
Estimating the timing of multiple admixture pulses
during local ancestry inference

Paloma Medina∗, Bryan Thornlow∗, Rasmus Nielsen† and Russell Corbett-Detig∗,1
∗Department of Biomolecular Engineering, 1Genomics Institute, UC Santa Cruz, Santa Cruz, CA 95064, †Department of Integrative Biology, UC Berkeley,

Berkeley, CA 94720

ABSTRACT Admixture, the mixing of genetically distinct populations, is increasingly recognized as a fundamental biological
process. One major goal of admixture analyses is to estimate the timing of admixture events. Whereas most methods today can
only detect the most recent admixture event, here we present coalescent theory and associated software that can be used to
estimate the timing of multiple admixture events in an admixed population. We extensively validate this approach and evaluate
the conditions under which it can succesfully distinguish one from two-pulse admixture models. We apply our approach to
real and simulated data of Drosophila melanogaster. We find evidence of a single very recent pulse of cosmopolitan ancestry
contributing to African populations as well as evidence for more ancient admixture among genetically differentiated populations
in sub-Saharan Africa. These results suggest our method can quantify complex admixture histories involving genetic material
introduced by multiple discrete admixture pulses. The new method facilitates the exploration of admixture and its contribution to
adaptation, ecological divergence, and speciation.
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Introduction

There is an increasing appreciation for the importance of admixture, an evolutionary process wherein genetically divergent populations
encounter each other and hybridize. Admixture has shaped genetic variation within natural plant, animal, and human populations
(Pool et al. 2012; Rieseberg et al. 2003; Hufford et al. 2013; Sankararaman et al. 2014). If an admixture event has occurred relatively
recently, we can use local ancestry inference methods (LAI) to trace the ancestry of discrete genomic segments, called ‘ancestry tracts,’
back to the ancestral populations from which they are derived (Sankararaman et al. 2012; Corbett-Detig and Nielsen 2017; Maples
et al. 2013; Pool and Nielsen 2009; Price et al. 2009). Due to ongoing recombination within admixed populations, the lengths of these
ancestry tracts are expected to be inversely related to the timing of admixture. Therefore, it is possible to estimate the timing of
admixture events by inferring ancestry tract lengths (Pool and Nielsen 2009; Gravel 2012), or by evaluating the rate of decay of linkage
disequilibrium (LD) among ancestry informative alleles (Moorjani et al. 2011; Loh et al. 2013).

The latter approach is based on modeling expected decay of LD among alleles that are differentiated between admixed populations.
Briefly, even if there is little LD in the ancestral populations themselves, admixture will create admixture LD (ALD) within the admixed
population among alleles whose frequencies are differentiated between ancestral populations (Chakraborty and Weiss 1988). The
decay of ALD is expected to be approximately exponential with a rate parameter that is proportional to the timing of admixture. Two
popular methods using this approach, ROLLOFF (Moorjani et al. 2011) and ALDER (Loh et al. 2013), model the decay of two-locus
ALD. However, these methods are limited to estimating the timing of only the most recent admixture event and of only a single
admixture pulse. Admixture histories may be more complex, including multiple distinct admixture events (Gravel et al. 2013) and
multiple ancestral populations (Paşaniuc et al. 2009), suggesting that these methods may not be suitable for deeply characterizing
the admixture history of many admixed populations (Figure 1). Although, recent work by Pickrell et al. (2014) suggests it is possible
to detect multiple admixture pulses by modeling LD decay as a mixture of two exponential distributions. Additionally, it may be
possible to extend LD decay approaches using three-point linkage disequilibrium to estimate the timing of two admixture pulses in
populations with more complex admixture histories (Liang and Nielsen 2016).

A second set of approaches uses the lengths of LA tracts across the genomes of admixed individuals to estimate the timing of
admixture events (Gravel 2012; Gravel et al. 2013; Pool and Nielsen 2009). Here, the complexity of admixture models that can be
accommodated depends on the accuracy of the estimated ancestry tract length distributions within an admixed population. However,
these methods require LAI performed prior to estimating population admixture models. LAI necessitates a priori assumptions about
the admixture model itself, as such assumptions are a prerequisite—implicitly or explicitly—for most LAI frameworks that have
been developed to date. These assumptions have the potential to bias the outcomes of LAI and can affect admixture model selection
(Pool et al. 2012; Sankararaman et al. 2008; Corbett-Detig and Nielsen 2017). Additionally, LAI methods require accurately phased
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chromosomes—an unlikely prospect for species with low levels of LD (Bukowicki et al. 2016) and for relatively ancient admixture
events where the rate of phasing switch errors would be similar to the rate of transitions between ancestry types. Therefore, it is often
preferable to estimate the timing of admixture events and the LA of a sample simultaneously (Corbett-Detig and Nielsen 2017). Finally,
modern sequencing techniques often sequence to light coverage, thus, necessitates a tool that can accommodate read pileup data
rather than genotypes.

(a) Single pulse, two ancestral populations, two ancestry types (k = 2).

(b) Double pulse, two ancestral populations, three ancestry types (k = 3).

(c) Double pulse, three ancestral populations, three ancestry types (k = 3).

Figure 1 A schematic of (a) a single pulse model with two ancestry types, (b) a two pulse model with two ancestral populations,
and (c) a two pulse model with three ancestral populations. Ak is considered the ancestry type of the resident population and
would be A2 in (a) and A3 in (b) and (c). Note that A1 and A2 may come from the same ancestral population, but are modeled as
independent states. The gray shaded region draws attention to the admixed population(s). Time since admixture pulses are mea-
sured in generations and are denoted as t1 and t2, where t1 occurs more recently than t2. The time of sampling is represented by
t0, where t0 = 0 if sampling occurred in the present. The proportion of ancestry in the admixed population that entered during an
admixture pulse is denoted as m1 and m2. Colors represent genetically distinct ancestry types. Local ancestry across a chromosome
after admixture is represented by horizontal bars at the bottom of each subplot.

Prior to this study, we developed a framework for simultaneously estimating admixture times and LA across the genomes of
admixed populations (Corbett-Detig and Nielsen 2017). Our method can estimate LA and admixture times in a hidden Markov
model (HMM) framework assuming a single admixture pulse model. Here, we extend this method to admixed populations that have
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experienced multiple ancestry pulses in their recent evolutionary past (Figure 1). We evaluate the performance of this approach using
extensive forward-in-time admixture simulations. Finally, we apply this method to study admixed Drosophila melanogaster populations
in sub-Saharan Africa, and we find evidence consistent with a recent single pulse of cosmopolitan admixture into African populations
as well as evidence for more ancient admixture amongst genetically differentiated populations in sub-Saharan Africa.

Model

Overview
In our previous work, we developed an HMM approach to simultaneously estimate local ancestry and admixture times using next
generation sequencing data in samples of arbitrary sample ploidy. No phasing is necessary, and unlike most LAI methods, this method
models read pileups, rather than genotypes, making this approach appropriate for low coverage sequencing data (Skotte et al. 2013).
Additionally, although not addressed in this work, our method accommodates samples of arbitrary ploidy, making it ideal for poolseq
applications or for populations with unusual ploidy, e.g. tetraploids. Our previous work assumed a single exponential tract length
distribution and is therefore limited to accommodating only a single admixture event between two populations (Corbett-Detig and
Nielsen 2017). Here, we seek to extend this framework to accommodate additional admixture pulses either from distinct ancestry
types or multiple pulses from the same type. Wherever possible, we have kept our notation identical to our previous work to facilitate
comparisons between the models.

