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SUMMARY 19 

In vivo calcium imaging using 1-photon based miniscope and microendoscopic lens 20 

enables studies of neural activities in freely behaving animals. However, the high and 21 

fluctuating background, the inevitable movements and distortions of imaging field, and the 22 

extensive spatial overlaps of fluorescent signals emitted from imaged neurons inherent in 23 

this 1-photon imaging method present major challenges for extracting neuronal signals 24 

reliably and automatically from the raw imaging data. Here we develop a unifying 25 

algorithm called MINiscope 1-photon imaging PIPEline (MIN1PIPE) that contains several 26 

standalone modules and can handle a wide range of imaging conditions and qualities with 27 

minimal parameter tuning, and automatically and accurately isolate spatially localized 28 

neural signals. We quantitatively compare MIN1PIPE with other existing partial methods 29 

using both synthetic and real datasets obtained from different animal models, and show 30 

that MIN1PIPE has a superior performance both in terms of efficiency and precision in 31 

analyzing noisy miniscope calcium imaging data.  32 
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INTRODUCTION 33 

In vivo calcium imaging of activities from large populations of neurons in awake and 34 

behaving animals has become one of the staple technologies in neuroscience (Cai et al., 35 

2016; Flusberg et al., 2008; Ghosh et al., 2011). Recent advances in single-photon based 36 

miniscope technology have further enabled imaging of neural ensemble activities in freely 37 

moving animals (Cai et al., 2016; Flusberg et al., 2008; Ghosh et al., 2011), thereby 38 

allowing circuits involved in a rich repertoire of animal behaviors to be examined. For 39 

example, this technology has been successfully used in probing dynamics of neural circuits 40 

involved in innate behaviors (Betley et al., 2015; Douglass et al., 2017; Jennings et al., 41 

2015), decision making (Pinto and Dan, 2015; Poyraz et al., 2016), motor control (Klaus 42 

et al., 2017), learning and memory (Grewe et al., 2017; Kamigaki and Dan, 2017; Kitamura 43 

et al., 2017; Roberts et al., 2017; Roy et al., 2017; Xu et al., 2016), social memory 44 

(Okuyama et al., 2016), hippocampal place coding (Ziv et al., 2013), sleep (Cox et al., 2016; 45 

Weber and Dan, 2016), bird song (Markowitz et al., 2015), and pathological processes 46 

(Berdyyeva et al., 2016). 47 

The increasing popularity of the miniscope calcium imaging technology demands the 48 

development of a fully automatic and robust signal processing method that can reliably 49 

extract neuronal signals from the noisy single photon calcium imaging data. Ideally, the 50 

processing method 1) should be able to handle a wide range of imaging conditions (e.g. 51 

high fluctuating background) and results with minimal parameter tuning, and 2) should 52 

have minimal assumptions about the quality of the data, such as free of movement or 53 

distortion, or sufficiently good signal-to-noise ratio (SNR). Existing imaging processing 54 

algorithms do not meet these two criteria.  55 
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For extraction of neuronal signals, many previous methods work well in situations with 56 

high SNR and stable field of views, therefore they are best suited for processing two-photon 57 

imaging data. These algorithms include linear unsupervised basis learning methods 58 

(Mukamel et al., 2009; Reidl et al., 2007; Pachitariu et al., 2013), nonlinear unsupervised 59 

methods (Maruyama et al., 2014; Pnevmatikakis et al., 2016), and the supervised learning 60 

method (Apthorpe et al., 2016). The PCA/ICA (principal component analysis followed by 61 

independent component analysis) method (Mukamel et al., 2009) was the first attempt to 62 

automatize the signal extraction process from miniscope imaging data through manual 63 

annotations of ROIs, but this method has difficulties in delineating localized ROIs and in 64 

separating overlapping ROIs. Since single-photon based imaging collect lights from a large 65 

depth of field, overlapping neurons in different depth is not uncommon. Another method 66 

called CNMF (constraint matrix factorization framework) (Pnevmatikakis et al., 2016), 67 

which combines nonlinearity in matrix factorization with simultaneous deconvolving spike 68 

trains from calcium dynamics, returns more spatially localized maps of ROIs compared to 69 

other methods and has better performance in identifying overlapping neurons. While 70 

methods like CNMF achieve plausible results in processing two-photon imaging data, they 71 

are ill-suited for processing the single-photon based miniscope imaging because: 1) the 72 

data from miniscope imaging are dominated by noisy, uneven and fluctuating background, 73 

2) such methods depend on sophisticated parameter tuning, especially requiring setting 74 

parameters that are unknown a priori in practice such as “number of neurons”. Thus, a new 75 

method that can effectively remove background yet preserve real neural signals is highly 76 

desired.  77 
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Moreover, both PCA/ICA and CNMF rely on the stable imaging field and will fail if the 78 

imaging field contains movement, but movements (including distortions) during imaging, 79 

are often inevitable. Therefore, correcting movements and distortions is another major 80 

problem needs solving before neural activity signals can be reliably extracted. Many 81 

methods were developed independently in attempt to solve this problem. For example, 82 

several approaches register frames through template matching based on the assumption 83 

that the major form of movements is translational displacement (Dubbs et al., 2016; 84 

Thévenaz et al., 1998). To eliminate such assumptions, methods with block-based 85 

displacement field estimation were developed, with image feature matching algorithms 86 

extended from Lucas-Kanade tracker (Greenberg and Kerr, 2009; Lucas and Kanade, 1981) 87 

or Hidden Markov Models (Dombeck et al., 2007; Kaifosh et al., 2013). Some of these 88 

movement correction methods have been included as a module in a larger toolbox, using 89 

such frame-wise rigid registration approaches (Kaifosh et al., 2014; Pachitariu et al., 2017). 90 

