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Abstract 

Tumours evolve through time and space. To infer these evolutionary dynamics for DNA 
sequencing data, many subclonal reconstruction techniques have been developed and 
applied to large datasets. Surprisingly, though, there has been no systematic evaluation 
of these methods, in part due to the complexity of the mathematical and biological 
questions and the difficulties in creating gold-standards. To fill this gap, we 
systematically elucidated key algorithmic problems in subclonal reconstruction, and 
developed mathematically valid quantitative metrics for evaluating them. We then 
developed approaches to simulate realistic tumour genomes that harbour all known 
mutation types and processes. Finally, we benchmarked a set of 500 subclonal 
reconstructions, creating a key resource, and quantified the impact of sequencing read-
depth and somatic variant detection strategies on the accuracy of specific subclonal 
reconstruction approaches. Inference of tumour phylogenies is rapidly becoming 
standard practice in cancer genome analysis, and this work sets standards for 
evaluating its accuracy. 
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Introduction 

Most tumours arise from a single ancestral cell, whose genome has accumulated 
somatic driver mutations1,2, giving it a fitness advantage over its neighbours by, for 
example, manifesting some of the hallmark characteristics of cancers3. This ancestral 
cell and its descendants proliferate, ultimately giving rise to all cancerous cells within 
the tumour. Over time, tumour cells accumulate mutations, in some cases giving rise to 
further fitness advantage and leading to local clonal expansions that result in 
subpopulations of tumour cells sharing subsets of mutations, which we term 
“subclones”. As the tumour extends spatially beyond its initial site and around the body, 
spatio-genomic variability will arise as different regions harbour tumour cells with 
distinctive genetic characteristics4–8. 

DNA sequencing of tumours allows quantification of the frequency of a specific mutation 
within a tumour, based on measurements of the fraction of mutant sequencing reads, 
the copy number state of the locus and the tumour purity9,10. By aggregating these noisy 
frequency measurements across mutations within each subclone, a tumour’s sample 
subclonal architecture can be reconstructed from bulk sequencing data6,10. Subclonal 
reconstruction methods have proliferated rapidly in recent years11–14, and have already 
revealed key characteristics of tumour evolution4,7,15–19, spread20–22, and response to 
therapy23,24. However, to date, there has been no rigorous benchmarking of the relative 
or absolute accuracy of approaches for subclonal reconstruction. 

There are several reasons why such benchmarking has not yet been performed. First, it 
is difficult to identify a gold-standard for truth. While single-cell sequencing could 
theoretically provide ground truth, existing single-cell datasets do not provide sufficient 
depth and breadth to adequately assess subclonal reconstruction methods. Further, 
single-cell sequencing has distinctive and pervasive error profiles25. Alternative gold-
standard datasets may be generated using simulations. However, existing tumour 
simulation methods like BAMSurgeon26 neither create representative subclonal 
populations nor phase simulated variants, as required by some methods6,9. Second, it is 
unclear how subclonal reconstruction methods should be scored, even in the presence 
of a suitable gold-standard. For example, one key goal in reconstruction is identification 
of the mutations present in each subclonal lineage. Metrics are needed that penalize 
errors in both the number of subclonal lineages and the placement of mutations across 
them. Third, subclonal reconstruction methods are recent developments, and few 
groups have equal expertise with multiple tools. Rather, algorithm developers 
themselves are experts in parameterizing their own algorithm. Thus, an unbiased third-
party is needed to fairly compare the strengths and weaknesses of different methods. 

To fill this gap, we developed a crowd-sourced benchmarking Challenge: The ICGC-
TCGA DREAM Somatic Mutation Calling Tumour Heterogeneity Challenge (SMC-Het). 
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Challenge organisers simulated realistic tumours, developed robust scoring metrics and 
created a computational framework to facilitate unbiased method evaluation. Challenge 
participants then created re-distributable software images representing their methods. 
These images were run in an automated pipeline on a series of test tumours to evaluate 
the accuracy of their subclonal reconstructions. Here, we describe the creation of 
quantitative metrics for scoring tumour subclonality reconstructions. We then outline 
novel tools for constructing simulated tumours with realistic subclonal architecture. 
Finally, we characterise the sensitivity of subclonal reconstruction methodologies to 
somatic mutation callers and technical artefacts.  
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Results 

How should subclonal reconstruction methods be evaluated? 

