieneusi from captive red kangaroos (Macropus Rfus) in Jiangsu province,
271		China. Plos One 2017, 12(8):e0183249.
272	10.	Zhao W, Wang J, Yang Z, Liu A: Dominance of the Enterocytozoon bieneusi
273		genotype BEB6 in red deer (Cervus elaphus) and Siberian roe deer (Capreolus
274		pygargus) in China and a brief literature review. Parasite-journal De La
275		Societe Francaise De Parasitologie 2017, 24(5):54.
276	11.	Deng L, Li W, Zhong Z, Gong C, Liu X, Huang X, Xiao L, Zhao R, Wang W,
277		Feng F: Molecular characterization and multilocus genotypes of
278		Enterocytozoon bieneusi among horses in southwestern China. Parasites &
279		Vectors 2016, 9(1):561.
280	12.	Feng Y, Li N, Dearen T, Lobo ML, Matos O, Cama V, Xiao L: Development
281		of a multilocus sequence typing tool for high-resolution genotyping of
282		Enterocytozoon bieneusi. Applied & Environmental Microbiology 2011,
283		77(14):4822-4828.
284	13.	Zhong Z, Li W, Deng L, Song Y, Wu K, Tian Y, Huang X, Hu Y, Fu H, Geng
285		Y: Multilocus genotyping of Enterocytozoon bieneusi derived from nonhuman
286		primates in southwest China. Plos One 2017, 12(5):e0176926.
287	14.	Němejc K, Sak B, Květoňová D, Hanzal V, Janiszewski P, Forejtek P, Rajský


288		D, Kotková M, Ravaszová P, Mcevoy J: Prevalence and diversity of
289		Encephalitozoon spp. and Enterocytozoon bieneusi in wild boars (Sus scrofa)
290		in Central Europe. Parasitology Research 2014, 113(2):761.
291	15.	Fiuza VRS, Oliveira FCR, Fayer R, Santín M: First report of Enterocytozoon
292		bieneusi in pigs in Brazil. Parasitology International 2015, 64(4):18-23.
293	16.	Prasertbun R, Mori H, Pintong AR, Sanyanusin S, Popruk S, Komalamisra C,
294		Changbunjong T, Buddhirongawatr R, Sukthana Y, Mahittikorn A: Zoonotic
295		potential of Enterocytozoon genotypes in humans and pigs in Thailand.
296		Veterinary Parasitology 2017, 233:73-79.
297	17.	Li W, Li Y, Li W, Yang J, Song M, Diao R, Jia H, Lu Y, Zheng J, Zhang X:
298		Genotypes of Enterocytozoon bieneusi in livestock in China: high prevalence
299		and zoonotic potential. Plos One 2014, 9(5):e97623.
300	18.	Zhao W, Zhang W, Yang F, Cao J, Liu H, Yang D, Shen Y, Liu A: High
301		prevalence of Enterocytozoon bieneusi in asymptomatic pigs and assessment
302		of zoonotic risk at the genotype level. Applied & Environmental Microbiology
303		2014, 80(12):3699-3707.
304	19.	Sulaiman IM, Fayer R, Lal AA, Trout JM, Iii FWS, Xiao L: Molecular
305		Characterization of Microsporidia Indicates that Wild Mammals Harbor Host-
306		Adapted Enterocytozoon spp. as well as Human-Pathogenic Enterocytozoon
307		bieneusi. Applied & Environmental Microbiology 2003, 69(8):4495-4501.
308	20.	Kumar S, Stecher G, Tamura K: MEGA7: Molecular Evolutionary Genetics
309		Analysis Version 7.0 for Bigger Datasets. Molecular Biology & Evolution
310		2016, 33(7):1870.
311	21.	Santín M, Fayer R: Enterocytozoon bieneusi genotype nomenclature based on
312		the internal transcribed spacer sequence: a consensus. Journal of Eukaryotic
313		Microbiology 2009, 56(1):34-38.
314	22.	Abe N, Kimata I: Molecular survey of Enterocytozoon bieneusi in a Japanese
315		porcine population. Vector Borne & Zoonotic Diseases 2010, 10(4):425.
316	23.	Piekarska J, Kicia M, Wesoå, Owska M, Kopacz Å, Gorczykowski M,
317		Szczepankiewicz B, Kvã ÄM, Sak B: Zoonotic microsporidia in dogs and cats