Implementation and Availability
We implemented the following model into our software package called Ancestry_HMM (www.github.com/russcd/Ancestry_HMM).
Below, wherever possible, we give the script name and line number responsible for a computation, denoted as header : line_number.
All code is in the src/ directory within the Ancestry_HMM repository.

State Space
Our model incorporates the ancestry of samples with arbitrary ploidy of n chromosomes and with k distinct ancestry types resulting
from k − 1 admixture pulses. Therefore the state space S, is defined as the set of all possible k-tuples of non-negative integers,
H = (l1, . . . , lk), such that ∑k

i=1 li = n, where lj is the number of chromosomes in the sample from admixture pulse j.

Emission Probabilities
We model the probability of read pileup data (or alternatively genotypes) of each sample as a function of the allele counts in each
ancestral population and assume a uniform prior on the allele frequencies in each source population. Note that where the same
ancestral population contributes multiple pulses, the emission probabilities for each site at these states are identical and computed
based on the sum of the number of chromosomes of each ancestry type. To accommodate up to k distinct ancestry types, we use
multinomial read sampling probabilities. Specifically, if the representation in the read data is exactly equal (in expectation) for each
chromosome, the probability of sampling a given read from chromosomes of ancestry pulse k is lk/n. Therefore, the probability of any
given vector of read counts, R = (r1, . . . , rk), sampled from a site with depth r and across the chromosomes in a given hidden state
H ∈ S, assuming no mapping or sequencing biases is (read_emissions.h : 31)

R|H, n, r ∼ Mult
(

r, π =

(
l1
n

, . . . ,
lk
n

))
(1)

Conditional on the read count vector, R, the number of reads carrying the A allele (assuming an A/a di-allelic locus) is independent
among ancestry pulses.

For each reference population, the allele count is binomially distributed given the (unknown) true allele frequencies, f j, j = 1 . . . k.
Let Cj represent the total allele count for reference population j and let CjA represent the total number of A alleles for reference
population j. Then (read_emissions.h : 51),

CjA|Cj, f j ∼ Bin(Cj, f j) (2)

While we assume genotypic data for the reference populations, we assume short read pileup data for the admixed popula-
tion. The (unobserved) allele counts in the admixed chromosomes, stratified by admixture pulse origin, CM1A, CM2A, . . . CMkA and
CM1a, CM2a, . . . CMka are also binomially distributed, i.e. for each ancestry type (read_emissions.h : 47),

CMjA|H, f j ∼ Bin(lj, f j) (3)

Then, assuming a symmetrical and identical error rate among alleles, ε, the probability of obtaining rjA reads of allele A from within
the rj reads derived from chromosomes of type j is (read_emissions.h : 47),

rjA |H, rj, CMjA, ε ∼ Bin(rj, (1− ε)
CMjA

lj
+ ε(1−

CMjA

lj
)) (4)

By integrating across all possible allele frequencies in the ancestral population assuming a uniform (0, 1) prior, we obtain the probability
of a given number of reads of allele A, rjA

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 8, 2018. ; https://doi.org/10.1101/314617doi: bioRxiv preprint 

(www.github.com/russcd/Ancestry_HMM)
https://doi.org/10.1101/314617


Pr(rjA|rj, H, ε) =
lk

∑
k=0

Pr(rjA|H, rj, CMjA = k, ε)
∫ 1

0
Pr(CMjA = k|H, f j)d f j (5)

We then find all possible ways of arranging rA reads of allele A across the read vector R, RA = {(r1A, . . . , rkA)}. Here, for each ancestry
type, we require that 0 ≤ rjA ≤ rj and ∑k

j=1 rjA = rA. The probability of a given configuration is (distribute_alleles.h : 31),

Pr(RA = R∗A|R) =

k

∏
j=1

(
r∗j
r∗jA

)

∑
RA∈ΩR

k

∏
i=j

(
rj

rjA )

(6)

where ΩR is the set of all configurations of RA compatible with R. For each configuration of reads, R and RA, these above probabilities
for each ancestral population combine multiplicatively across all ancestral populations, and we are then able to obtain the emissions
probabilities for the hidden state, H = i, as

Pr(X, C1A, . . . , CkA|H, ε, n, C1, . . . , Ck) =

( k

∏
j=1

Pr(CjA|Cj)

)
∑

{R,RA}∈Ωx

Pr(RA|R)Pr(R|H, n, r)
k

∏
j=1

Pr(rjA|rj, n, H, ε) (7)

where X is all the read data for the admixed population for the site and Ωx indicates the set of all values of {RA, R} compatible with X.

Transition Probabilities
Transition probabilities must also be significantly expanded to accommodate the more complicated ancestry models investigated in
this work.

Modeling multiple pulses into a single recipient population
First, we consider a scenario where two ancestry pulses enter the same admixed populations at two distinct times (Figure 1c). Here,
we will refer to the time of each ancestry pulse as tk where t0 = 0 and refers to the present and t1, for example, refers to the most
recent admixture pulse in backwards time. During each pulse, a proportion of the resident population, mk, is replaced. In this model,
there are two distinct epochs during which a recombination event may occur along a chromosome. The last epoch, in backwards
time, occurs during the time interval between t1 and t2. During this time, there are two ancestry types present and the transition rate
between them are identical as in our previous work (Corbett-Detig and Nielsen 2017). Specifically, the transition rate between the
resident ancestry type A3 and ancestry type A2 is

2N(1− e
t1−t2

2N )m2 (8)

in units of Morgans per segment (Liang and Nielsen 2014). A nearly identical relationship holds for the transition rate from ancestry
type A2 to A3,

2N(1− e
t1−t2

2N )(1−m2) (9)

However, after the second ancestry pulse in forward time, additional transitions between ancestry types A3 and A2 will occur.
During this interval, the transition rate from ancestry type A3 to ancestry type A2 is

2N(1− e
−t1
2N )e

t1−t2
2N (1−m1)m2 (10)

This transition rate reflects the chance of a recombination event occurring between t1 and the time of sampling with no back
coalescence to the previous marginal genealogy in either time epoch. Finally, 1−m1 is the probability that this recombination event
does not choose a lineage that entered the population during the second ancestry pulse in forward time, and m2 is the probability of
recombining with a lineage from the first ancestry pulse in forward time. Hence, the total rate of transition between ancestry type A3
and ancestry type A2 across both epochs, is

λ32 = 2N(1− e
t1−t2

2N )m2 + 2N(1− e
−t1
2N )e

t1−t2
2N (1−m1)m2 (11)

Again, a similar rate holds for transitions between ancestry types A2 and A3. Transition rates associated with the second ancestry
pulse are simpler, and closely resemble those for a single pulse model. Specifically, the rate of transition from ancestry type A3 to
ancestry type A1 is

λ31 = 2N(1− e
−t1
2N )m1 (12)

Here, we include the probability that a recombination event occurs within the second epoch and that the lineage selects ancestry
type A1. Note that if the lineage selects ancestry type A1, we need not consider the probability of back coalescence in the time interval
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between t1 and t2 as it must exit the admixed population during the first ancestry pulse. Similarly, the transition rate from ancestry
type A1 to ancestry type A3 is

λ13 = 2N(1− e
−t1
2N )(1−m1)(1−m2) (13)

where this equation reflects the probability that a recombination event occurs during the second epoch and then the lineage selects
ancestry type A3. Note that no consideration is given to back coalescence to the previous marginal genealogy during the epoch
between t2 and t1 because there is no ancestry type A1 present in the population during this time. Here again, similar rates hold for
transitions from ancestry type A1 to ancestry type A2 and from ancestry type A2 to ancestry type A1 following similar logic presented
above.