Subclonal reconstruction is a complex procedure that involves estimating many 
attributes of the tumour, including its purity, number of lineages, and the phylogenetic 
relationships between lineages. We structured our evaluation of these attributes into 
three categories, which comprise the five sub-challenges of SMC-Het (Figure 1). Sub-
challenges 1 a, b, and c (SC1) quantify the ability of an algorithm to reconstruct global 
characteristics of tumour composition. Specifically, they evaluate each algorithm’s 
predictions of the total fraction of tumour cells or purity of the sample (SC1a), the 
number of subclonal lineages (SC1b), and the fraction of tumour cells or cellular 
prevalence and number of mutations associated with each subclone (SC1c). By 
contrast, sub-challenge 2 (SC2) evaluates how accurately each algorithm assigns 
individual single nucleotide variants (SNVs) to each subclonal lineage. It evaluates both 
their single-best guess at a hard assignment of SNVs to lineages (SC2a) and soft 
assignments represented through co-clustering frequencies (i.e. the probability that two 
SNVs are in the same lineage) (SC2b). Finally, sub-challenge 3 (SC3) evaluates the 
ability of algorithms to recover the phylogenetic relationships between subclonal 
lineages, again both from a single best hard assignment (SC3a) and based on soft 
assignments (SC3b). Taken together, these define seven specific outputs based on 
which subclonal reconstruction methods can be benchmarked. 

To quantify the accuracy of these seven outputs, we evaluated several candidate 
scoring metrics. We required each candidate metric to range from zero (very poor 
performance) to one (perfect performance). Appropriate metrics for SC1 were trivially 
identified (Online Methods), but SC2 and SC3 required us to test and modify existing 
metrics, and to develop new ones. As SC2 and SC3 involve assigning mutations to 
subclonal lineages, we required candidate metrics to satisfy three conditions20: 

1. The score decreases as the predicted number of subclonal lineages diverges 
from the true number of subclonal lineages. 

2. The score decreases as the proportion of mutations assigned to incorrect 
subclonal lineages (predicted subclonal lineages that do not correspond to the 
true subclonal lineage) increases. 

3. The score decreases as the proportion of mutations assigned to noise subclonal 
lineages (predicted subclonal lineages that do not correspond to any true 
subclonal lineage) increases. 

Note further that because SC2b and SC3b are based on pairwise probabilities of co-
clustering, we were unable to use clustering quality metrics, such as normalised mutual 
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information (NMI, also known as the V-measure27), that require hard clustering or 
explicit estimation of the number of clusters. 

Metrics for evaluating cluster assignments have a number of desirable properties27. We 
identified a set of these properties applicable to our task (Online methods), used a 
simulation framework to assess how well each metric satisfies these properties and 
identified four complementary metrics that satisfy all three properties: Matthew’s 
Correlation Coefficient (MCC), Pearson’s Correlation Coefficient (PCC), area under the 
precision recall curve (AUPR) and average Jensen-Shannon divergence (AJSD; 
Supplementary Figure 1). To further refine this set, we tested their behaviour relative 
to different types of subclonal reconstruction errors, such as inversion or merging of 
individual nodes. We assessed six error cases for SC2 and 27 for SC3 
(Supplementary Table 1), simulating each and scoring them with each candidate 
metric (Figure 2). For SC2, no individual metric ranked the errors in the expected order. 
To address this, we defined a composite metric, ψ, as the arithmetic mean of the AJSD, 
MCC and PCC, as these three metrics complemented one another (Figure 2), and their 
mean had both a near-optimal ranking and satisfied our three main requirements 
(Supplementary Figure 1). For SC3, we calculated the Spearman’s correlation 
between the ideal ranking and the metric ranking, and identified AJSD as the best 
approach (mean Spearman’s ρ = 94.11 95% CI: 93.9-94.3; Supplementary Table 2). 

