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Abstract: 14 

Esophageal Adenocarcinoma (EAC) is a poor prognosis cancer type with rapidly rising incidence. Our 15 

understanding of genetic events which drive EAC development is limited and there are few molecular 16 

biomarkers for prognostication or therapeutics. We have accumulated a cohort of 551 genomically 17 

characterised EACs (73% WGS and 27% WES) with clinical annotation and matched RNA-seq. Using a 18 

variety of driver gene detection methods we discover 65 EAC drivers (66% novel) and describe 19 

mutation and CNV types with specific functional impact. We identify a mean of 3.7 driver events per 20 

case derived almost equally from copy number events and mutations. We compare driver mutation 21 

rates to the exome-wide mutational excess calculated using Non-synonymous vs Synonymous 22 

mutation rates (dNdS). We see mutual exclusivity or co-occurrence of events within and between a 23 

number of EAC pathways (GATA factors, Core Cell cycle genes, TP53 regulators and the SWI/SNF 24 

complex) suggestive of important functional relationships. These driver variants correlate with tumour 25 

differentiation, sex and prognosis. Poor prognostic indicators (SMAD4, GATA4) are verified in 26 

independent cohorts with significant predictive value. Over 50% of EACs contain sensitising events for 27 
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CDK4/6 inhibitors which are highly correlated with clinically relevant sensitivity in a panel EAC cell 28 

lines.  29 

 30 

Introduction 31 

Esophageal cancer is the eighth most common form of cancer world-wide and the sixth most 32 

common cause of cancer related death1. Esophageal Adenocarcinoma (EAC) is the predominant 33 

subtype in the west, including the UK and the US. The incidence of EAC in such countries has been 34 

rapidly rising, with a seven-fold increase in incidence over the last 35 years in the US2. EAC is a highly 35 

aggressive neoplasm, usually presenting at a late stage and is generally resistant to chemotherapy, 36 

leading to five-year survival rates below 15%3. It is characterised by very high mutation rates in 37 

comparison to other cancer types4 but also, paradoxically, there is a paucity of recurrently mutated 38 

genes. EACs also display dramatic chromosomal instability and thus may be classified as a C-type 39 

neoplasm which may be driven mainly by structural variation rather than mutations5,6. Currently our 40 

understanding of precisely which genetic events drive the development of EAC is highly limited and 41 

consequentially there is a paucity of molecular biomarkers for prognosis or targeted therapeutics 42 

available in the clinic.  43 

Driver events undergoing positive selection during cancer evolution are a small proportion 44 

of total number of genetic events that occur in each tumour7. Methods to differentiate driver 45 

mutations from passenger mutations use features associated with known driver events to detect 46 

regions of the genome, often genes, in which mutations are enriched for these features8. The 47 

simplest of these features is the tendency of a mutation to co-occur with other mutations in the 48 

same gene at a high frequency, as detected by MutsigCV9. MutsigCV has been applied on several 49 

occasions to EAC cohorts6,10,11 and has identified ten known cancer genes as high confidence EAC 50 

drivers (TP53, CDKN2A, SMAD4, ARID1A, ERBB2, KRAS, PIK3CA, SMARCA4, CTNNB1 and FBXW7). 51 
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However these analyses leave most EAC cases with only one known driver mutation, usually TP53, 52 

due to the low frequency at which other drivers occur. Equivalent analyses in other cancer types 53 

have identified three or four drivers per case12,13. Similarly, detection of copy number driver events 54 

in EAC has relied on identifying regions of the genome recurrently deleted or amplified, as detected 55 

by GISTIC10,14-17. However, GISTIC identifies relatively large regions of the genome, containing 56 

hundreds of genes, with little indication of which specific gene-copy number aberrations (CNAs) may 57 

actually confer a selective advantage. There are also several non-selection based mechanisms which 58 

can cause recurrent CNAs, such as fragile sites where a low density of DNA replication origins causes 59 

frequent structural events at a particular loci. These have not been differentiated properly from 60 

selection based recurrent CNAs18. 61 

Without proper annotation of the genomic variants which drive the biology of EAC tumours 62 