When applied to handle nonrigid movement registrations, existing methods make specific 91 

assumptions about both the form and magnitude of the potential movements that result in 92 

suboptimal performance when large deformation occurs during imaging. Furthermore, 93 

errors in the movement correction can easily propagate since these methods all register 94 

frames based on a single reference frame. Considering that extracting neural activity 95 

signals is highly dependent on removing movement artifacts, an accurate and robust 96 

movement correction module is imperative. A simple unimodal algorithm for either 97 

translation/rigid or nonrigid registration is insufficient for this purpose. 98 

Here we develop the MINiscope 1-photon imaging signal extraction PIPEline (MIN1PIPE) 99 

that takes the very raw calcium videos as inputs, and automatically removes background 100 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2018. ; https://doi.org/10.1101/311548doi: bioRxiv preprint 

https://doi.org/10.1101/311548
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

while preserving signals, corrects movements with no assumptions of the types of 101 

movements, and delivers separated neuronal ROIs as well as deconvolved calcium traces 102 

as outputs. The MIN1PIPE contains a neural enhancing module that minimizes the 103 

influence of background unevenness and fluctuations, a hierarchical movement correction 104 

module that can handle all kinds of deformation with minimal error propagation, and a 105 

seeds-cleansed neural signal extraction module that identifies the set of real ROIs and their 106 

corresponding calcium traces without setting unknown parameters a priori (Fig. 1). 107 

Though our MIN1PIPE is primarily developed for single-photon based miniscope imaging, 108 

individual modules can also be independently combined with other processing algorithms 109 

to improve performance in analyzing two-photon imaging.  110 

RESULTS 111 

Core modules in MIN1PIPE 112 

Neural Enhancing Module: The core of MIN1PIPE relies on turning the imaging data into 113 

a stack of background free, baseline corrected frames as the first step. Due to the complex 114 

spatiotemporal properties of background dynamics, our method applies a frame-wise 115 

background estimator that is adaptive to the local properties. A natural idea can be 116 

translated from mathematical morphology and computer vision, that the foreground neural 117 

signals can be approximated by subtracting the estimated background in a denoised image. 118 

Therefore, we first remove the grainy noise inherent to the single-photon system (see 119 

example of such grainy noise in Supplementary Fig. S2) while preserving the boundary 120 

between foreground and background, and this is achieved by applying an anisotropic 121 

diffusion denoising operation (Perona and Malik, 1990) on the raw imaging frames. Next, 122 

we use a simple straightforward morphological opening operation (Serra and Vincent, 123 
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1992) as the background estimator, with the size of the structure element similar to that of 124 

the neurons in the imaging field. The opening operation removes structures smaller than 125 

the desired structure element. Subsequently, the foreground that contains all the neuronal 126 

signals with the minimal noise is computed as the difference between the denoised raw and 127 

the morphological opened frames (Fig. 1a and Supplementary Fig. S1-S2).  128 

Movement Correction Module: After the neural signals are enhanced, we next correct for 129 

movements in the imaging videos. The problem of movement correction can essentially be 130 

broken down to image stack registration. However, without setting specific constraints on 131 

the form or magnitude of the movements, even the most efficient registration algorithms 132 

require a running time on the order of seconds to minutes per frame (Vercauteren et al., 133 

2009). Considering that the general imaging datasets contain tens of thousands of frames, 134 

the time required for applying these sophisticated image registration methods to every 135 

frame is inconceivable. Here we develop a hierarchical video registration framework for 136 

the correction of all types of movement, without sacrificing the precision or the speed of 137 

corrections. Our framework first decomposes the imaging video into two sections: the 138 

stable sections whose movements can be approximated by small translational displacement, 139 

and the non-stable sections that contain large general deformation. This step uses the KLT 140 

tracker that estimates the displacement of potential corner-like features between two 141 

neighboring frames (Shi and Tomasi, 1994). Next, we employ three levels of different 142 

strategies to align images. At the first level, we correct the small translational displacement 143 

within each stable section using the fast Lucas-Kanade tracker, which can be performed 144 

efficiently in parallel on multiple sections (Lucas et al., 1981). We then incorporate a 145 

diffeomorphic Log-Demons image registration method which can handle large 146 
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deformations while preserving the local geometrical properties (Vercauteren et al., 2009). 147 

At the second level, we align all the stable sections. The overall information of each section 148 

is extracted to form a sectional image. The current sectional image is then aligned to a 149 

reference sectional image, which is generated as a linear summation of all previously 150 

registered sectional images that is the closest to the current image. The summation weights 151 

are determined by least square regression between the current and previous sectional 152 

images. The estimated displacement field is then applied to each frame within the current 153 

section. This will be iterated until all stable sections are aligned. At the third level, we use 154 

a similar process to register the individual frames within each non-stable section, which 155 

can be parallelized to boost performance efficiency (Fig. 1b). This hierarchical approach 156 

significantly reduces the total registration time due to the balanced assignment of different 157 

methods. Importantly, the common registration error does not propagate with this approach. 158 

Seeds-Cleansed Neural Signal Extraction Module: Once movements are corrected and 159 

images are aligned, the main task turns to the neural signal extraction. MIN1PIPE extracts 160 

neural signals automatically in two main steps, 1) the seeds cleansing step to reliably detect 161 

the set of real ROIs, and 2) an altered spatiotemporal CNMF to separate ROIs and 162 

corresponding calcium traces (Pnevmatikakis et al., 2016). Previous methods contain either 163 

no explicit seeds initialization step or only a coarse initialization that compromises between 164 

precision and recall. In contrast, our seeds cleansing step forces the algorithm to find the 165 

set of real ROIs. This is achieved by first generating an over-complete set of seeds 166 

containing all potential centers of real ROIs at the cost of including false positives. This 167 

over-complete set is then coarsely cleansed by applying a two-component Gaussian 168 

Mixture Model (GMM) on the peak-valley difference of corresponding traces of the seeds, 169 
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where the traces of real neurons usually have larger fluctuations compared to the non-170 

neuron false positive seeds. The GMM removes most background false positives without 171 

losing real neurons (Supplementary Fig. S3). To further remove the remaining false 172 

positives, such as the ones with abnormal background fluctuations or hemodynamics, we 173 

have trained an Recurrent Neural Networks (RNNs) with LSTM module offline as the 174 

classifier for calcium spikes (Supplementary Fig. S4) (LeCun et al., 2015; Hochreiter and 175 