Finally, for both SC2 and SC3, we scaled individual scoring metrics to [0,1] by 
computing an affine transform (i.e. a scale and an offset) so that the highest possible 
value receives a score of one. To set a baseline score of zero, we created two naive 
reconstructions: 1) One-cluster, all mutations are in a single subclone (i.e. cluster) and 
2) N-clusters in a star phylogeny, i.e. each mutation is its own cluster and the clusters 
are all mutually exclusive one of each other. The worst-scoring of these two possibilities 
was set as the baseline score of zero for SC2 and 0.5 for SC3. We set a higher baseline 
for SC3 as SC3 penalises phylogenetic errors as well as co-clustering errors leading to 
uniformly low scores that would hinder interpretation and downstream analysis. Any 
negative scores achieved by contestants after scaling are also set to zero. 

Simulating realistic subclonal tumour genomes 
We elected to use simulated tumour data to run SMC-Het. The key reasons were the 
unavailability of deep single-cell sequencing data as a gold-standard dataset, the lack of 
single-cell sequencing data that match arbitrary tree structures and characteristics, the 
ability to simulate a large number of tumours at low-cost, and the demonstrated ability of 
tumour simulations to recapitulate sequencing error profiles. We elected to use the 
BAMSurgeon tool created for the SMC-DNA Challenges26,28, which creates tumours 
with accurate SNVs, indels and small genomic rearrangements at varying allelic 
fractions. However, this tool lacked a number of key features associated with tumour 
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evolution, and therefore five major features were added: (1) the phasing of variants, (2) 
whole-chromosome and whole-genome copy number changes, (3) translocations, (4) 
trinucleotide signature injection, and (5) simulation of replication-timing effects (Figures 
3-4). We describe each of these briefly below. 

Phasing of mutations. To properly simulate a tumour it is critical that genetic variation of 
all types - both somatic and germline - are fully phased, as they are in real tumours. 
Because it relied solely on short-read sequencing, BAMSurgeon was unable to do this, 
so reconstruction of subclonal events did not yield the original tree structure (data not 
shown). To correctly phase all mutations, it is necessary to phase each read, i.e. 
determine which of the two homologous copies of each autosome it derives from. To 
achieve this, we leveraged NGS data from a trio of individuals from the Genome-in-a-
Bottle consortium (Supplementary Figure 2). First, we constructed an unphased set of 
variants using GATK-based germline SNP prediction, identifying 2,559,193 diploid 
heterozygous short insertions, deletions, and single nucleotide variants in the child 
sample. Next, we created the PhaseTools package to accurately phase these 
heterozygous variants. This phasing prioritised connections between alleles that were 
directly supported by NGS data. Due to the availability of both paired-end and 6 kbp 
mate-pair Illumina sequencing data for this sample, we were able to construct initial per-
chromosome phase sets (i.e. sets of heterozygous variants phased together) at a rate 
of 1 phase set per ∼12 kbp. The phasing was then extended by connecting phase sets 
using parent-of-origin information, in cases where this information could be computed 
by inspecting parental genotypes or parental NGS phasing. This increased the extent of 
our phase sets, decreasing their rate to 1 per ∼76 kbp. The phasing was extended once 
more by incorporating phasing information produced by Beagle, reaching an ultimate 
rate of 1 phase set per ∼86 kbp. We note that this long-range phasing could be 
obtained even without leveraging any long-read data. Remaining phase sets were then 
randomly rotated and collapsed to obtain a final complete phasing of all heterozygous 
variants in the child. Given the complete phasing of the variants described above, we 
used the bam-phase-split program, also part of PhaseTools, to phase each fragment in 
an NGS dataset of the child sample. The program inspected the reads in each 
fragment, collecting information for which alleles that fragment supported at each 
heterozygous variant, and combined that information in order to phase the fragment. 
Fragments not spanning any heterozygous variants were phased randomly. The final 
result of this process is two BAM files per chromosome, each representing a single 
phase. In male patients, we phased only the two well-known pseudo-autosomal regions 
(PAR1 and PAR2) that are homologous between chromosomes X and Y –  one phase 
set was kept in chromosome X while the other was re-mapped onto chromosome Y. 