we are left with a very large number of events, most of which are likely to be inconsequential, 63 

making it extremely difficult to detect statistical associations between genomic variants and various 64 

biological and clinical parameters. To address these issues, we have accumulated a cohort of 551 65 

genomically characterised EACs using our esophageal ICGC project, which have high quality clinical 66 

annotation, associated whole genome sequencing (WGS) and RNA-seq on cases with sufficient 67 

material. We have augmented our ICGC WGS cohort with publically available whole exome19 and 68 

whole genome sequencing20 data. We have applied a number of complementary driver detection 69 

tools to this cohort, using a range of driver associated features combined with analyses of RNA 70 

expression to produce a comprehensive assessment and characterisation of mutations and CNAs 71 

under selection in EAC. We then use these events to define functional cell processes that have been 72 

selectively dysregulated in EAC and identify novel, clinically relevant biomarkers for prognostication, 73 

which we have verified in independent cohorts. Finally, we have used this compendium of EAC 74 

driver variants to provide an evidence base for targeted therapeutics, which we have tested in vitro.  75 

 76 
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Results 77 

A Compendium of EAC driver events and their functional effects 78 

In 551 EACs we called a total of 11,813,333 single nucleotide variants (SNVs) and small insertions or 79 

deletions (Indels), with a median of 6.4 such mutations / Mb (supplementary figure 1), and 286,965 80 

copy number aberrations (CNAs). We also identified 134,697 structural variants (SVs) in WGS cases. 81 

Mutations or copy number variants under selection were detected using specific driver associated-82 

mutation features (Fig 1A). We use several complementary driver detection tools to detect each 83 

feature, and each tool underwent quality control to ensure reliability of results (see methods). These 84 

features include highly recurrent mutations within a gene (dNdScv21 and MutsigCV29), high 85 

functional impact mutations within a gene (OncodriveFM22), mutation clustering (OncodriveClust23, 86 

eDriver24 and eDriver3D25) and recurrent amplification or deletion of genes (GISTIC14) undergoing 87 

concurrent over or under-expression (see methods) (Fig 1A)8.   88 

These complementary methods produced highly significant agreement in calling EAC driver 89 

genes, particularly within the same feature-type (Supplementary Figure 2) and on average more 90 

than half of the genes identified by one feature were also identified by other features (Fig 1B). In 91 

total sixty five EAC driver genes were discovered, 64% of which have not been detected in EAC 92 

previously10,11,15-17,19. Of the sixty five gene identified, 82% are known drivers in pan-cancer analyses 93 

giving confidence in our methods21,26,27. 94 

EAC is notable among cancer types for harbouring a high degree of chromosomal 95 

instability20. Using GISTIC we identified 126 recurrently deleted or amplified loci across the genome 96 

(Fig 2A). To determine which genes within these loci confer a selective advantage when they 97 

undergo CNAs we use a subset of 119 cases with matched RNA-seq to detect genes within these loci 98 

in which homozygous deletion or amplification causes a significant under or over-expression 99 

respectively, a prerequisite for selection of CNAs. The majority of genes in these regions showed no 100 
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CN associated expression change (74%). We observed highly significant expression changes in 17 101 

known cancer genes within GISTIC peaks such as ERBB2, KRAS and SMAD4 which we designate high-102 

confidence EAC drivers. We also found five tumour suppressor genes where copy number loss was 103 

not necessarily associated with expression modulation but tightly associated with presence of 104 

mutations leading to LOH, for example ARID1A and CDH11. To determine whether copy number 105 

changes in genes not previously associated with cancer may contribute to oncogenesis we searched 106 

for genes with similar expression-CN profile as most of our high-confidence drivers (see methods). 107 

We found 74 such cases which we designated “candidate copy number (CN) drivers” (supplementary 108 

tables 1 and 2). Several GISTIC loci contained only one candidate driver such as ZNF131, PRKCI and 109 