Schmidhuber, 1997). Those seeds whose traces contain RNN-identified calcium spikes, 176 

regardless of their temporal locations, are classified as true positives whereas the rest are 177 

deemed as false positives. After such cleansing processes, there is still a low possibility of 178 

identifying multiple seeds within a single ROI. Therefore, we merge potentially redundant 179 

seeds by computing the temporal similarity of seeds within their neighborhoods, and 180 

preserving the ones with maximum intensity. With the cleansed set of seeds as the initial 181 

position of ROIs, we next perform the iterative spatial and temporal optimizations, as 182 

proposed in CNMF, to update the spatial footprints of individual ROIs, and the temporal 183 

traces with deconvolved spike trains. Notably, unlike previous CNMF, where the spatial 184 

footprints are sequentially updated and subtracted from the preceding residuals, we extract 185 

spatial footprints from the original data that does not depend on preceding iterations. 186 

Therefore, the information loss/duplication is reduced and the optimization procedures can 187 

be parallelized in our method. 188 

We show example results obtained using the MIN1PIPE methodology including a raw 189 

frame, the fully processed ROIs and the example traces from ROIs (Fig. 1c). 190 

Quantitative validation of the MIN1PIPE performance 191 
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The neural signal extraction and movement correction are two independent problems that 192 

can be tested separately. For the signal extraction, we test the performance on synthetic 193 

datasets with various signal levels, while for the movement correction, we can directly test 194 

it on real data. To measure the performance of the signal extraction, we use a scoring metric 195 

that evaluates the spatial and temporal similarity between the ground truth and the 196 

identified ROIs (see Online Methods), and calculate true positive, false positive and false 197 

negative. To measure the performance of the movement correction, we use a metric based 198 

on the average displacement of feature points between neighboring frames. 199 

We synthesized 16 imaging videos with signal levels (SL, defined as the ratio of the 200 

amplitude between the signals and the background) ranging from 0.05 to 0.8. Each video 201 

contains 3000 frames with 100 neurons of various shapes and calcium dynamics, and 202 

background fluctuations extracted from real datasets (details in Supplementary Notes S1-203 

S2). The properties of synthetic videos resemble those of real data, whose SL falls between 204 

the range of 0.2 and 0.8. The condition at 0.05 SL is an extreme (Supplementary Fig. S5 205 

and Video S1-S3). We compare MIN1PIPE with PCA/ICA and CNMF. We used 206 

commercially available Mosaic software (Inscopix Inc.) which implements PCA/ICA 207 

method (Mukamel et al., 2009), and processed the data following the standard workflow 208 

in the software manual. In particular, we chose the number of principal components (PC) 209 

and independent components (IC) based on the suggested rate (e.g. 20% more ICs and 50% 210 

more PCs than the estimated number of ROIs). For CNMF, we used the default 211 

initialization strategy in (Pnevmatikakis et al., 2016). 212 

The results of ROI detection (Fig. 2a) and the calcium traces from one example ROI 213 

obtained by different methods (Fig. 2b) at 0.2 and 0.8 SL are compared. The contours of 214 
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the identified ROIs using different methods are drawn and superimposed onto the max 215 

projection of the ground truth. For both SLs, MIN1PIPE can identify the nearly complete 216 

set of ROIs (93% and 100% for 0.2 and 0.8 SL respectively) with minimal false positives 217 

(1% and 0% respectively), whereas the other two methods detect partial subsets of ROIs 218 

(PCA/ICA: 0% at 0.2 SL and ~65% true positives at 0.8 SL; CNMF: ~32% at 0.2 SL and 219 

~95% true positives at 0.8 SL). In addition, the extracted spatial footprints are less realistic 220 

with the PCA/ICA or previous CNMF methods. The example calcium traces indicate that 221 

MIN1PIPE has a near-optimal performance in extracting individual ROIs even at low SLs 222 

when compared to the ground truth traces (Fig. 2b). In contrast, PCA/ICA completely fails 223 

to identify ROIs when SL is low, while CNMF fails to separate neurons from overlapping 224 

ROIs. Fig. 2c summarizes the performance accuracy of these three methods at all SLs. The 225 

plots of the true positive, false positive and false negative indicate that MIN1PIPE has a 226 

significantly superior performance in all conditions, and outperforms the other two 227 

methods in the extreme conditions. Fig. 2d summarizes the spatiotemporal similarities 228 

between the extracted results and the ground truth. The clusters of point clouds confirm 229 

again that MIN1PIPE outperforms the other two methods in best resembling both the 230 

spatial and temporal properties of the ground truth signals. The results for all signal levels 231 

are shown in Supplementary Fig. S6. 232 

To validate the performance of the movement correction in MIN1PIPE, we applied the 233 

module on video sections with large deformation movements of the imaging field. 234 

Specifically, we chose a video obtained through two-photon imaging of the ferret’s 235 

posterior parietal cortex as an example due to its particularly frequent and large 236 

deformations (Supplementary Video S4 as a demo section of the full video). Fig. 2e shows 237 
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an example of 3 consecutive frames (with each frame pseudo-colored as pink, green or 238 

blue) with large nonlinear deformations between frames superimposed together. The two 239 

rigid-transform-based methods (LK and KLT Affine) by themselves fail to fully remove 240 

the large deformations, whereas MIN1PIPE (combining the Log-Demons transformation) 241 

succeeds in correcting these movements. We further quantified the extent of correction by 242 

calculating the average displacement of feature points between two neighboring frames 243 

before and after the movement correction (Fig. 2f). Before correction, the score of average 244 

displacement shows frequent burst of large deformation periods, whereas after correction, 245 

the score of displacement shows a nearly flat line. Notably, the frames with large 246 

deformations are all well aligned (Fig. 2f lower panels; Supplementary Video S4). 247 

Application of MIN1PIPE on real miniscope imaging datasets 248 

We next compare the performance of MIN1PIPE with PCA/ICA and CNMF methods on 249 

real datasets. We first applied the three methods to the miniscope calcium imaging data 250 

obtained using prism probe from layer 2 and 3 of the barrel cortex in freely moving mice. 251 

GCaMP6f was expressed in layer 2/3 neurons using AAV, and signals were imaged 252 

continuously over 5min when the mouse freely explored its environment. Following the 253 

general pipeline of MIN1PIPE (Online Methods), our method removed the strong uneven 254 

background structure, and automatically identified 210 putative ROI components without 255 

the need for additional manual selection (Fig. 3a, Supplementary Video S5). In comparison, 256 