Transition rates can be generalized to include an arbitrarily large number of distinct ancestry pulses. Briefly, transitions between
ancestry types may occur during any epoch in which they are both present within the admixed population. For example, for the first
pulse in forward time, transitions between ancestry type Ak and Ak−1 may occur anytime between tk−1 and the present. Therefore, all
epochs will be necessarily included the transition calculations between ancestry type Ak and Ak−1. More generally, the transition rate
between ancestry pulses, i and j, where 1 ≤ i < j ≤ k is,

λij = 2Nmj

( j−1

∏
l=i

1−ml

)(
1− e

ti−1−ti
2N +

i−1

∑
q=1

((
1− e

tq−1−tq
2N

) i

∏
p=q+1

e
tp−1−tp

2N (1−mp−1)

))
(14)

Conversely, if 1 ≤ j < i ≤ k, the transition rate between ancestry of pulse i to pulse j is very similar, i.e., transitions may occur
during the same epochs (tj through the present). Therefore,

λij = 2Nmj

(
1− e

tj−1−tj
2N +

j−1

∑
q=1

((
1− e

tq−1−tq
2N

) j

∏
p=q+1

e
tp−1−tp

2N
(
1−mp+1

)))
(15)

Note that it is not necessary for each ancestry pulse to be derived from distinct ancestral populations. Indeed, we conceived of this
approach as a means of fitting multiple pulse ancestry models. Therefore any number of pulses may be contributed by as few as two
ancestral populations. However, in order to model full transition rates, it is necessary to estimate the proportion contributed by each
pulse even when they are from the same ancestry type, potentially making multiple pulse ancestry models more challenging to fit than
models where each pulse is contributed by a separate subpopulation. More broadly, while this model is quite generalizable, there are
limits to what is practical to infer using real datasets (see below).

Transition Rates per Basepair
Equations 14 and 15 model transitions in Morgans per segment between ancestry states. We must therefore convert these expressions
into a transition rate per basepair. To do this, we multiply the recombination rate by Morgans/bp using an estimate of the local recombi-
nation rate within that segment of the genome, rbp. Therefore, the single chromosome transition matrix, P(l) = Pij(l), i, j ∈ S, for a two
pulse population model for two markers at distance l basepairs from one another would be as follows (create_transition_rates.h 69).

P(l) =


1− (λ12 + λ13)rbp λ12rbp λ13rbp

λ21rbp 1− (λ21 + λ23)rbp λ23rbp

λ31rbp λ32rbp 1− (λ31 + λ32)rbp


l

(16)

Modeling Sample Ploidy
The above model describes the ancestry transitions along a single chromosome. However, many datasets contain samples that are
diploid or pooled rather than haploid, or equivalently completely inbred. For simplicity, we model each sample of ploidy n as the
union of n independent admixed chromosomes. To approximate the transition probability from state i to state j in a sample of n
chromosomes, we assume the ancestry proportion, m, contributed by ancestry type A are known. Let the current hidden state ancestry
vector be s = {s1, s2, ..., sk} where k is the maximal number of ancestry types and si indicates the number of chromosomes with
ancestry component i. Then t = ∑k

i=1 si is the total number of different chromosomes in the pool. Furthermore, let Pij(d) be the
d-step transition probability from ancestry i to j of the previously defined 1-chromosome process. Define qij as qij = siPij(d). Also, let
a = {a1, a2, ..., ak}, t = ∑k

i=1 ai, be the ancestry vector d sites downstream from the location of the locus with ancestry vector s. Then,
we will approximate the transition probability from, s to a, as

p(a|s) = ∑
z∈Z

k

∏
i=1

(
si

zi1, zi2, . . . , zik

)
∏

j
q

zij

ij

where z = {zij} is an k× k matrix of non-negative integers and Z is the set of all such matrices for which ∑k
i=1 zij = aj∀aj ∈ a and

∑k
i=1 zji = si∀si ∈ s. The sum over all z ∈ Z can be large and increases exponentially in k.

The true ancestral recombination graph is potentially more complex than our simple approximation which assumes all ancestry
transitions to be independent. Therefore, caution is warranted when using our model on samples with higher ploidy (Corbett-Detig
and Nielsen 2017) (transition_in f ormation.h : 21).
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Model Optimization
Because the search space for admixture models is potentially quite complex, we have implemented optimization using the Nelder-
Mead direct search simplex algorithm (Nelder and Mead 1965) to optimize the HMM using the forward-equation to compute model
likelihoods. As with all direct search algorithms, there is no guarantee that the optimum discovered is a globally optimal solution. We
therefore include random-restarts to insure that the globally optimal solution can be recovered consistently.

Assumptions
Perhaps the central assumption of this approach is that admixture occurs in discrete, distinct “pulses.” Whereas this is violated in a
wide array of true admixture events with either ongoing or periodic admixture (Pool and Nielsen 2009; Gravel 2012), the pulse model
is tractable for estimating admixture histories (Corbett-Detig and Nielsen 2017; Loh et al. 2013; Gravel 2012). We have previously
shown that LAI using our method is robust to a wide array of perturbations including continuous migration and natural selection
(Corbett-Detig and Nielsen 2017). Nonetheless, all results, particularly those that hinge heavily on the precise timing of admixture
events, should be interpreted cautiously. See also our discussion below.

Validation

Confirmation of the Ancestry Tract Length Approximation
We first confirmed that our sequential Markov coalescent (SMC’) approximation for the ancestry tract length distribution is correct.
Specifically, we simulated tract length distributions from the forward-in-time simulation program, SELAM (Corbett-Detig and Jones
2016), and compared those with the expected tract length distribution under our model. In comparing the two, we found that the
model provides an excellent approximation for the ancestry tract length distribution (Figure 2). This therefore indicates that our
SMC’ tract length approximation is likely to be sufficient for our purposes. Moreover, we also confirmed that this framework can also
accurately accommodate models involving more ancestral populations (Table S1, Figure S1).

Figure 2 Tract length distributions obtained using our tract length model approximation (solid black) and forward-in-time simu-
lation (dashed red). In the model considered, an initial pulse of ancestry type A2 entered a resident population of ancestry type
A3 and replaced 1

3 of the resident population. Then, a second ancestry pulse in forward time, from ancestry type A1, replaced 1
4

of the resident population. Each simulation had a diploid population size of size 10,000 and we aggregated data from 50 sampled
individuals across 100 simulations to produce the full tract length distribution. From top to bottom, respective ancestry tract length
distributions correspond to ancestry type A3, A1, and A2. We investigated two admixture models. The first model has a first and
second pulse occurring 200 and 1,000 generations, respectively, before the present (left). The second model has a first and second
pulse occurring 20 and 100 generations, respectively, prior to the present (right).
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Simulation Ancestral Populations
We used the approach of Corbett-Detig and Nielsen (2017) to validate our HMM software implementation and to test the performance
of this expanded model. Briefly, we simulated ancestral genotype data using the coalescent simulation framework MACS (Chen
et al. 2009), we then simulated ancestry tract length distributions in forward-time using our software package SELAM (Corbett-Detig
and Jones 2016). Genotype data for admixed individuals was then drawn from the ancestral data simulated using MACS where
genotypes were drawn from each population and assigned to each tract based on that tracts’ ancestry type. To explore a wide range of
genetic divergences among ancestral populations, we simulated genotype data for ancestral populations at varying levels of genetic
divergence from one another. Specifically, we considered populations that are 0.05, 0.1, 0.25, 0.5, and 1 Ne generations divergent from
one another.