318		in Poland. Veterinary Parasitology 2017, 246:108-111.
319	24.	Tavalla M, Mardanikateki M, Abdizadeh R, Soltani S, Saki J: Molecular
320		diagnosis of potentially human pathogenic Enterocytozoon bieneusi and
321		Encephalitozoon species in exotic birds in Southwestern Iran. J Infect Public
322		Health 2017.
323	25.	Deng L, Li W, Yu X, Gong C, Liu X, Zhong Z, Xie N, Lei S, Yu J, Fu H: First
324		Report of the Human-Pathogenic Enterocytozoon bieneusi from Red-Bellied
325		Tree Squirrels (Callosciurus erythraeus) in Sichuan, China. Plos One 2016,
326		11(9):e0163605.
327	26.	Ke S, Li M, Wang X, Li J, Karim MR, Wang R, Zhang L, Jian F, Ning C:
328		Molecular survey of Enterocytozoon bieneusi in sheep and goats in China.
329		Parasites & Vectors 2016, 9(1):23.
330	27.	Ding S, Huang W, Qin Q, Tang J, Liu H: Genotype Identification and
331		Phylogenetic Analysis of Enterocytozoon Bieneusi Isolates from Stool
332		Samples of Diarrheic Children. Journal of Parasitology 2018.
333	28.	Tang C, Cai M, Wang L, Guo Y, Li N, Feng Y, Xiao L: Genetic diversity
334		within dominant Enterocytozoon bieneusi genotypes in pre-weaned calves.
335		Parasites & Vectors 2018, 11(1):170.
336	29.	Wang L, Zhang H, Zhao X, Zhang L, Zhang G, Guo M, Liu L, Feng Y, Xiao
337		L: Zoonotic Cryptosporidium species and Enterocytozoon bieneusi genotypes
338		in HIV-positive patients on antiretroviral therapy. Journal of Clinical
339		Microbiology 2013, 51(2):557.
340	30.	Wei L, Lei D, Wu K, Huang X, Yuan S, Su H, Hu Y, Fu H, Zhong Z, Peng G:
341		Presence of zoonotic Cryptosporidium scrofarum, Giardia duodenalis
342		assemblage A and Enterocytozoon bieneusi genotypes in captive Eurasian
343		wild boars (Sus scrofa) in China: potential for zoonotic transmission.
344		Parasites & Vectors 2017, 10(1):10.
345	31.	Li W, Tao W, Jiang Y, Diao R, Yang J, Xiao L: Genotypic distribution and
346		phylogenetic characterization of Enterocytozoon bieneusi in diarrheic chickens
347		and pigs in multiple cities, China: potential zoonotic transmission. Plos One

348		2014, 9(9):e108279-e108279.
349	32.	Wan Q, Lin Y, Mao Y, Yang Y, Li Q, Zhang S, Jiang Y, Tao W, Li W: High
350		Prevalence and Widespread Distribution of Zoonotic Enterocytozoon bieneusi
351		Genotypes in Swine in Northeast China: Implications for Public Health.
352		Journal of Eukaryotic Microbiology 2016, 63(2):162.
353	33.	Li W, Diao R, Yang J, Xiao L, Lu Y, Li Y, Song M: High diversity of human-
354		pathogenic Enterocytozoon bieneusi genotypes in swine in northeast China.
355		Parasitology Research 2014, 113(3):1147.
356	34.	Tian GR, Zhao GH, Du SZ, Hu XF, Wang HB, Zhang LX, Yu SK: First report
357		of Enterocytozoon bieneusi from giant pandas (Ailuropoda melanoleuca) and
358		red pandas (Ailurus fulgens) in China. In: Infect Genet Evol 34, 32-352015:
359		34, 32-35.
360	35.	Wang L, Xiao L, Duan L, Ye J, Guo Y, Guo M, Liu L, Feng Y: Concurrent
361		Infections of Giardia duodenalis, Enterocytozoon bieneusi, and Clostridium
362		difficile in Children during a Cryptosporidiosis Outbreak in a Pediatric
363		Hospital in China. PLoS Neglected Tropical Diseases,7,9(2013-9-12) 2013,
364		7(9):749-754.
365	36.	Yang J, Song M, Wan Q, Li Y, Lu Y, Jiang Y, Tao W, Li W: Enterocytozoon
366		bieneusi genotypes in children in Northeast China and assessment of risk of
367		zoonotic transmission. Journal of Clinical Microbiology 2014, 52(12):4363.
368	37.	Liu H, Jiang Z, Yuan Z, Yin J, Wang Z, Yu B, Zhou D, Shen Y, Cao J:
369		Infection by and genotype characteristics of Enterocytozoon bieneusi in
370		HIV/AIDS patients from Guangxi Zhuang autonomous region, China. Bmc
371		Infectious Diseases 2017, 17(1):684.
372	38.	Karim MR, Dong H, Li T, Yu F, Li D, Zhang L, Li J, Wang R, Li S, Li X:
373		Predomination and new genotypes of Enterocytozoon bieneusi in captive
374		nonhuman primates in zoos in China: high genetic diversity and zoonotic
375		significance. Plos One 2015, 10(2):e0117991.
376	39.	Karim MR, Wang R, Dong H, Zhang L, Li J, Zhang S, Rume FI, Qi M, Jian F,
377		Sun M: Genetic Polymorphism and Zoonotic Potential of Enterocytozoon