PCA/ICA identified 79 ROIs whereas CNMF identified 71 ROIs. Note that with the same 257 

computer configuration and dataset (~28 GB), the CNMF ran into memory issues and could 258 

not process the full-scale video, thus we cropped a center patch as the input video to the 259 

CNMF (Fig 3b-d middle panels). The contours of the ROIs identified by the different 260 
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methods are drawn and superimposed onto the max projection of the neural enhanced data 261 

(Fig. 3b). This reveals that MIN1PIPE can identify potentially all ROIs, whereas PCA/ICA 262 

and CNMF miss a significant subset of ROIs. Meanwhile, both the PCA/ICA and CNMF 263 

have some problems in separating overlapping ROIs and/or estimating the correct shape of 264 

the ROIs, as revealed by the max projections of the extracted signals (Fig. 3c). The 265 

projection of MIN1PIPE extracted signals closely resembles those of the neural enhanced 266 

data (Fig. 3c, top). In comparison, the projection obtained using PCA/ICA has low SNR 267 

with high background signals (Fig. 3c, bottom), whereas the projection derived from 268 

CNMF shows unrealistic ROI shapes larger than the true shape of neurons, indicating that 269 

the CNMF is sensitive to the contamination of the background dynamics (Fig. 3c, middle). 270 

To further check the shape of individual ROIs, we choose to visualize one example ROI 271 

embedded in the full imaging field using different methods (Fig. 3d). MIN1PIPE delineates 272 

a well localized ROI footprint, whereas CNMF returns a less localized ROI difficult to 273 

relate to the underlying neuron. PCA/ICA, on the other hand, fails to provide a localized 274 

footprint as remnants of other ROI components can also be seen. To examine the temporal 275 

traces extracted by the different methods, we selected 10 ROI components that were 276 

identified by all three methods within the cropped image field and plotted their 277 

corresponding calcium traces (Fig 3e, individual panels marked with 1-10). Again, the 278 

spatial footprints of the 10 ROIs obtained through CNMF and PCA/ICA are less localized 279 

as described above. In terms of calcium dynamics, both MIN1PIPE and CNMF give 280 

denoised traces, whereas the traces obtained using PCA/ICA are noisy and show unrealistic 281 

negative fluctuations. Furthermore, the traces extracted using CNMF include false positive 282 

calcium events that likely reflect background noises (arrows in Fig. 3e). Supplementary 283 
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Video S6 shows the comparison of raw and processed results using three different methods 284 

of the entire imaging video. 285 

To further illustrate the general applicability of MIN1PIPE in processing miniscope 286 

imaging data obtained over different brain areas and/or different animal models, we applied 287 

it to process calcium imaging results from Area X in zebra finch and compared the results 288 

with those obtained using the other two methods. Briefly, MIN1PIPE detected 55 ROI 289 

components, whereas CNMF detected 15 and PCA/ICA detected 35 ROIs after manual 290 

selection (Fig. 4a-b, Supplementary Video S7). Again, CNMF could only process a 291 

cropped portion of the imaging video due to the computer memory issues. All of the ROIs 292 

detected by CNMF and PCA/ICA are included in the set extracted by MIN1PIPE. In 293 

addition to false negatives, CNMF also identifies a cluster of false positive ROIs that are 294 

apparent upon visual inspections (Fig. 4b-c, e). The PCA/ICA again gives rise to 295 

nonlocalized ROI footprints that contain other potential components (Fig. 4d). It was 296 

known that Area X neurons show strong song selective activities when the bird is singing 297 

(Goldberg and Fee, 2010; Kojima and Doupe, 2007; Woolley et al., 2014; Yazaki-298 

Sugiyama and Mooney, 2004), which can be used as partial ground truth to validate 299 

MIN1PIPE. We plot the calcium traces of the ROIs identified by MIN1PIPE, and the 300 

majority of the ROIs contain calcium events that are roughly phase-locked to the singing 301 

onsets (Fig. 4f). Notably, a subset of the neurons shows precise singing-related activities 302 

with minimal events unrelated to singing (Fig. 4g upper panel). Furthermore, we sorted 303 

neurons according to their timing of peak calcium activities during each song production 304 

event (Fig. 4g lower panel), and this analysis also reveals a subset of Area X neurons whose 305 
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activation patterns are closely related to the onset of the singing, consistent with previous 306 

findings.  307 

We also did studies (Supplementary Fig. S7-S8) showing the effectiveness of the two 308 

modules (neural enhancing and seeds-cleansed signal extraction) when combined 309 

separately with previous methods to improve the performance. Finally, we compare our 310 

method with the CNMF-E method (Zhou et al., 2016) (Supplementary Fig. S9). 311 

DISCUSSION 312 

The key advances that set MIN1PIPE apart from the previous imaging processing methods 313 

are the following. First, MIN1PIPE solves the full range of problems for signal extraction 314 

in single-photon miniscope imaging with one pipeline. Specifically, we have developed 315 

innovative and robust modules to solve different problems including: the neural enhancing 316 

module that uses a novel algorithm to remove the ultra-high and fluctuating background 317 

characteristic of single photon imaging, the novel hierarchical movement correction 318 

module that is capable of efficiently registering any types of deformations of the imaging 319 

field, and the seeds-cleansed neural signal extraction module that utilizes GMM and 320 

pretrained RNN to enable automatic identification and extraction of ROIs and calcium 321 

traces. Second, MIN1PIPE eliminates the need for heuristically setting many parameters 322 

that are not only unknown a priori, but also influence the performance of the downstream 323 

processing steps, such as setting the number of neurons, a central parameter required by all 324 

previous neural signal extraction methods. The importance of this should not be neglected, 325 

because pre-setting unknown parameters can become problematic in practice. For example, 326 

overestimating the number of neurons may result in false positives in identified ROIs 327 

before the calcium trace extraction step, and also result in the unnecessary consumption of 328 
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computing time. These false positives can only be removed with laborious manual selection 329 

without a robust seeds-cleansing step. On the other hand, underestimating the number of 330 

neurons will likely lead to false negatives that can never be identified by the downstream 331 

steps. Therefore, tweaking this parameter is inevitable in practice using previous methods. 332 