Linkage Disequilibrium (LD) Pruning
LD among sites may inflate transition rates between ancestry states. In order to mitigate this, we first pruned sites in strong linkage
disequilibrium in each reference panel by computing LD among all pairs of markers within 0.1cM of each other. We then discarded one
site from each pair with increasingly stringent pruning until we found that admixture time estimates were approximately unbiased in
two pulse admixture models. We note that the LD pruning necessary for two pulse models appears to be sufficient for fitting more
complex models of admixture (see below). This suggests that simple single-pulse admixture simulations could be used successfully to
determine the necessary levels of LD pruning. Also, we found that substantially more stringent LD pruning is necessary to produce
unbiased admixture time estimates for ancestral populations that are minimally divergent from one another (Figure S2).

Three Ancestral Populations
We next sought to evaluate the accuracy of this method when two ancestry pulses are contributed from distinct ancestral populations.
For all levels of population divergence considered, we find that our method recovers the correct times of admixture events with
reasonably high accuracy for recent admixture times (Figure 3). Notably, the error in time estimates decreases substantially with
increasingly divergent ancestral populations indicating that this method will produce the most accurate results when ancestral
populations are highly genetically divergent.
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Figure 3 Admixture time estimates for two pulse population models with three distinct ancestral populations. From top to bottom,
panels include the divergence time between the ancestral populations is 0.05, 0.1, 0.25, 0.5 and 1 Ne generations. On the left, for all
admixture models considered, the second pulse occurred 100 generations before the present. The first pulse occurred 20 (black), 40
(red), 60 (green), and 80 (blue) generations prior to sampling. On the right, the second pulse occurred 1000 generations before the
present and the first pulse occurred at 200 (black), 400 (red), 600 (green) and 800 (blue) generations prior to sampling. Note that due
to underestimation of admixture times, the figure axes differ between panels for plots of more ancient admixture events.

Whereas our method accurately estimates admixture times when admixture events occur at intermediate times prior to sampling,
we find that the accuracy suffers somewhat when estimating the timings of two more ancient admixture events. Indeed, for modestly
divergent ancestral populations, e.g., 0.1Ne generations divergent, we find that our approach consistently underestimates the times
since admixture events, particularly for the more ancient ancestry pulse (Figure 3). This is true despite a nearly linear relationship for
estimated admixture times and actual admixture times in a single pulse two ancestral population model (Figure S3), indicating that
there is a significant cost for accuracy of model estimation when estimating additional ancestry pulse parameters. However, for more
divergent ancestral populations, it is still feasible to obtain accurate admixture time estimates (Figure 3). Additionally, because there is
still a monotonic relationship between the time estimates and true admixture times, it might be feasible to correct for this bias and
obtain accurate admixture time estimates even when ancestral populations are not particularly divergent.

Two Pulse Admixture Model
It is significantly more challenging to distinguish between models with a single ancestry pulse and models with two distinct ancestry
pulses from the same ancestral population. As we described above, one of the key difficulties is that in addition to estimating admixture
times, our model must also estimate the proportion of the total ancestry contributed by each pulse. Furthermore, it is essential that this
approach includes a mechanism for distinguishing between single and double pulse models. We therefore began with a single-pulse
admixture simulation and fit both single and two pulse admixture models to these data.

We find that traditional likelihood ratio tests universally favor two pulse versus single pulse models even when data are simulated
under a single pulse model for all scenarios that we considered (Figure S4). We therefore suggest that when using this method to
analyze admixed populations, it will usually be preferable to choose the simplest admixture model that is consistent with the data.
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More complex models are usually favorable by standard statistical comparisons, but may overfit the data. This consideration is
reminiscent of concerns for the STRUCTURE model (Pritchard et al. 2000; Evanno et al. 2005). In general, this means the model that
contains the fewest distinct ancestry pulses should be selected.

Spurious admixture models can be identified by interrogating the timing and proportion of ancestry contributed by each admixture
pulse. First, many of the resulting two pulse admixture models contain ancestry pulses with similar times (Figure 4, Tables S2, S3, S4),
suggesting that these could be recognized as representing a single admixture event. Second, of the models containing two pulses,
many contain one pulse near the correct admixture time and another distant pulse that introduced a very small proportion, i.e. 1%
or less, of the total ancestry in the sampled admixed population (Figure 4, Tables S2, S3, S4). Often the pulse introducing a small
proportion of ancestry in the sampled population occurred in the distant past, where admixture time is harder to estimate. Therefore,
admixture pulses that (1) occur in the distant past and contribute relatively small proportions of the total ancestry or (2) pulse at
similar times, may indicate a spurious admixture model and should be disregarded in favor of simpler admixture scenarios.

Figure 4 Two-pulse admixture models fitted using our framework to data generated under a single pulse admixture model. We
considered varying levels of population divergence. From top to bottom, the ancestral populations are 0.05, 0.1, 0.25, 0.5, and 1 Ne
generation divergent from one another. From left to right, the single admixture pulse occurred 20, 40, 60, and 80 generations prior
to sampling and replaced one half of the ancestry. Point colors correspond to the proportion of ancestry that is attributable to the
second pulse with a gradient running from 0 (red) to the maximum possible, 0.5 (yellow). Dashed lines reflect the true admixture
time.

When we simulated admixed populations whose histories contained two distinct ancestry pulses, we found two-pulse models
could sometimes be fit accurately. Specifically, when the two ancestry pulses occurred at fairly different times (e.g., 20 and 100 and 200
and 1000 generations), our approach identified models that correspond closely to the parameters under which the admixed population
was simulated. However, when the two ancestry pulses occurred at closer time intervals, we were less frequently able to reliably
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recover the correct admixture model (Figure 5, Figure S3). Additionally, we note that the accuracy of two-pulse models depends on
the genetic distance between ancestral populations (Figure 5), where it is generally more straightforward to fit admixture models for
genetically distant ancestral populations.

Figure 5 Two-pulse admixture models fitted using our framework to data generated under a two pulse admixture model. We con-
sidered varying levels of population divergence. From top to bottom, the ancestral populations are 0.05, 0.1, 0.25, 0.5, and 1 Ne
generation divergent from one another. For all models, the second admixture pulse occurred 100 generations prior to sampling.
From left to right, the first pulse occurred 20, 40, 60, and 80 generations prior to sampling. The second pulse replaced 1

3 of the res-
ident population and the first pulse replaced 1

4 of the resident population. Therefore, each ancestral population contributed one
half of the ancestry at the time of sampling. Point colors correspond to the proportion of total ancestry at the time of sampling that
is attributable to the first pulse with a gradient running from 0 (red) to the maximum, 0.5 (yellow). Dashed lines reflect the true
admixture times for the first and second pulse.

Collectively, our results suggest that it might not be possible to distinguish between single-pulse and two-pulse admixture models
when ancestry pulses occurred at similar times. However, it is feasible to distinguish single pulse models from admixture models with
both relatively ancient and recent admixture. Therefore, we anticipate that this approach will be valuable for investigating a range of
hypotheses with dramatically different admixture times. Furthermore, as we consider here intermediate-sized population samples, i.e.
50 individuals, it may be feasible to distinguish more fine-grained admixture models using larger samples sizes.