378		bieneusi from Nonhuman Primates in China. Applied & Environmental
379		Microbiology 2014, 80(6):1893.
380	40.	Hu Y, Feng Y, Huang C, Xiao L: Occurrence, Source, and Human Infection
381		Potential of Cryptosporidium and Enterocytozoon bieneusi in Drinking Source
382		Water in Shanghai, China during a Pig Carcass Disposal Incident.
383		Environmental Science & Technology 2014, 48(24):14219-14227.
384	41.	Li N, Xiao L, Wang L, Zhao S, Zhao X, Duan L, Guo M, Liu L, Feng Y:
385		Molecular surveillance of Cryptosporidium spp., Giardia duodenalis, and
386		Enterocytozoon bieneusi by genotyping and subtyping parasites in wastewater.
387		PLoS Neglected Tropical Diseases, 6, 9(2012-9-6) 2012, 6(9): e1809.
388	42.	Ma J, Feng Y, Hu Y, Villegas EN, Xiao L: Human infective potential of
389		Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in
390		urban wastewater treatment plant effluents. Journal of Water & Health 2016,
391		14(3).
392	43.	Qi M, Li J, Zhao A, Cui Z, Wei Z, Jing B, Zhang L: Host specificity of
393		Enterocytozoon bieneusi genotypes in Bactrian camels (Camelus bactrianus)
394		in China. Parasites & Vectors 2018, 11(1):219.
395	44.	Zhao W, Zhang W, Yang Z, Liu A, Zhang L, Yang F, Wang R, Ling H:
396		Genotyping of Enterocytozoon bieneusi in Farmed Blue Foxes (Alopex
397		lagopus) and Raccoon Dogs (Nyctereutes procyonoides) in China. Plos One
398		2015, 10(11):e0143992.
399	45.	Li W, Li Y, Song M, Lu Y, Yang J, Tao W, Jiang Y, Wan Q, Zhang S, Xiao
400		L: Prevalence and genetic characteristics of Cryptosporidium, Enterocytozoon
401		bieneusi and Giardia duodenalis in cats and dogs in Heilongjiang province,
402		China. Veterinary Parasitology 2015, 208(3-4):125-134.
403	46.	Karim MR, Dong H, Yu F, Jian F, Zhang L, Wang R, Zhang S, Rume FI,
404		Ning C, Xiao L: Genetic diversity in Enterocytozoon bieneusi isolates from
405		dogs and cats in China: host specificity and public health implications. Journal
406		of Clinical Microbiology 2014, 52(9):3297-3302.
407	47.	Li J, Luo N, Wang C, Meng Q, Cao J, Cui Z, Huang J, Wang R, Zhang L:

408		Occurrence, molecular characterization and predominant genotypes of
409		Enterocytozoon bieneusi in dairy cattle in Henan and Ningxia, China. Parasites
410		& Vectors 2016, 9(1):1-5.
411	48.	Hu S, Liu Z, Yan F, Zhang Z, Zhang G, Zhang L, Jian F, Zhang S, Ning C,
412		Wang R: Zoonotic and host-adapted genotypes of Cryptosporidium spp.,
413		Giardia duodenalis and Enterocytozoon bieneusi in dairy cattle in Hebei and
414		Tianjin, China. Veterinary Parasitology 2017:68-73.
415	49.	Meng Q, Bo J, Jian F, Wang R, Zhang S, Wang H, Ning C, Zhang L:
416		Dominance of Enterocytozoon bieneusi genotype J in dairy calves in Xinjiang,
417		Northwest China. Parasitology International 2017, 66(1):960-963.
418	50.	Zhang Z, Huang J, Karim MR, Zhao J, Dong H, Ai W, Li F, Zhang L, Wang
419		R: Zoonotic Enterocytozoon bieneusi genotypes in Pere David's deer
420		(Elaphurus davidianus) in Henan, China. Experimental Parasitology 2015,
421		155:46-48.
422	51.	Huang J, Zhang Z, Yang Y, Wang R, Zhao J, Jian F, Ning C, Zhang L: New
423		Genotypes of Enterocytozoon bieneusi Isolated from Sika Deer and Red Deer
424		in China. Frontiers in Microbiology 2017, 8.
425	52.	Qi M, Wang R, Wang H, Jian F, Li J, Zhao J, Dong H, Zhu H, Ning C, Zhang
426		L: Enterocytozoon bieneusi Genotypes in Grazing Horses in China and Their
427		Zoonotic Transmission Potential. Journal of Eukaryotic Microbiology 2016,
428		63(5):591-597.
429		