While we do not claim that MIN1PIPE completely eliminates the need for manually 333 

pruning identified ROIs, our method does only involve minimal manual interference. Third, 334 

MIN1PIPE contains a minimal set of parameters that are easy to interpret and error-tolerant 335 

(Online Methods). These include a set of simplified and fixed parameters applicable to 336 

various conditions of the popular miniscope platforms (e.g. Inscopix nVista, UCLA open-337 

source miniscope) in our brick algorithm. In addition, all modules use definitive criteria 338 

independent of various imaging datasets, which ensures the robustness that the previous 339 

combination of setting the number of neurons and the serial initialization procedure could 340 

not provide. 341 

In summary, MIN1PIPE provides a generally applicable high-performance toolbox with 342 

the modular framework to handle and process miniscope imaging data. Interesting future 343 

works may integrate more advanced methods to further improve the precision, such as 344 

stricter choices of the kernel of anisotropic diffusion (Chen et al., 2011; Tsiotsios and 345 

Petrou, 2013), considering spectral invariants to handle very large deformations during 346 

non-rigid registration (Lombaert et al., 2014), and using more biologically valid calcium 347 

dynamics deconvolution methods (Speiser et al., 2017). Additionally, a more robust RNN 348 

classifier for seeds cleansing can be trained with more available datasets.  349 
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Figure 1 506 

 507 

Fig. 1. The general pipeline and demonstrations of MIN1PIPE. a. The overall structure of 508 

MIN1PIPE. MIN1PIPE takes the very raw miniscope imaging data freshly collected from 509 

the imaging system as inputs, and returns fully processed ROI components with spatial 510 

footprints and temporal calcium traces as outputs. The data are processed in series by neural 511 

enhancing, hierarchical movement correction, and seeds-cleansed signal extraction 512 

modules. Each module is composed of specific brick functions. b. A zoom-in of the 513 

hierarchical movement correction module. The module is KLT-Log Demons based. It first 514 

scores all the neural enhanced frames and divides them into stable and nonstable sections, 515 
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then register frames at three different levels. The movement corrected frames are then fed 516 

into the seeds-cleansed neural signal extraction module. c. The max projecting 517 

demonstrations of MIN1PIPE. The raw imaging video contains large, dominant 518 

background fluctuation, the neural enhanced video contains mainly neural signals, and the 519 

fully processed video contains only extracted and denoised neural signals as independent 520 

ROI components. Example traces are randomly selected from the processed video. See also 521 

Fig. S1-S4.  522 
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Figure 2 523 

 524 

Fig. 2. Quantification of MIN1PIPE. a-d. The quantitative performance comparison 525 

between MIN1PIPE and the other methods on simulated datasets. a. The identified ROI 526 

contours of the three methods at two representative signal levels. S.L.: signal level (the 527 
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ratio of the amplitude between the signals and the background). A.U.: arbitrary unit. b. The 528 

trace of an example ROI component identified by the three methods and the ground truth. 529 

G.T.: ground truth. c. The identification precision and accuracy of the three methods. d. 530 

The spatiotemporal identification accuracy with the three methods at two representative 531 

signal levels. The similarity of the spatial footprints and temporal traces between the results 532 

of the three methods and the ground truth of each ROI is plotted as a dot in the figure. 533 

These quantifications confirm that MIN1PIPE not only outperforms the other two methods 534 

in all aspects, but also verify that MIN1PIPE can provide satisfactory neural signal 535 

extraction results of miniscope imaging data. e-f. The quantification of the movement 536 

correction module. e. The demonstration of various image registration methods in a 537 

consecutive three frames from two-photon imaging data. The deformation registration 538 

algorithm we use in the module (Log-Demons) successfully corrects all the nonrigid 539 

deformations within the frames that cannot be corrected by the methods that assume 540 

translation or rigid transformation. The black and white color indicate overlapping of the 541 

same structure between the frames, whereas other colors indicate nonaligned structures. f. 542 

The score of movement before and after the correction. In general, the hierarchical 543 

correction steps register large deformations while preserves the stable frames. See also Fig. 544 

S5-S9.  545 
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Figure 3 546 

 547 

Fig. 3. Comparing different methods using miniscope imaging data from the mouse barrel 548 

cortex. a. Demo of MIN1PIPE in processing imaging data from the barrel cortex. We show 549 

an example raw frame, the max projection of raw video, the max projection of the neural 550 

enhanced video, and the colored ROI masks. b. The identified ROI contours superimposed 551 

on the max projection of neural enhanced video. MIN1PIPE returns a set of ROIs with 552 
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well-shaped, localized spatial footprints. CNMF and PCA/ICA identify only a small subset 553 

of true positives (71 and 79 respectively), and either the footprints are not localized, or the 554 

run into memory issues. The projection map is shown in grayscale colormap. c. The max 555 

projections of all identified ROI footprints. This further demonstrates the general properties 556 

of the extracted neural components. d. The spatial footprint of an example ROI. MIN1PIPE 557 

extracted the most localized component that is close to the real shape shown in the neural 558 

enhanced projection, whereas CNMF detected the noise-sensitive result and PCA/ICA 559 

detected the unrealistic component as a mix of several other components. e. The temporal 560 

traces of ten examples randomly selected from the ROIs that are detected by all three 561 

methods. A similar conclusion can be drawn in spatial footprints, whereas MIN1PIPE 562 

shows the best performance in temporal trace extraction (some potential false positive 563 

events indicated by red arrows).     564 
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Figure 4 565 

 566 

Fig. 4. Comparing different methods using miniscope imaging data from the Area X in 567 

zebra finch. a. Demo of MIN1PIPE in processing data from Area X in the zebra finch brain. 568 

We show an example of the raw frame, the max projection of raw video, the max projection 569 

of the neural enhanced video, and the colored ROI masks. b. The identified ROI contours 570 
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superimposed on the max projection of neural enhanced video. MIN1PIPE returns a set of 571 