LAI Accuracy
We note that while two pulse models do improve the accuracy of LAI, the improvement observed tends to be slight (Tables S2, S3, S4).
This suggests that for studies aimed at evaluating patterns of LA across the genome, there may be no need to extensively optimize
admixture models to obtain reasonable estimates of the LA landscape in the admixed population. Single pulse models may be sufficient
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to accurately characterize LA across the genome for many admixed populations.

Application

Admixture in D. melanogaster
Biogeographical evidence (Lachaise et al. 1988) and patterns of genetic variation (Thornton and Andolfatto 2006; Begun and Aquadro
1993; Caracristi and Schlötterer 2003) suggest that D. melanogaster originated in sub-Saharan Africa, and went on to colonize much
of the rest of the world relatively recently (Duchen et al. 2013). During this expansion, the population that left sub-Saharan Africa
experienced a dramatic bottleneck that reshaped patterns of genetic diversity across much of the genome (Caracristi and Schlötterer
2003; Ometto et al. 2005; Duchen et al. 2013). The resulting “cosmopolitan” haplotypes are distinguishable from those of the ancestral
sub-Saharan populations based solely on patterns of genetic variation (Pool et al. 2012) and these two ancestral populations have since
encountered each other and admixed in numerous geographic locations within sub-Saharan Africa and worldwide (Pool et al. 2012;
Caracristi and Schlötterer 2003)

Thus, D. melanogaster has emerged as an important model for understanding the genomic and phenotypic consequences of
admixture in natural populations. There are important pre-mating behavioral isolation barriers between cosmopolitan and African
individuals (Ting et al. 2001), as well as substantial phenotypic consequences that operate post mating within admixed individuals
(Lachance and True 2010; Kao et al. 2015). Additionally, recent work has investigated the genomic consequences of admixture both
demographically (Duchen et al. 2013; Bergland et al. 2016) and with the goal of evaluating the impact of natural selection in shaping
genome-wide patterns of variation (Pool 2015). The genomic consequences of admixture have only been studied using relatively
simple demographic models (i.e. a single event, (Pool et al. 2012)), leaving open the possibility that more complex admixture dynamics
are common in natural populations of this species. Accurately characterizing the admixture histories and the patterns of local ancestry
across the genome is essential to further our understanding of the demographic history of this species and build a complete null model
for studying natural selection on ancestry during admixture.

Evaluating Possible Applications to D. melanogaster Admixed Populations
In agreement with our general conclusions from admixture simulations, we find that our method is accurate, and single-pulse
admixture models are distinguishable from two-pulse models for temporally distinct admixture events (i.e., wherein two pulses
occurred at significantly different times, Figure 6). However, also consistent with our results above, we find that when admixture
pulses occurred at relatively similar times (e.g. t1 = 200 and t2 = 250 generations prior to sampling), a single ancestry pulse contributes
the vast majority of admixed ancestry, and this scenario is therefore ultimately most similar to a single pulse admixture model. These
data therefore suggest that it is possible to distinguish single from two pulse admixture models in data consistent with D. melanogaster
ancestral populations when the admixture pulses occurred at dramatically different times.

Perhaps owing to the higher marker density, the greater accuracy of genotyped markers along the genome, and/or the inbred
genomes in our Drosophila samples, we find that our method is slightly more accurate for population histories consistent with those
of D. melanogaster than for the simulated populations considered above (Tables S2, S3, S4). Additionally, admixture times can be
accurately estimated even when admixture events occurred in the distant past (e.g., 5000 generations prior to sampling, Figure 6).
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Figure 6 Admixture model fitted for data consistent with admixed Drosophila populations. Two-pulse admixture models for sce-
narios that are truly single-pulse (left), two pulse with a first admixture pulse 20 generations prior to sample (middle), and two
pulse models with a first admixture pulse 200 generations prior to sampling (right). From top to bottom, the second admixture
pulse occurred 250, 500, 1000, 2500, and 5000 generations prior to sampling. The point colors indicate the proportion of ancestry in
the sampled population that entered during the first admixture pulse in backwards time with a gradient running from 0 (red) to the
maximum, 0.5 (yellow). Dashed lines indicate the correct timing of simulated ancestry pulses. In two pulse models, the first pulse
contained 10% of the final ancestry and the second contributed 14% of ancestry to the sampled population. In single pulse models,
all of the non-native ancestry is contributed by one pulse. These values were selected to be consistent with those from admixed
sub-Saharan populations of this species (Pool et al. 2012). Note that the axes differ significantly across plots.

Application to Admixed D. melanogaster Samples

To demonstrate the performance of our method on real datasets, we applied our approach to D. melanogaster variation data from
sub-Saharan African populations (Figure 7). We studied populations from Rwanda (RG), South Africa (SD) and Gambella, Ethiopia
(EA) and estimated the time of cosmopolitan admixture using both double and single pulse models.

In two pulse models, cosmopolitan ancestry pulsed twice (Figure 1b) and resulted in the most recent pulse contributing approx-
imately 99% and 97.5% (for RG and SD respectively) of the total cosmopolitan ancestry present in the population at the time of
sampling. The second, more ancient pulse, tends towards the maximum time allowed in our inference method, 10,000 generations, and
contributes 0.01% and 2.5% of the total cosmopolitan ancestry present in the population at the time of sampling RG and SD (Figure 7).
As described above, a distant admixture pulse contributing small amounts of ancestry likely indicates a spurious admixture model.
Though it is possible that ancient cosmopolitan admixture contributed a small amount to the ancestry of the SD and RG populations,
the simplest model, a single pulse model with cosmopolitan ancestry pulsing into African ancestry, provides a reasonable description
of the demographic history of RG and SD. The estimated admixture times, 140 and 437 generations in a single pulse model, suggest
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that the observed cosmopolitan ancestry has entered these populations exceptionally recently despite earlier contact and extensive
commerce among human groups.

To test how our method performs when ancestral populations are omitted, we applied a two pulse model to genotype data from
Gambella, Ethiopia (EA) which is believed to have West African, Ethiopian, and cosmopolitan ancestry (Lack et al. 2015). Instead of
modeling all three ancestral populations, we omitted West African as an ancestral population to mimic a scenario where the ancestral
populations of an admixed population have not all been identified. The results of the two ancestral state model estimated an ancient
admixture pulse composing 6.5% of the total cosmopolitan ancestry present in the population at the time of sampling (Figure 7).
Importantly, we note that 6.5% is substantially more than we found in any of our simulated single-pulse datasets. A second pulse
about 200 generations ago contributed 28% of cosmopolitan ancestry. Since this two pulse model did not include ancestry from a West
African population, it is likely that our method fit a portion of the allele frequency differentiated between the ancestral populations
into the ancient pulse of cosmopolitan ancestry. Thus, a large proportion of ancestry contributed by an ancient admixture pulse might
indicate the need to identify additional ancestral populations. A two pulse model including three ancestral populations is therefore
more appropriate for studying the admixture history of EA.