MYBL2 which are promising candidates for further study. 110 

 In a subset of GISTIC loci, we observed extremely high copy number amplification, 111 

commonly greater than 100 copies, and these loci were highly correlated with presence of CN-112 

drivers (Wilcox test, p<Ex10-6) (Supplementary Figure 3). To discern a mechanism for these ultra-high 113 

amplifications we assessed structural variants (SVs) associated with these events and the copy 114 

number steps surrounding them. For many of these events the extreme amplification was produced 115 

largely from a single copy number step the edges of which were supported by structural variants 116 

with ultra-high read support. Two examples are shown in Fig2B. In the first example an inversion has 117 

been followed by circularisation and amplification KRAS and in the second circularisation and 118 

amplification initially occurred around MYC but subsequently incorporated ERBB2 from an entirely 119 

different chromosome. A pattern of extrachromosomal amplification via double minutes has been 120 

previously noted in EAC20, and hence we refer to this amplification class with ultra-high amplification 121 

(Ploidy adjusted Copy number >10) as ‘extrachromosomal-like’. Several deletion loci co-align with 122 

fragile sites (Fig 2A). Most deletion loci were dominated by heterozygous deletions while a small 123 

subset had a far higher percentage of homozygous deletions including CDKN2A and several 124 

associated with fragile site loci (Fig. 2A). For some cases we may have been unable to identify drivers 125 

in loci simply because the aberrations do not occur in the smaller RNA-seq matched cohort.  126 
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We found extrachromosomal-like amplifications had an extreme and highly penetrant 127 

effects on expression while moderate amplification (ploidy adjusted copy number > 2) and 128 

homozygous deletion had highly significant (Wilcox test, p<Ex10-4 and p<Ex10-3 respectively) but less 129 

dramatic effects on expression with a lower penetrance (Fig 2C). This lack of penetrance was 130 

associated with low cellularity (fisher’s exact test, expression cut off = 2.5 normalised FPKM, p<0.01) 131 

in amplified cases but also likely reflects that genetic mechanisms other than gene-dosage can 132 

modulate expression in a rearranged genome. We also detected several cases of over expression or 133 

complete expression loss without associated CN changes which may reflect non-genetic mechanisms 134 

for driver dysregulation. For example, one case overexpressed ERBB2 at 28-fold median expression 135 

however had entirely diploid CN in and surrounding ERBB2 and a second case contained almost 136 

complete loss of SMAD4 expression (0.008-fold median expression) despite possessing 5 copies of 137 

SMAD4. 138 

 139 

Landscape of driver Events in EAC 140 

The overall landscape of driver gene mutations and copy number alterations per case is depicted in 141 

Figure 3A. These comprise both oncogenes and tumour suppressor genes activated or repressed via 142 

different mechanisms. Occasionally different types of events are selected for in the same gene, such 143 

as KRAS which harbours both activating mutations and amplifications in 19% of cases. Passenger 144 

mutations occur by chance in most driver genes. To quantify this we have used the 145 

observed:expected mutation ratios (calculated by dNdScv) to estimate the percentage of driver 146 

mutations in each gene and in different mutation classes. For many genes, only specific mutation 147 

classes appear to be under selection. Many tumour suppressor genes; ARID2, RNF43, ARID1B for 148 

example, are only under selection for truncating mutations; ie splice site, nonsense and frameshift 149 

Indel mutations, but not missense mutations which are passengers. However, oncogenes, like 150 

ERBB2, only contain missense drivers which form clusters to activate gene function in a specific 151 
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manner. Where a mutation class is <100% driver mutations, mutational clustering can help us define 152 

the driver vs passenger status of a mutation (supplementary figure 4). Clusters of mutations 153 

occurring in EAC or mutations on amino acids which are mutation hotspots in other cancer types28 154 

(supplementary table 3) are indicated in figure 3A. Novel EAC drivers of particular interest include 155 

B2M, a core component of the MHC class I complex and resistance marker for Immunotherapy29, 156 

MUC6 a secreted glycoprotein involved in gastric acid resistance and ABCB1 a channel pump protein 157 

which is associated with multiple instances of drug resistance30. Lollipop plots showing primary 158 

sequence distribution of mutations in these genes are provided (supplementary data). 159 