ROIs with well-shaped, localized spatial footprints. CNMF and PCA/ICA identify only a 572 

small subset of true positives (15 and 35 respectively), and either the footprints are not 573 

localized, or the processes run into memory issues. The projection map is shown in 574 

grayscale colormap. c. The max projections of all the identified ROI footprints. d. The 575 

spatial footprint of an example ROI. MIN1PIPE extracted the most localized component 576 

that is close to the real shape shown in the neural enhanced projection, whereas PCA/ICA 577 

extracted the unrealistic component as a mix of several other components. CNMF on the 578 

other hand, did not detect this ROI. e. The temporal traces of twelve examples selected 579 

from the ROIs detected by both MIN1PIPE and PCA/ICA. A similar conclusion can be 580 

drawn in spatial footprints, whereas MIN1PIPE shows the best performance of temporal 581 

trace extraction. Faded traces in CNMF indicate the traces of the false positives.   582 
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Figure 5 583 

 584 

Fig. 5. Analysis of neural correlation in Area X of zebra finch to singing behavior. a. The 585 

traces of all automatically detected ROIs with MIN1PIPE superimposed with complete 586 

singing onsets in red dashed lines. Note that incomplete song events are not labeled and 587 

taken into analysis. b. Upper panel: two example neurons with precise song selectivity. 588 

The traces represent the neuronal activity of the first 20 complete song singing events with 589 

a window of 0.5 second before and 4.5 seconds after the song onset. The heatmap is another 590 

way of visualizing the analysis. The error bar graphs at the bottom show the trial average 591 

traces of the two neurons. Lower panel: population activity pattern of two example song 592 

singing events. The neurons are sorted to the latency of the peak. Red dashed lines indicate 593 

the onset of songs. 594 
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ONLINE METHODS595

NEURAL ENHANCING The neural enhancing module contains two steps of framewise596

operations. We denote X ∈ RP×T (P is number of pixels per frame, and T is number of597

frames) as the raw video after converting each two dimensional frame into a vector, and598

I ∈ RM×J (M and J are the height and width of a frame respectively) as a frame before599

vectorization.600

Denoising To first remove the spatial noise embedded in each frame introduced by the601

photoelectric process of the sensor, we apply denoising operation on each frame I using602

anisotropic diffusion [36].For a given diffusion time τ , the evolution follows the equation603

∂I
∂τ

= div(C∇I) , ∇C · ∇I + C∆I where C is the diffusive coefficient matrix depending604

on pixels and τ . By choosing concrete form of C and τ , we can control the smoothing605

level along or perpendicular to the boundaries between neurons and the background. Due606

to the simple structures in the cleaned imaging field, we choose the classical Perona-Malik607

filter C = exp
(
−‖∇I‖2

κ2

)
, where κ controls the threshold of high-contrast. The diffusivity is608

selected to preferentially smooth high-contrast regions, and κ and τ are chosen to allow high609

tolerance. We use κ = 0.5 and τ = 0.5 with a step size δt = 0.05 as the default parameters610

in anisotropic diffusion. The output image Is contains reduced spatial noise while preserves611

the boundary information of ROIs.612

Background Removal Based on the observation that neuronal ROIs are small in size613

compared to background structures, the gray-scale morphological opening operator with a614

binary structuring element matrix Φ can well estimate the background B from the frame615

I adaptively. The opening operator is the combination of erosion 	 and dilation ⊕: B =616

(I	Φ)⊕Φ (Van Den Boomgaard and Van Balen, 1992), where the morphological erosion617

returns minimum value (I 	 Φ)(x, y) = min(s,t)∈Φ{I(x + s, y + t)} and dilation returns618

1
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maximum value (I⊕Φ)(x, y) = max(s,t)∈Φ{I(x+ s, y + t)} within the same structuring619

window at each point. In practice, the choice of the structuring element should be comparable620

to the overall size of the neurons in the imaging field. We choose the structuring element621

to be of disk shape with a default size of 9 (pixels). The foreground is then computed as:622

If = I−B. After the dynamic background removal, If contains only neuronal information623

with minimal background noise corruption.624

MOVEMENT CORRECTION The movement correction module performs a hierarchi-625

cal registration framework over the frames of the imaging video. The neural enhanced video626

is first scored with a measuring metric on the relative displacement between two neighboring627

frames. The video is then segmented into stable or nonstable sections based on the score,628

followed by three levels of registration: the intra-stable-section, inter-stable-section and629

nonstable-section registration.630

Scoring Metric We track features containing corner information of every two neighboring631

frames using the KLT tracker, and then calculate the average displacement of these features.632

The KLT tracker first selects good features to track, where the feature points contains enough633

information on both directions within the neighborhood p. The problem can be formulated634

as∇p = 0 over the neighborhood. A good feature point is selected if the smaller eigenvalue635

σmin ≥ σ0 and the condition number κ = σmax

σmin
≤ κmax. Then the algorithm tracks the636

feature points based on Newton-Raphson minimization on the normal equation:637

As = b

where638

A = Σx∇Jf
t (x)∇Jf

t (x)>ω(x− xIft
) and b = Σx∇Jf

t (x)[Ift (x)− Jf
t (x)]>ω(x− xIft

)

2
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Jf
t and Ift are the moving and fixed frame of the tth registration pair after neural enhancing639

respectively (in this case, Jf
t = Ift+1), and ω(x) is the window of the neighborhood. For the640

scoring, we choose 31 pixels as the default window size of the neighborhood. To segment641

the frames into stable/nonstable sections, we compute the minimum value between the 3642

times of median absolute deviation (MAD) above median and upper limit threshold (0.5643

pixel as default) to be the threshold of segmentation. Any frame whose score is above644

the threshold is considered as one belonging to some stable section. The frames that are645

connected together are labeled as stable sections while the remaining connected components646

are nonstable ones.647

Intra-stable-section Registration Displacements with small magnitude or consistent648

directions can be approximated as translational displacement. Therefore, after the segmen-649

tation, movements within the stable sections can be considered translational. Within each650

stable section, an efficient displacement matching method with subpixel resolution is used651

to register the neighboring frames. Here we use a similar Lucas-Kanade tracker to track652

the center of the moving frames with a sufficiently large window (80% of the frame size)653

between two neighboring frames. However, when frame number within a section grows, the654

registration error may cumulate for later frames. Therefore, in practice we update the fixed655

frame as reference every second and all moving frames within that period are aligned to the656

fixed frame. This is acceptable due to the slow calcium dynamics so that the imaging field657

remains essentially similar within a second.658

Inter-stable-section Registration The imaging field is stable within each stable section659

after the intra-section registration. However, the imaging fields of different stable sections660

are not necessarily similar. Therefore, we need to align different stable sections without661

specific assumptions of the movement type. We first extract the overall information of each662

stable section by averaging the frames with significant neuronal activation, we then sort663
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these sectional images Iseci according to their similarity. To register the ith sectional image664

based on the sorted similarity, a reference image is generated by calculating the weights x̂665

using the least square regression between the registered frames and the current sectional666

image:667

Arefx = bcur

where668

Aref = (vec(Isec1 ), · · · , vec(Iseci−1)) and bcur = vec(Iseci )