Figure 7 Single and double pulse models applied to real genotype data generated from sub-Saharan African populations of
Drosophila melanogaster. In the plots shown, cosmopolitan ancestry pulsed into native African ancestry once (top row) or twice
(bottom row). The panels from left to right are populations RG, SD, and EA. Single and double pulse models were bootstrapped 100
times. Each point in the top row corresponds to a bootstrap estimate of the timing of admixture. The bottom row shows bootstrap
estimates for the timing of the second admixture pulse in backwards time. The point colors indicate the proportion of ancestry in
the sampled population that entered during the second (in backwards time) admixture pulse with a gradient running from 0 (red)
to the maximum, 0.5 (yellow). Black dots indicate the bootstrapped time optima.
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Application to Three Population Mixture in Gambella, Ethiopia (EA)
Our results above emphasize the importance of identifying and incorporating variation data from all ancestral populations. Here, we
use a two pulse, three ancestral population, admixture model to estimate the order and timing of admixture events into EA (Figure 1c,
Figure 8).

The native ancestry of Drosophila melanogaster from EA is unknown. Previous studies have suggested both cosmopolitan and
sub-Saharan ancestry contribute to the genetic variation in EA (Figure 1c) (Lack et al. 2015). To determine the most likely native
ancestry of EA, we applied three permutations of a two pulse model to population data from Gambella, Ethiopia. We used unadmixed
populations from Ethiopia (EF), cosmopolitan (FR), and West African (AF) to represent ancestral populations of EA and used our
program to estimate the timing of admixture in each admixture model. Our three models were: EF and AF pulsing into resident FR
ancestry, AF and FR pulsing into EF ancestry, and EF and FR pulsing into AF ancestry.

When FR is supplied as the resident population in the two pulse model, EF and AF both enter the population 1140 generations ago.
This is implausible for a variety of reasons. First, even without considering this result, it is unlikely that cosmopolitan ancestry is
the native ancestry type in Gambella, Ethiopia. Second, it is exceptionally unlikely that two distinct ancestral populations enter the
admixed population at precisely the same time. Finally, the likelihood of the FR native ancestry model is less favored relative to an EF
or AF native model by 11000 log likelihood units. We therefore consider a model with native African ancestry, EF or AF, to most likely
describe the admixture history of Gambella, Ethiopia D. melanogaster.

When EF and AF were modeled as native ancestry, resulting admixture histories were nearly identical, suggesting either EF or AF
could be native to Gambella since these are equivalent models. Using a two pulse, three ancestral population model, we estimated the
timing of EF and FR admixture pulses in AF native ancestry (Figure 1c). The second pulse in backwards time is estimated to have
occurred approximately 4755 generations ago and suggests that EA admixed with genetically distinct sub-Saharan African populations
in the relatively distant past (Figure 8). The most recent pulse introduced FR ancestry 355 generations ago, suggesting EA recently
admixed with cosmopolitan populations, which is strikingly consistent with our estimates from the other admixed populations
in Sub-Saharan Africa (Figure 3, Figure 8). Additionally, the relatively recent admixture between West African and Ethiopian D.
melanogaster, suggests that Sub-Saharan populations of this species were isolated until very recently (i.e., approximately 338 years ago).

We note that our estimate of admixture time is congruent with an estimate of divergence between Ethiopian and Central African
populations. Kern and Hey (2017) estimated Ethiopian and West African D. melanogaster diverged approximately 3628 years ago (or
approximately 50,000 generations). Our estimates of admixture time occur sufficiently far after this estimated Ethiopian and African
divergence time and provide confidence that our three-population admixture model of Gambella (EA) D. melanogaster is consistent
with previous investigations of demographic patterns of D. melanogaster from sub-Saharan African. These data therefore indicate that
our approach can successfully estimate the timing of multiple admixture events in the history of a population using real genotype data.
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Figure 8 Most likely admixture model fitted to real data generated from Gambella, Ethiopia (EA). Schematic of double pulse admix-
ture model with three ancestral populations and ancestry types is shown (top). 1000 bootstraps were run of FR and EA pulsing into
AF native ancestry. Real bootstrap data is shown (bottom), where each point is a bootstrap estimate of FR and EA admixture pulses
and the black point represents the optimal admixture model from the full data set.

Conclusion

Admixture histories can be complex with numerous distinct ancestral populations contributing genetic material to a recipient
population at multiple times in the past. In this work, we developed coalescent theory as well as a method to estimate the timing of
multiple admixture events in an admixed population. We applied our model to forward-time simulated and real sequence data. The
results of our simulations suggest that our model can discern between ancestry pulses occurring far apart in time from each other.
Moreover, our method excels when the populations contributing ancestry are genetically diverse from each other.

Our approach, when applied to real admixed Drosophila melanogaster populations, is consistent with previous results on the African
origin and admixture of the Drosophila melanogaster species. We find that cosmopolitan ancestry has entered very recently and is best
accommodated by our framework using a single pulse model. Additionally, we demonstrate that more complex admixture patterns
have shaped the ancestry of Gambella, Ethiopia. We indicate that two ancestry pulses from distinct ancestry types are necessary to
explain patterns of genetic variation within this population.

This is the first method that estimates the timing of multiple pulse admixture models while accommodating the possibility of more
than one source population. Although not a focus of this study, our method is designed to accommodate read pile-up data, samples of
arbitrary ploidy, and samples with unknown admixture history. Taken all together, we anticipate that our approach will facilitate
continued exploration of admixture’s contributions to fundamental biological processes such as adaptation, ecological divergence and
speciation.

Methods

Coalescent Simulations

We simulated ancestral population genetic variation using the coalescent simulation software package MACS (Chen et al. 2009). Briefly,
to consider a simplified ancestral process, we consider a model where a population, initially of size 2N, subdivided into three daughter
populations of identical size, 2N. To assay a range of genetic divergence among the daughter populations, we performed replicate
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simulations where we allowed populations to diverge (D in the command line below) for 0.05, 0.1, 0.25, 0.5 and 1 Ne generations.
Note that the functionally relevant parameter for LAI using this approach is probably related to allele frequency changes between
the ancestral populations, and therefore to the density of ancestry informative markers along the genome, rather than to divergence
times per se. For example, a population bottleneck would result in rapid and dramatic allele frequency differences despite a short
divergence time. Note also that alternative divergence models will also impact the distribution of LD among markers, underscoring
the importance of considering each unique model when applying this approach for admixed model estimation.

We therefore used the following command line for all simulated populations:

$ macs 600 100000000 -i 1 -h 100 -t 0.001 -r 0.001 -I 3 200 200 200 0 -ej D 2 1 -ej D 3 1

This will simulate a single chromosome of length 100Mb with a per-site theta of 0.001 and equal recombination rate. Therefore, these
simulations could resemble a reasonably sized mammalian population. This will output 200 chromosomes per ancestral population,
and for all admixture simulations, we used the first 100 as the reference panel, and the second 100 to simulation genetic variation
across admixed chromosomes.

Admixture Simulations
We simulated admixed populations using the forward-in-time admixture simulation program, SELAM (Corbett-Detig and Jones 2016).
We first explored the levels of LD pruning that is necessary for producing unbiased estimates of admixture times using two population,
single pulse simulations. All simulations for LD pruning optimizations were run with ancestry proportions 0.5 and 0.5 and with an
admixed population size of 5,000 males and 5,000 females.

We then simulated admixture models with three ancestral population models where the resident population contributed 1
2 of the

total ancestry, and each admixture pulse contributed 1
4 th of the total ancestry to the final admixed population. Therefore the first pulse,

in forward time, contributed 1
3 of the admixed population and then had 1

4 th of that ancestry replaced by the subsequent pulse. All
simulations were performed across the range of divergence times that we simulated for each ancestral population.