Whole arm & whole genome copy number changes. Once we had fully phased the 
SNPs in the genome, the next step to create accurate simulations was to allow changes 
in copy number of entire chromosomes and whole-genome ploidy changes (e.g. whole 
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genome duplications present in 30-50% of human cancers29–31). To accomplish this, we 
developed a method to account for copy number changes, both gains and losses, for 
each chromosome, including sex chromosomes (Figure 3). Given a tumour design 
structure, the phased genomes were split further into individual subpopulations (leaf 
nodes) that make up the tumour population. We assigned a virtual number of reads, 
which we term pseudoreads, to each node based on the cellular prevalence of the 
node, gaining and losing reads as necessary to represent the copy number gains and 
losses. The proportions of reads were normalised based on the total number of pseudo-
reads. If at a leaf node, multiple DNA copies of a given genomic region existed, the 
reads were split evenly among the copies, and BAMSurgeon was used to spike 
mutations into each leaf node. The extracted reads were merged to generate the final 
tumour BAM file that had a logR profile consistent with the design (Figure 4). 

Translocations. Translocations are a critical type of oncogenic mutation, which was not 
included in the SMC-DNA simulated data challenges28. To address this gap, we 
developed a new approach. For two regions (named A and B), an unbalanced 
translocation is simulated by selecting reads aligned to region A and reads aligned to 
region B and assembling contigs for each set of reads. To control for contig mis-
assembly, each contig is aligned to the reference genome using exonerate32, any 
unaligned portion at the ends is trimmed, and reads corresponding to the trimmed 
portion(s) of the contigs are de-selected. The contig break-ends are then fused either 
head-to-tail or head-to-head depending on user specification. Read coverage is 
generated over the fused contigs using wgsim33. Finally, altered reads are re-aligned to 
the reference genome and used to replace reads in the original BAM file based on read 
name, creating a simulated translocation that accurately reflects the expected pattern of 
discordant read pair mappings and split reads. 

Trinucleotide mutation profile and replication timing. Single nucleotide mutations in 
cancer are not uniformly distributed throughout the genome. Rather, they are biased 
both regionally and locally. We have added the capability to BAMSurgeon to simulate 
the most common mutational biases of each type: trinucleotide signatures and 
replication-timing bias. Mutations result from specific mutagenic stresses, each of which 
leads to particular mutation types that occur at specific trinucleotide contexts, and may 
have a different mutation rate to other mutational processes34. Replication-timing bias 
refers to the increase in the mutation rate of regions of the genome that replicate late in 
the cell cycle35. We generated an extensible approach (Online Methods, Figure 4) that 
weights each nucleotide in the genome according to its trinucleotide context, replication 
timing, and the set of mutational signatures and then samples bases from the genome 
until the expected trinucleotide spectrum is reached. BAMSurgeon can handle arbitrary 
mutational signatures and arbitrary replication timing data at any resolution, and indeed 
this can be generalised to any type of location bias in mutational profiles. 
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Legacy and reproducibility 
To maximise reproducibility, for each SMC-Het entry made, participants were required 
to submit a working copy of their approach, which could then be applied to new data. 
This was accomplished using two technologies: Docker36 and Galaxy37. Docker is a 
technology for packaging a piece of software and all of its dependencies into a single 
container that can easily be moved and redeployed on new systems. To describe how 
the program should be invoked, and how the different steps of computation fit within the 
evaluation framework, the participants also included Galaxy tool wrappers and 
workflows. To enable development, participants were given a pre-built virtual machine 
image that could be deployed in their own Google project space. Once they were able 
to run a workflow on the test data, they could run a submission script that packaged the 
Docker image, Galaxy tool wrappers and workflow, and uploaded the package to 
Synapse for evaluation38. Workflows were then run on a set of held out samples. 