The reference image is then reshaped into two dimensional matrix Rsec
i from bref = Arefx̂.669

Once we have the moving and fixed sectional images, we apply rigid preregistration to the670

moving image using similar KLT tracker. To finally correct for the nonrigid deformation, we671

apply the diffeomorphic Log-Demons to the preregistered image Îseci based on the reference672

Rsec
i . In general, the diffeomorphic Log-Demons is a non-parametric registration method,673

which aims at finding the displacement of all pixels by minimizing the global energy:674

E(c, s) =
1

σ2
i

Sim(F,M ◦ c) +
1

σ2
x

dist(s, c)2 +
1

σ2
T

Reg(s)

It consists of the similarity, correspondence and regularization items, where F and M are675

fixed and moving image respectively, and σi, σx and σT account for similarity, spatial676

uncertainty on the correspondence and regularization level. In specific, Log-Demons677

represents everything in log domain. It spells out two regularizing terms, fluid and diffusion,678

and uses a Lie group structure to impose diffeomorphism. In our implementation, we choose679

σi = σx = 1, and σfluid = σdiffusion = 3. Because all the frames within the same stable680

section share the same imaging field, the deformation field of the current stable section is681

then applied to warp all the frames. After registering all the stable sections iteratively, all682

the stable frames are efficiently aligned.683
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Nonstable-section Registration At the third level, only nonstable sections remain to be684

aligned. We use a similar approach as in the inter-section registration, where we first685

preregister the current frame to the reference image, and then apply Log-Demons to finely686

align the frame. Similarly, the reference image is computed based on some of the registered687

frames. For the ith nonstable section, this set of frames includes the last frame of the ith688

stable section, the first frame of the i+ 1th stable section, and the frames that have already689

been registered in the ith nonstable section.690

SEEDS-CLEANSED SIGNAL EXTRACTION We generate and cleanse the potential691

seeds of ROIs in this section, and create the initial spatial regions and the time series of692

ROIs for later refinement of the spatiotemporal signals.693

Over-complete Seeds Initialization To generate the initial set containing centers of all694

potential ROIs, we construct a randomized max pooling process to create an over-complete695

set of seeds. This process first randomly selects a portion of frames Isα = {Ist}t∈α,α ⊆696

{1, . . . , T}, where α is a randomized subset of frame number. We then compute the max-697

projection map across selected frames Imax = max(Isα), and further detect all the local max698

points on this map as S. We repeat the above procedures multiple times, and collect the699

union of each map S as the final over-complete set of neural seeds Sseeds. Our randomized700

max pooling can improve the true positives compared with max-pooling over the entire video,701

because a real seed can be buried in the uneven florescence of an ROI over a long period but702

can most likely be discovered in a small temporal vicinity. To exclude false positive seeds703

from the set, we propose the following two-stage algorithm for seeds refinement.704

Seeds Refinement with GMM The temporal properties of ROIs and non-ROIs can be705

very different. In one aspect, the ROIs often have prominent peak-valley difference d, while706

non-ROIs tend to be less spiky. We assume {ds|s ∈ Sseeds} are generated from a mixture707

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2018. ; https://doi.org/10.1101/311548doi: bioRxiv preprint 

https://doi.org/10.1101/311548
http://creativecommons.org/licenses/by-nc-nd/4.0/


of two Gaussians ds ∼
∑2

i=1 ωiN (d|µi, σ2
i ), where µi, σ2

i , ωi indicate the mean, variance,708

mixture proportion of the ith Gaussian component. Therefore, we can cluster the seeds709

based on their probabilities of belonging to each component, and only consider those having710

higher probabilities to the Gaussian with a larger mean as positive seeds.711

Seeds Refinement with LSTM To select true ROI seeds from the over-complete set,712

we need to classify the seeds based on their patterns of neuronal calcium dynamics. We713

propose to employ Recurrent Neural Networks (RNNs) (LeCun et al., 2015) for calcium714

signal sequence classification. We offline trained the RNNs with a separate training dataset,715

composed of both positive and negative sequence chunks of length T0 = 100, obtained716

with 10Hz frame rate. The training data for the RNN module were selected from a separate717

real dataset. The labels were manually selected by experienced neuroscientists with a718

conservative standard: the positive trials were the ones with most obvious calcium dynamics719

that were aligned to the peak of the spike, whereas the negative trials were randomly selected720

from the rest of the data. The training dataset contained 1000 positive and 1000 negative721

labels, and both the validation and the test set contained 600 balanced trials. Specifically,722

consider training data D = {D1, · · · ,DN}, where Dn , (yn, ln), with input sequence yn723

and output label ln ∈ {0, 1}. Our goal is to learn model parameters θ to best characterize724

the mapping from yn to ln with likelihood p(D|θ) =
∏N

n=1 p(Dn|θ). In our setting for725

sequence classification, the input is a sequence, y = {y1, . . . , yT0}, where yt is the input726

data at time t. There is a corresponding hidden state vector ht ∈ RK at each time t, obtained727

by recursively applying the transition function ht = g(ht−1,yt; W,U). W is encoding728

weights, and U is recurrent weights. The ouput c for our classification is defined as the729

corresponding decoding function p(c|hT0 ; V) = σ(VhT0), where σ(·) denotes the logistic730

sigmoid function, and V is decoding weights.731

The transition function g(·) can be implemented with a gated activation function, such as732