The identification of driver events provides a rich information about the molecular history of 160 

each EAC tumour. We detect a median of four events in driver genes per tumour (IQR = 3-6, Mean = 161 

5.1) and only a very small fraction of cases have no such events detected (11 cases, 2%). When we 162 

remove the predicted percentage of passenger mutations using dnds ratios we find a mean of 3.7 163 

true driver events per case which derive quite evenly from both copy number events and mutations 164 

(Fig 3B).  dNdScv, one of the driver gene detection methods used, also analyses the genome-wide 165 

excess of non-synonymous mutations based on expected mutation rates to assess the total number 166 

of driver mutations across the exome which is calculated at 4.8 (95% CIs: 3.7-5.9) in comparison to 167 

2.1 driver mutations which we calculate in our gene-centric analysis after passenger removal. This 168 

suggests low frequency driver genes may be prevalent in the EAC mutational landscape (see 169 

discussion). Further analysis suggests these missing mutations are mostly missense mutations and 170 

our gene-centric analysis captures almost all predicted splice and nonsense drivers (Supplementary 171 

Figure 5). Some of our methods use enrichment of nonsense and splice mutations as a marker of 172 

driver genes and hence have a higher sensitivity for these mutations. 173 

To better understand the functional impact of driver mutations we analysed expression of 174 

driver genes with different mutation types and compared their expression to normal tissue RNA, 175 

which was sequenced alongside our tumour samples (Figure 3C). Since surrounding squamous 176 
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epithelium is a fundamentally different tissue, from which EAC does not directly arise, we have used 177 

duodenum and gastric cardia samples as gastrointestinal phenotype controls, likely to be similar to 178 

the, as yet unconfirmed, tissue of origin in EAC. A large number of driver genes have upregulated 179 

expression in comparison to normal controls, for example TP53 has upregulated RNA expression in 180 

WT tumour tissue and in cases with missense (non-truncating) mutations but RNA expression is lost 181 

upon gene truncation. In depth analysis of different TP53 mutation types reveals significant 182 

heterogeneity within non-truncating mutations, for example R175H mutations correlate with low 183 

RNA expression (supplementary figure 6). Normal tissue expression of CDKN2A suggests that 184 

CDKN2A is generally activated in EAC and returns to physiologically normal levels when deleted. 185 

Heterogeneous expression in WT CDKN2A cases suggest a different mechanism of inhibition such as 186 

methylation in some cases. Overexpression of other genes in wild type tumours, such as SIN3A, may 187 

be a confer selective advantage due to their oncogenic properties, in this case cooperating with 188 

MYC, which is also overexpressed in EACs (Fig 3C). A smaller number of driver genes are 189 

downregulated in EAC tissue- 3/4 of these (GATA4, GATA6 and MUC6) are involved in the 190 

differentiated phenotype of gastrointestinal tissues and may be lost with tumour de-differentiation. 191 

Driving alterations in these genes have been observed in other GI cancers13,31,32 however their 192 

oncogenic mechanism is unknown. In most genes we did not observe expression loss at the RNA 193 

level with truncation, for instance ARID1A (supplementary figure 7). 194 

  195 

Dysregulation of specific pathways and processes in EAC 196 

It is known that selection preferentially dysregulates certain functionally related groups of genes and 197 

biological pathways in cancer33. This phenomenon is highly evident in EAC, as shown in Figure 4 198 

which depicts the functional relationships between EAC drivers. This provides greater functional 199 

homogeneity to the landscape of driver events. 200 
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 While TP53 is the dominant driver in EAC, 30% of cases remain TP53 wildtype. MDM2 is a E3 201 

ubiquitin ligase that targets TP53 for degradation. Its selective amplification and overexpression is 202 

mutually exclusive with TP53 mutation suggesting it can functionally substitute the effect of TP53 203 

mutation via its degradation. Similar mutually exclusive relationships are observed between; KRAS 204 

and ERBB2, GATA4 and GATA6 and Cyclin genes (CCNE1, CCND1 and CCND3). Activation of the Wnt 205 