General features of subclonal reconstruction 
To confirm that the simulated tumours accurately reflected real tumours and to 
demonstrate that our scoring framework could identify factors known to impact 
subclonal reconstruction, we simulated, reconstructed and evaluated five tumours with a 
range of depths and somatic mutation callers. These five tumours were derived from 
different tissue types (prostate, lung, CLL, breast and colon) and all had previously 
described subclonal structures (Supplementary Figure 3). We then explored the 
sensitivity of subclonal reconstruction to both sequencing coverage and to the variant-
calling pipeline used. For sequencing coverage, we downsampled each tumour to 
create a titration series in raw read-depth of 8x, 16x, 32x, 64x and 128x coverage - this 
resulted in 25 tumour-depth combinations. For each of these, we then identified 
subclonal copy number aberrations (CNAs) using Battenberg6, both with downsampled 
tumours and at the highest possible depth, yielding 50 tumour-depth-CNA 
combinations. We identified somatic SNVs using four detection tools (Mutect39, 
SomaticSniper40, Strelka41, and MutationSeq42) as well as the perfect (spiked-in) 
somatic SNV calls, yielding 250 tumour-depth-CNA-SNV combinations. Subclonal 
reconstruction was then carried out on each of these using two algorithms (PhyloWGS 
and DPClust), to give a final set of 500 tumour-depth-CNA-SNV-subclonal 
reconstruction algorithm combinations, which were evaluated using the scoring 
framework described above (Supplementary Figure 4, Supplementary Table 3). 

Figure 5 shows the results of this large-scale benchmarking on SC1c (cellular 
prevalence of subclones) and SC2a (mutational profile of subclones). The top heatmap 
shows scores for high-depth CNA detection and the bottom scatterplot shows the score 
as a function of effective read-depth (i.e. number of reads per tumour chromosome, 
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after adjusting for purity and ploidy). For SC1c, all algorithms showed a consistent 
decrease with depth (Figure 5a, c). As expected, there was significant sensitivity to the 
somatic SNV caller, with the perfect calls outperforming those from any algorithm by a 
significant margin (β = 0.29, P = 0.013, generalised linear models). By contrast, the use 
of high-depth vs. low-depth sequencing for subclonal CNA detection had almost no 
influence on the reconstruction accuracy (P> 0.05 for all sub-challenges, generalised 
linear model; Supplementary Tables 4-10). Similarly, both PhyloWGS and DPClust 
performed very well, and essentially interchangeably on this question (Supplementary 
Figure 5, Supplementary Tables 4-10). 

This general profile of algorithm performance was mirrored for all sub-challenges with 
two exceptions, which outline differences between DPClust and PhyloWGS. In SC1a, 
DPClust, which uses purity measures derived from CNA reconstructions, showed a 
significant advantage over PhyloWGS, which uses purity measures partially dependent 
on SNV clustering. The latter are more sensitive to errors in VAF due to low sequencing 
depth and this is reflected in the pattern of SC1a scores. In SC2B, PhyloWGS, which 
uses a phylogenetically-aware clustering model, had significantly better performance 
than DPClust, which uses a flat clustering model (Supplementary Figure 5). Thus, our 
metrics are sensitive to differences in modelling approaches, which manifest in 
variability in performance on different aspects of subclonal reconstruction.  

All methods seemed to perform poorly on SC2a - identifying the mutational profiles of 
individual subclones (Figure 5b,d). Here, we saw major inter-tumour differences in 
performance, with tumour T2 having the least accurate reconstructions and T4 the most 
(Supplementary Figure 6). This in part reflects the higher purity of T4, and indeed we 
see a strong association between effective read-depth and reconstruction accuracy, 
with each doubling in read-depth increasing reconstruction score by about 0.1. At 
effective read-depths above 60x, all tumour-CNA-SNV-subclonal reconstruction 
combinations performed well, suggesting that a range of approaches can be effective 
for detection of subclonal mutational profiles. There remained a strong dependence of 
accuracy on the SNV detection pipeline, with perfect calls out-performing the best 
individual caller (MuTect) by ~0.05 at any given read-depth. Broadly, SomaticSniper and 
Strelka showed similar performance, but interestingly showed significant tumour-by-
caller interactions in generalised linear modelling for several sub-challenges 
(Supplementary Figure 5). This may reflect tumour-specific variability in their error 
profiles. As in SC1c, neither the use of low- vs. high-depth tumours for CNA detection 
nor the specific subclonal reconstruction algorithm used significantly influenced the 
accuracy of subclonal reconstruction. Taken together, these data suggest both that 
subclonal reconstruction accuracy is highly sensitive to upstream SNV detection 
approaches, and that there is significant room for algorithmic improvements that capture 
inter-tumour differences, build on prior distributions of phylogenies and better model the 
error characteristics of upstream feature-detection pipelines.  
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Discussion 