LSTM (Hochreiter and Schmidhuber, 1997) or a Gated Recurrent Unit (GRU) (Cho et al.,733
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2014). Both LSTM and GRU have been proposed to address the issue of learning long-term734

sequential dependencies. Each LSTM unit has a cell containing a state ct at time t. This cell735

can be viewed as a memory unit. Reading or writing the memory unit is controlled through736

sigmoid gates: input gate it, forget gate ft, and output gate ot. The hidden units ht are737

updated as follows:738

it = σ(Wiyt + Uiht−1 + bi) ,

ft = σ(Wfyt + Ufht−1 + bf ) ,

ot = σ(Woyt + Uoht−1 + bo) ,

c̃t = tanh(Wcyt + Ucht−1 + bc) ,

ct = ft � ct−1 + it � c̃t ,

ht = ot � tanh(ct) ,

(1)

where� represents the element-wise matrix multiplication operator. Note that the training of739

RNNs is completed off-line, only the efficient testing stage is performed for seeds refinement.740

In the testing stage, given an input ỹ (with missing label l̃), the estimate for the output is741

p(l̃|ỹ, θ̂), where θ̂ = arg max log p(D|θ). In our practical application, the testing sequence742

ȳ ∈ RT is often of length T > T0. We first convert it into a bag of subsequences {ỹi}T−T0+1
i=1 ,743

with a sliding window of width T0 and moving step size 1. The well trained LSTMs are then744

used to label the subsequences. We consider ȳ as positive if at least one subsequence in its745

bag is classified as "calcium spike" (l = 1), otherwise negative. Intuitively, this means that746

we only care about the patterns of neural spikes, regardless of their temporal positions.747

Seeds Merging Once the set of seeds is cleansed, there is still a low possibility of identi-748

fying multiple seeds within a single ROI. Therefore, we merge all these redundant seeds749

by computing the temporal similarity of seeds within their neighborhood, and preserving750

the one with maximum intensity. Specifically, we compute the similarity based on phase-751

locking information (Hahn et al., 2006). For a sequence, we extract the instantaneous phase752

dynamics using Hilbert transform, and only consider the subsequences containing prominent753

peaks, because all the pixels within the same ROI are highly correlated only during the754

calcium spiking periods, but not necessarily during baseline period. After seeds merging,755
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we obtain K seeds, as the number of ROIs in our MIN1PIPE.756

Spatial and Temporal Initialization The time series of the kth seed is used as initial757

guess of temporal signal ŝk. The spatial map of the corresponding ROI, r̂k, is estimated by758

pooling neighbor pixels with temporal similarity above a threshold. Because of our seeds759

generating and cleansing approach, the spatiotemporal initialization in our method can be760

readily parallelized. Then we fine-tune the corresponding spatial and temporal guess, by761

applying semi-NMF:762

min ‖zk − r̂kŝ>k ‖

where zk ⊂ Is is a region containing the kth ROI. The spatial map and the temporal signal763

are updated respectively:764

rk ← zksk(s
>
k sk)

−1 , sk ← sk

√
(rkzk)+ + sk(r>k rk)

−

(rkzk)− + sk(r>k rk)
+

where M+ , |M|+M
2

and M− , |M|−M
2

for any matrix M (Ding et al., 2010). In total, we765

now have K ROIs S0 = [s1, · · · , sK ], and temporal signals R0 = [r1, · · · , rK ]. Similarly,766

the background parameters b0,f 0 are also estimated by the same semi-NMF procedure,767

using (Is−
∑K

k=1 rks
>
k ). S0,R0, b0,f 0 are then used as initializations of the spatiotemporal768

signal refinement.769

Spatiotemporal Signal Refinement We perform the iterative spatial and temporal op-770

timizations to update the spatial footprints of individual ROIs, and the temporal traces771

with deconvolved spike trains, as proposed in CNMF. Specifically, for the neural enhanced772

video Xf, the method decomposes Xf into a spatial dictionary Rf ∈ RP×K representing773

individual ROIs, and corresponding temporal dynamics matrix Sf ∈ RT×K , in addition to774
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the background Bf and the background dynamics E:775

Xf = RfSf> + Bf + E

Similarly, with the rank-1 assumption on Bf, CNMF decomposes the background Bf =776

bff f>, where bf ∈ RP and f f ∈ RT . Meanwhile, Sf is also correlated with underlying777

action potential events: Af = Sf>Gf, where Af ∈ RK×T , and Gf ∈ RT×T is the coefficient778

matrix of the low-order autoregression. The variables Rf,Sf, bf,f f are therefore estimated779

via iteratively alternating between the following two steps [26].780

Estimating Spatial Variables Given the estimates of temporal variables Sf(`−1) and781

f f(`−1) from the last iteration, the spatial parameters can be updated by solving the problem:782

min
Rf,bf
‖Rf‖1, s.t. Rf, bf ≥ 0

‖Xf(i, :)−Rf(i, :)Sf(`−1)> − bf(i)f f(`−1)>‖ ≤ σi
√
T

where Xf(i, :) is the ith row of the matrix Xf, bf(i, :) is the ith element of the vector. εi
√
T783

is the empirically selected noise residual constraint of the corresponding pixel. This is784

essentially a basis pursuit denoising problem, and it is solved by the least angular regression785

(Efron et al., 2004) in implementation.786

Estimating Temporal Variables Given the estimates of spatial variables Rf, bf and787

temporal parameters Sf(`−1), f f(`−1) from the last iteration, the temporal parameters can be788

updated by solving the problem:789

min
Sf,ff

K∑
k=1

1>GfSf, s.t. Gfsfk ≥ 0, k = 1, · · · , K

‖Xf(i, :)−Rf(i, :)Sf(`−1) − bf(i)f f(`−1)>‖ ≤ σi
√
T
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Unlike in CNMF, where the spatial footprints are serially updated and subtracted from790

the preceding residuals, we extract spatial footprints from the original data that does not791

depend on preceding iterations. Therefore, the information loss/duplication is reduced and792

the optimization procedures can be parallelized in our method.793

Data availability The data that support the findings of this study are available from the794

corresponding authors upon request.795

Code availability The codes will be freely available upon publication, and the beta version796

is available for reviewers upon request.797
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