Read Simulation
We simulated short read data for each admixed individual following the approach of (Corbett-Detig and Nielsen 2017). Briefly, reads
are drawn binomially from each samples’ genotype and read depths from a Poisson distribution with mean equal to 2. That is, we
simulated 2X sequencing depths to represent a likely use case of this software where individuals are sequenced to relatively light
coverage.

Drosophila Simulation
We have previously used this framework to simulate data consistent with the ancestral populations of D. melanogaster, following the
coalescent simulation apporach of (Corbett-Detig and Nielsen 2017). All other features of the simulated Drosophila dataset are similar
to those above except that we simulated genotypes rather than short read pileup data. We did this because the dataset that we used is
sequenced to sufficiently high depths so as to preclude most uncertainty in short read data (Lack et al. 2015, 2016).

Drosophila Sample Application
We obtained Drosophila melanogaster genotype data for natural isolates from the Drosophila Genome Nexus (Lack et al. 2015, 2016),
which curates data from more than 1,000 natural isolates of this species. We used the recommended masking packages supplied for
that site for all samples in reference populations. For SD, we used the ZI population, for RG we used a set of central and west African
samples (as in Corbett-Detig and Nielsen (2017)), and for EA we used the EF population. All cosmopolitan pulses were modeled using
FR as the cosmopolitan reference population.

Application to Admixed Samples
We used our model to assay the admixture histories of Rwandan, South African, and Ethiopian samples. We fit both a single pulse
model and double pulse model to genotype data from each population, running 100 bootstrap replicates using a block size of 5000
SNPs.

- single pulse
./ancestry_hmm -i RG.auto.panel -s RG.ploidy.txt -a 2 0.1 0.9 -p 1 100000 0.9 -p 0 -100 0.1 -g -e 1e-4 -b 100

5000↪→

./ancestry_hmm -i SD.auto.panel -s SD.ploidy.txt -a 2 0.17 0.83 -p 1 100000 0.83 -p 0 -100 0.17 -g -e 1e-4 -b
100 5000↪→

./ancestry_hmm -i EA.auto.panel -s EA.ploidy.txt -a 2 0.34 0.66 -p 1 100000 0.66 -p 0 -100 0.34 -g -e 1e-4 -b
100 5000↪→

- double pulse
./ancestry_hmm -i RG.auto.panel -s RG.ploidy.txt -a 2 0.1 0.9 -p 1 100000 0.9 -p 0 -100 -0.05 -p 0 -100 -0.05

-e 1e-4 -g -b 100 5000↪→

./ancestry_hmm -i SD.auto.panel -s SD.ploidy.txt -a 2 0.17 0.83 -p 1 100000 0.83 -p 0 -100 -0.085 -p 0 -100
-0.085 -e 1e-4 -g -b 100 5000↪→

./ancestry_hmm -i EA.auto.panel -s EA.ploidy.txt -a 2 0.34 0.66 -p 1 100000 0.66 -p 0 -100 -0.17 -p 0 -100
-0.17 -e 1e-4 -g -b 100 5000↪→
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Application to Three Population Mixture from Gambella, Ethiopia
We used our model to assay the admixture histories of Gambella, Ethiopia. We fit a double pulse model to genotype data from
Gambella, running 1000 bootstrap replicates each using a block size of 5000 SNPs. Moreover, since the native ancestry type for
Gambella is unknown, we modeled West African (AF), Ethiopian (EA), and French (FR) as the ancestral population.

./ancestry_hmm -i three_pop.auto.EA.panel -s three_pop.auto.EA.ploidy -a 3 0.4 0.31 0.29 -p 0 -1000 0.4 -p 1
100000 0.31 -p 2 -1000 0.29 -g -b 1000 5000↪→

./ancestry_hmm -i three_pop.auto.EA.panel -s three_pop.auto.EA.ploidy -a 3 0.4 0.31 0.29 -p 0 100000 0.4 -p 1
-1000 0.31 -p 2 -1000 0.29 -g -b 1000 5000↪→

./ancestry_hmm -i three_pop.auto.EA.panel -s three_pop.auto.EA.ploidy -a 3 0.4 0.31 0.29 -p 0 -1000 0.4 -p 1
-1000 0.31 -p 2 100000 0.29 -b 1000 5000 -g↪→
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Supplemental

Table S1 Simulated and analytical transition rates for a model with five ancestry types, k = 5. t4, t3, t2, t1, and t0 are 80, 60, 40, 20,
and 0 generations since the present, respectively. m4, m3, m2, and m1 are 1

2 , 1
3 , 1

4 , and 1
5 respectively.

From To Rate_Simulation Rate_Analytical

5 4 25.715 25.625

5 3 15.509 15.645

5 2 9.045 8.991

5 1 4.025 3.998

4 5 25.449 25.625

4 3 15.654 15.645

4 2 8.956 8.991

4 1 3.978 3.998

3 5 15.640 15.645

3 4 15.509 15.645

3 2 8.920 8.991

3 1 4.013 3.998

2 5 9.007 8.991

2 4 9.066 8.991

2 3 9.058 8.991

2 1 3.955 3.998

1 5 3.936 3.998

1 4 4.001 3.998

1 3 3.970 3.998

1 2 4.001 3.998
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Supplementary Figure S1 Tract length distributions obtained using our tract length model approximation (solid black) and
forward-in-time simulation (dashed red). In the model considered, there are five ancestry types A1..Ak and four admixture pulses
occurring at 20, 40, 60, and 80 generations since the present. Each pulse in forward time contributes 1

2 , 1
3 , 1

4 , and 1
5 , respectively, of

total resident genetic ancestry. Each simulation had a diploid population size of size 10,000 and we aggregated data from 50 sam-
pled individuals across 100 simulations to produce the full tract length distribution. From top to bottom, respective ancestry tract
length distributions correspond Ak, A1, A2, A3, A4.
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Supplementary Figure S2 Estimated admixture times for single pulse admixture models with varying levels of genetic divergence
between ancestral populations. Specifically, from top to bottom, ancestral populations are 0.05, 0.1, 0.25, 0.5, and 1 Ne generations
divergent from one another. LD pruned is 1 (black), 0.9 (violet), 0.8 (dark blue), 0.7 (blue), 0.6 (cyan), 0.5 (green), 0.4 (yellow), 0.3
(orange), 0.2 (red), 0.1 (dark red).
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Supplementary Figure S3 Two-pulse admixture models fitted using our framework to data generated under a single pulse admix-
ture model. We considered varying levels of population divergence. From top to bottom, the ancestral populations are 0.05, 0.1,
0.25, 0.5, and 1 Ne generation divergent from one another. From left to right, the single admixture pulse occurred 200, 400, 600, and
800 generations prior to sampling and replaced one half of the individuals in the population. Point colors correspond to the propor-
tion of ancestry that is attributable to the second pulse with 0.0-0.1 (red), 0.1-0.2 (orange), 0.2-0.3 (yellow), 0.3-0.4 (green) and 0.4-0.5
(blue). Dashed lines reflect the true admixture time.
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Supplementary Figure S4 The likelihood ratio between two-pulse and single-pulse ancestry models fit to data simulated under a
single pulse (left) and a two pulse model (right). The single pulse model included a pulse of 50% of ancestry 50 generations prior to
sampling. The two pulse model included a first pulse in forward time of 33% of ancestry 100 generations prior to sampling, and a
second pulse in forward time of 25% of ancestry both from ancestry type 1, at time 20 generations prior to sampling. Each boxplot
is based on 20 replicate simulations for each level of ancestral population divergence.