Increasingly large numbers of tumours receive genomic interrogation each year, and the 
extent of this interrogation grows as DNA sequencing costs diminish. While panel 
sequencing is ubiquitous today, whole genome sequencing will eventually achieve 
similar penetration. Nevertheless, it remains most common for just a single, spatially 
distinct region of a cancer to be sequenced in any such study. The reasons for this are 
many: the increase in costs with the number of tumour regions sequenced, the need to 
preserve tumour tissue for future clinical use and the increasing use of scarce biopsy-
derived specimens for sequencing in the diagnostic and metastatic settings. While 
robust subclonal reconstruction from multi-region sequencing is well-known5–8, the 
ability to accurately reconstruct evolutionary properties of tumours from single-region 
would open major new avenues for linking these to clinical features of tumours. 

We describe here a framework for evaluating such subclonal reconstruction methods, 
comprising a novel way of scoring the accuracy of relevant biological features of their 
outputs, a technique for robustly phasing short-read sequencing data, an enhanced 
read-level simulator of tumour genomes with realistic biological properties and a 
portable software framework in which multiple subclonal reconstruction algorithms can 
be rapidly executed in a consistent and predictable way. These features, each 
implemented in open-source software and reusable on their own, form an integrated 
system that allows identification of key algorithmic features of subclonal reconstruction. 
We use them to generate a titration-series that will serve as a key community resource 
for evaluating algorithm sensitivity to specific parameters. From this titration series, we 
quantify the sensitivity of subclonal reconstruction to both effective read depth and to 
the characteristics of specific somatic SNV detection pipelines. These data give key 
guidance for improving cancer genomics for subclonal reconstruction: increasing 
effective read-depth above 60x, after controlling for tumour purity and ploidy, enables 
accurate inference of multiple key evolutionary features from a single sample. They also 
provide new avenues for algorithm developers, highlighting the interactions of variant 
callers with specific tumour phylogenies, and the association of variant calling accuracy 
with subclonal reconstruction accuracy. 

In many areas of biology, ground-truth is either inaccessible or impractical to measure 
with precision. In cases like these, simulations are extremely valuable in providing a 
lower bound on error profiles and an upper bound on the accuracy of methods. By 
incorporating all currently known features of a phenomenon, simulators codify our 
understanding and the divergence between simulated results and real ones provides a 
quantitation of the gaps in our knowledge. The creation of an open-source, freely 
available simulator capturing most known features of cancer genomes thus represents 
one avenue for exploring the boundaries of our knowledge. 
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Moving forward, large-scale benchmarking of multiple subclonal reconstruction methods 
using this framework on larger numbers of tumours is needed to create a gold-standard. 
Such a benchmark would not only inform algorithm users, who will benefit from an 
understanding of the specific error profiles of different methods, but also algorithm 
developers, who will be able to update and improve methods, while ensuring software 
portability. Tumour simulation frameworks provide a valuable way for method 
benchmarking, and can help complement other approaches, like comparison of single-
region and multi-region subclonal reconstruction and the use of model organism and 
sample-mixing experiments.  
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Accession Codes 

Sequences files are available at EGA under study accession number 
EGAS00001002092. BAMSurgeon is available at: 
https://github.com/adamewing/bamsurgeon. The framework for subclonal mutation 
simulation is available at: http://search.cpan.org/~boutroslb/NGS-Tools-BAMSurgeon-
v1.0.0/. The PhaseTools BAM phasing toolkit is available at 
https://github.com/mateidavid/phase-tools. Scripts providing the complete scoring 
harness are available at: https://github.com/Sage-Bionetworks/SMC-Het-Challenge. 
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Figure Legends 

Figure 1 | Features of tumour subclonal reconstruction 

Overview of the key performance aspects of subclonal reconstruction algorithms, 
grouped into three broad areas covered by three key questions: (SC1) ‘What is the 
composition of the tumour?’ This involves quantifying its purity, the number of 
subclones, and their prevalence and mutation loads; (SC2) ‘What are the mutational 
characteristics of each subclone?’ This can be answered both with a point-estimate and 
a probability profile, i.e. a hard or probabilistic assignments of mutations to subclones, 
respectively; (SC3) ‘What is the evolutionary relationships amongst tumour subclones?’ 
This again can be answered with both a point-estimate and a probability profile. 

Figure 2 | Quantifying the performance of subclonal reconstruction 
algorithms 

(a) Eight of the 27 possible metric error cases used to assess how well metrics reflect 
expert opinion of subclonal reconstruction error ordered from most to least severe. (b,d) 
Scores resulting from the candidate metrics for SC2A (b) and SC2B (d) for error cases 
observable through the co-clustering of mutations (without yet inferring any phylogenetic 
relationships). (c) Scores resulting from the candidate metrics for SC3A (c) and SC3B 
(e), regarding the inference of phylogenetic relationships, for each error case shown in 
(a). All considered metrics converge on the same score for 3A after normalization. 

Figure 3 | Simulating subclonal CNAs in Tumour BAM files 

Example case of read number adjustment to simulate subclonal copy number 
aberrations (CNAs). (a) Desired structure of the tumour being simulated. (b) The first 
tumour clone (70% CP) has a gain in one copy (referred to as copy A) of chromosome 1 
and one of its descendant subclones (55% CP) bears a loss of the Y chromosome. (c) 
Read number adjustment calculations. The copy number total (CNT) for each 
chromosome is its copy number by adjusted by node cellular prevalence summed 
across all nodes. The maximum CNT across the genome is retained to normalise copy 
number for all chromosomes. The number of reads assigned to each chromosome at 
each node (the chromosome’s effective read number) is then computed as the product 
of the node’s cellular prevalence, the chromosome’s copy number, and the total tumour 
depth normalised by the maximum CNT. (c) After adjusting read number for CNAs in 
each node and adding additional mutations, BAMSurgeon merges the extracted reads 
into a final BAM file.  
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Figure 4 | Simulating realistic tumour genomes 

To create BAM files that accurately mirror those from real human tumours, we 
expanded the BAMSurgeon framework. We used Genome-In-A-Bottle data to provide a 
high-coverage normal for simulation, and then developed PhaseTools - an approach to 
phase short-read sequencing data. Panel (1) outlines the increased length of phased 
contigs from using only NGS data (median ~15 kbp regions) to using the full 
PhaseTools pipeline (~85 kbp regions). Next, we expanded BAMSurgeon to handle 
changes in chromosome number, with mutational changes before and after these ploidy 
changes. Panel (2) gives an exemplar of this behaviour, showing the logR ratio of 
different tumour subclones as simulated chromosomes are lost and gained. Finally, we 
enhanced the simulation of SNVs to allow for trinucleotide mutational signatures and 
replication timing effects. Panel (3) illustrates how the simulated composite trinucleotide 
signature (bottom) matches the design (top). 

Figure 5 | Error profiles of subclonal reconstruction algorithms 

To identify general features of subclonal reconstruction algorithms, we created a set of 
tumour-depth-CNA-SNV-subclonal reconstruction algorithm combinations by using the 
framework outlined in Figure 3 and 4 to simulate five tumours with known subclonal 
architecture, followed by evaluation of two CNA detection approaches, five SNV 
detection methods, five read-depths and two subclonal reconstruction methods. The 
resulting reconstructions were scored using the scoring harness described in Figure 2, 
creating a dataset to explore general features of subclonal reconstruction methods. All 
scores are normalised to the score of the best performing algorithm when using perfect 
calls at the full tumour depth. Scores exceeding this baseline likely represent noise or 
overfitting and were capped at 1. a) For SC1C (identification of the number of subclones 
and their cellular prevalence), all combinations of methods perform well. b) c) By 
contrast, for SC2a (detection of the mutational characteristics of individual subclones), 
there is large inter-tumour variability in performance. (c) Score for SC1C (same as a) as 
a function of effective read-depth (depth after adjusting for purity and ploidy) improves 
with increased read-depth, and also changes with the somatic SNV detection method, 
with MuTect performing best, but still lagging perfect SNV calls by a significant margin. 
d) Scores in SC2A show significant changes in performance as a function of effective 
read-depth. 
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Supplementary Figure Legends 

Supplementary Figure 1 

(a) The score for each candidate 2A metric considered with an increasing proportion of 
mutations assigned to the wrong useful clusters. (b) The score for each candidate 
metric considered with an increasing proportion of mutations in noise clusters. (c) The 
score for each candidate metric considered as the number of predicted clusters 
increases. The true number of clusters (four) is marked by the vertical line. Excess 
clusters retain correct co-clustering and are subsets of the true clusters. (d) For each 
potential scoring metric, the proportion of simulation runs that satisfied each of the four 
desirable metric properties for a given simulation parameter setting. Each property is 
tested by fixing all but one of the simulation parameters and then looking at the effect of 
changing the fourth parameter on the metric score. 