Table S2 Accuracy statistics of one pulse admixture model fit to two pulse admixture population.

divergence pulse_time mean_error accuracy confident_correct

0.05 20 0.0086 0.2009 0.2878

0.05 40 0.0071 0.2163 0.2383

0.05 60 0.0060 0.2302 0.1981

0.05 80 0.0053 0.2418 0.1712

0.05 200 0.0004 0.4908 0.0037

0.05 400 0.0002 0.5097 0.0023

0.05 600 0.0002 0.5249 0.001

0.05 800 0.0001 0.5341 0.0016

0.1 20 0.0080 0.0669 0.7713

0.1 40 0.0079 0.0722 0.7471

0.1 60 0.0078 0.0784 0.7221

0.1 80 0.0080 0.08362 0.7019

0.1 200 0.0046 0.3017 0.0999

0.1 400 0.0030 0.3240 0.0675

0.1 600 0.0025 0.3379 0.0525

0.1 800 0.0021 0.3496 0.0437

0.25 20 0.0010 0.00 0.9697
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0.25 40 0.0011 0.0098 0.9669

0.25 60 0.001 0.0108 0.9634

0.25 80 0.0013 0.0116 0.9606

0.25 200 0.0093 0.0826 0.7203

0.25 400 0.0093 0.0894 0.6935

0.25 600 0.0092 0.0961 0.6667

0.25 800 0.0094 0.1021 0.6447

0.5 20 0.0002 0.0026 0.9912

0.5 40 0.0002 0.0028 0.9904

0.5 60 0.0003 0.0031 0.9894

0.5 80 0.0003 0.0033 0.98873

0.5 200 0.0035 0.0276 0.9088

0.5 400 0.0037 0.0304 0.8989

0.5 600 0.0039 0.0327 0.8908

0.5 800 0.0041 0.0351 0.8825

1 20 6.0757e-05 0.00070 0.99764

1 40 6.7744e-05 0.0007 0.9974

1 60 7.4457e-05 0.00084 0.99720

1 80 8.0574e-05 0.0009 0.9969

1 200 0.0008 0.0075 0.97535

1 400 0.0009 0.0082 0.97289

1 600 0.0010 0.0091 0.97002

1 800 0.0011 0.0097 0.96794

Table S3 Accuracy statistics of two pulse admixture model fit to two pulse admixture population.

divergence pulse_time mean_error accuracy confident_correct

0.05 20 0.0067 0.2022 0.2591

0.05 40 0.0062 0.2175 0.2211

0.05 60 0.0054 0.2314 0.1873

0.05 80 0.0049 0.2428 0.1631

0.05 200 0.0003 0.4907 0.0034

0.05 400 0.0002 0.5098 0.0023

0.05 600 0.0002 0.5247 0.0018

0.05 800 0.0001 0.5340 0.0016

0.1 20 0.0074 0.0667 0.7648

0.1 40 0.0077 0.0723 0.7434

0.1 60 0.0078 0.0784 0.7215

0.1 80 0.0080 0.0836 0.7016

0.1 200 0.0037 0.3021 0.0898
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0.1 400 0.0029 0.3241 0.0661

0.1 600 0.0025 0.3380 0.0525

0.1 800 0.0021 0.3495 0.0438

0.25 20 0.0010 0.0090 0.9693

0.25 40 0.0011 0.0098 0.9666

0.25 60 0.0012 0.0108 0.9633

0.25 80 0.0013 0.0116 0.9604

0.25 200 0.0085 0.0825 0.7112

0.25 400 0.0090 0.0895 0.6882

0.25 600 0.0091 0.0961 0.6648

0.25 800 0.0094 0.1021 0.6440

0.5 20 0.0002 0.0026 0.9911

0.5 40 0.0002 0.0028 0.9904

0.5 60 0.0003 0.0031 0.9893

0.5 80 0.0003 0.0033 0.9886

0.5 200 0.0033 0.0276 0.9071

0.5 400 0.0036 0.0304 0.8978

0.5 600 0.0039 0.0327 0.8903

0.5 800 0.0041 0.0352 0.8823

1 20 6.0073e-05 0.0007 0.9976

1 40 6.7661e-05 0.0007 0.9974

1 60 7.4321e-05 0.0008 0.9972

1 80 8.0529e-05 0.0009 0.9969

1 200 0.0008 0.0075 0.9752

1 400 0.0009 0.0082 0.9727

1 600 0.0010 0.0091 0.9698

1 800 0.0011 0.0097 0.9679

Table S4 Accuracy statistics of two pulse admixture model fit to one pulse admixture population.

divergence pulse_time mean_error accuracy confident_correct

0.05 20 0.0073 0.0786 0.7125

0.05 40 0.0087 0.1387 0.4809

0.05 60 0.0077 0.1861 0.3124

0.05 80 0.0059 0.2214 0.2135

0.05 100 0.0047 0.2527 0.1505

0.1 20 0.0022 0.0192 0.9345

0.1 40 0.0043 0.0382 0.8655

0.1 60 0.0059 0.0570 0.8001

0.1 80 0.0075 0.0729 0.7422
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0.1 100 0.0084 0.0893 0.6803

0.25 20 0.0002 0.0023 0.9921

0.25 40 0.0004 0.0048 0.9838

0.25 60 0.0007 0.0074 0.9749

0.25 80 0.0010 0.0099 0.9663

0.25 100 0.0014 0.0126 0.9576

0.5 20 5.6568e-05 0.0006 0.9976

0.5 40 0.0001 0.0014 0.9952

0.5 60 0.0001 0.0021 0.9927

0.5 80 0.0002 0.0029 0.9903

0.5 100 0.0003 0.0036 0.9877

1 20 1.4541e-05 0.0001 0.9993

1 40 3.2523e-05 0.0003 0.9987

1 60 4.7858e-05 0.0005 0.9980

1 80 6.5332e-05 0.0007 0.9974

1 100 8.6379e-05 0.0009 0.9967

0.05 200 0.0019 0.3493 0.0378

0.05 400 0.0006 0.4401 0.0081

0.05 600 0.0003 0.4881 0.0034

0.05 800 0.0002 0.5153 0.0022

0.05 1000 0.0002 0.5395 0.0015

0.1 200 0.0092 0.1532 0.4402

0.1 400 0.0059 0.2362 0.1951

0.1 600 0.0037 0.2915 0.0998

0.1 800 0.0026 0.3291 0.0602

0.1 1000 0.0018 0.3599 0.0379

0.25 200 0.0030 0.0255 0.9131

0.25 400 0.0057 0.0497 0.8301

0.25 600 0.0076 0.0715 0.7533

0.25 800 0.0090 0.0901 0.6880

0.25 1000 0.0096 0.1073 0.6260

0.5 200 0.0008 0.0075 0.9748

0.5 400 0.0017 0.0154 0.9485

0.5 600 0.0027 0.0230 0.9231

0.5 800 0.0036 0.0304 0.8986

0.5 1000 0.0043 0.0374 0.8747

1 200 0.0001 0.0020 0.9933

1 400 0.0004 0.0040 0.9865

1 600 0.0006 0.0061 0.9796

1 800 0.0009 0.0082 0.9727
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1 1000 0.0011 0.0103 0.9657
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