Supplementary Figure 2 

Example of the PhaseTools algorithm constructing an extended phase set from four 
heterozygous sites by leveraging NGS and parent phasing. (a) ngs_phasing of 5 
heterozygous sites(hets) in the child and the corresponding nsg-phased sites in the 
mother and father, shown with informative NGS fragments. Hets boxed together 
represent phase sets. There is not enough information to construct a single phase set. 
(b) parent_base phasing uses parental genotypes to assign parent of origin to the 5 
hets in the child. Hets 2 and 5 remain unresolved while hets 1, 3, and 4 show at least 
one unambiguous parent of origin. (c) parent_ngs phasing extends parent_base 
phasing with parental NGS fragments from ngs_phasing. The linked NGS fragment in 
sites 2 and 3 (T, T) of the maternal genotype is not informative as site 3 is homozygous, 
however the linked NGS fragment in sites 2 and 3 (T and A) of the paternal genotype is 
heterozygous and therefore informative. The phasing proposed by ngs_father of sites 3 
and 4 (GG/AC) contradicts parent of origin information in hets 3 and 4 (A and G). This 
event is recognised as a pre-meiosis recombination event in the child and the 
ngs_father phasing is ignored. (d) ngs+parent_ngs phasing extends ngs_child phasing 
with parent_ ngs, giving priority to ngs_child phasing. NGS fragments such as hets 2 
and 3 (T and T) take precedent over any phasing assigned by parent_ngs phasing see 
hets 2 and 3 (C and T) and indicate probable recombination events (shown with 
diagonal lines). Two possible sets of recombination events are shown. The proximity 
between phased hets determines which recombination events are most probable. Here, 
the recombination events shown on the right are selected, as recombination between 
sites 1 and 2 is more likely than recombination between sites 3 and 4, as sites 1 and 2 
are further apart. The final phase sets are shown. (e) Schematic of phase-set 
reconstruction. Priority is given to procedures on the left. 

Supplementary Figure 3 

True subclonal structures of the simulated tumours (T2, T3, T4, T5, and T6) that were 
simulated with their desired and observed variant allele frequency histograms and logR 
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profiles. In each panel, we show the phylogenetic tree, inspired by published 
reconstructed tumours, and the mutations associated with each (sub)clone. The top 
figures compared expected cancer cell fractions of the SNVs under a diploid setting, 
against the inferred cancer cell fractions from the simulated data. T5, for which the 
inferred purity is off due to the limitations of the copy number caller to call subclonal 
whole genome duplication, shows an observed space that departs from the expected. 
The bottom figures compare the observed and expected BAF and logR of the genomic 
segments identified by the copy number caller. 

Supplementary Figure 4 

Subclonal reconstruction scores based on the five tumours with each variant caller-
depth-algorithm combination. All scores are normalised to the score of the best 
performing algorithm using perfect calls at the full tumour depth. Scores exceeding this 
baseline likely represent noise or overfitting and were capped at 1. (a) Scores for 1A are 
uniformly high. (b) Scores for SC1B improve with depth and but not continuous as the 
metric reflects a true proportion. (c,d) Scores for SC2B (c) and SC3B(d) closely mirror 
those of SC2A and SC3A, respectively. 

Supplementary Figure 5 

Comparison of subclonal reconstruction scores for each sub-challenge using 
PhyloWGS (x-axis) and DPClust (y-axis). Variant callers are coded by colour and 
tumours are coded by symbol.  

Supplementary Figure 6 

SC2A score increases with effective depth for all tumours but the effect of the variant 
caller depends on the tumour. (a) T2 (b) T3 (c) T4 (d) T5 (e) T6. 
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Question 1: Tumour Composition Question 2: Mutational profiles 

Question 3: Phylogeny 
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