pathway occurs in 19% of cases either by mutation of phospho-residues at the N terminus of -206 

catenin, which prevent degradation, or loss of Wnt destruction complex components like APC. Many 207 

different chromatin modifying genes, often belonging to the SWI/SNF complex, are also selectively 208 

mutated (31% of cases). In contrast SWI/SNF genes are co-mutated significantly more often than we 209 

would expect by chance (fisher’s exact test, p<0.01 see methods), suggesting an increased advantage 210 

to further mutations once one has been acquired. We also assessed mutual exclusivity and co-211 

occurrence in genes in different pathways and between pathways themselves (Figure 4B). Of 212 

particular note are co-occurring relationships between TP53 and MYC, GATA6 and SMAD4, Wnt and 213 

Immune pathways as well as mutually exclusive relationships between ARID1A and MYC, 214 

gastrointestinal (GI) differentiation and RTK pathways and SWI-SNF and DNA-Damage response 215 

pathways. We were able to confirm some of these relationships in independent cohorts in different 216 

cancer types (supplementary table 4) suggesting some of these may be pan-cancer phenomenon.  As 217 

shown in figure 3, all of these pathways interact to stimulate the G1 to S phase transition of the cell 218 

cycle via promoting phosphorylation of Rb, although many of these pathways have multiple 219 

oncogenic or tumour suppressive functions.  220 

A number of other driver genes have highly related functional roles including core 221 

transcriptional components (TAF1 and POLQ), drivers of immune escape (JAK1 and B2M29), cell 222 

adhesion receptors (CDH1, CHDL and PCDH17), core ribosome components (ELF3 and RPL22), core 223 

RNA processing components (GPATCH8 and COIL), ion channels (KCNQ3 and TRPA1) and Ephrin 224 

type-A receptors (EPHA2 and EPHA3).  225 
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Clinical significance of driver variants 226 

Events undergoing selection during cancer evolution influence tumour biology and thus impact 227 

tumour aggressiveness, response to treatment and patient prognosis as well as other clinical 228 

parameters. Clinical-genomic correlations can provide useful biomarkers but also give insights into 229 

the biology of these events.  230 

 Univariate Cox regression was performed for events in each driver gene with driver events 231 

occurring in greater than 5% of EACs (ie after removal of predicted passengers, 16 genes) to detect 232 

prognostic biomarkers (Fig 5A). Events in two genes conferred significantly poorer prognosis after 233 

multiple hypothesis correction, GATA4 (HR : 0.54 , 95% CI : 0.38 – 0.78, P value = 0.0008) and SMAD4 234 

(HR : 0.60 , 95% CI : 0.42 – 0.84, P value = 0.003). Both genes remained significant in multivariate Cox 235 

regression including pathological tumour stage (GATA4 = HR adjusted : 0.63, 95% CIs adjusted : 0.40 236 

- 0.98, P value = 0.042 and SMAD4 = HR adjusted : 0.63, 95% CI adjusted : 0.41 – 0.97,  P value = 237 

0.038). 31% of EACs contain either SMAD4 mutation or homozygous deletion or GATA4 amplification 238 

and cases with both genes altered had a poorer prognosis (figure 5B).  We validated the poor 239 

prognostic impact of SMAD4 events in an independent TCGA gastroesophageal cohort (HR = 0.58, 240 

95% CI = 0.37 – 0.90, P value =0.014) (Fig 5C) and we also found GATA4 amplifications were 241 

prognostic in a cohort of TCGA pancreatic cancers (HR = 0.38 95% CI: 0.18 – 0.80, P value = 0.011) 242 

(Fig 5D), the only available cohort containing a feasible number of GATA4 amplifications. The 243 

prognostic impact of GATA4 has been suggested in previously published independent EAC cohort16 244 

although it did not reach statistical significance after FDR correction and SMAD4 expression loss has 245 

been previously linked to poor prognosis in EAC34. We also noted stark survival differences between 246 

cases with SMAD4 events and cases in which TGF receptors were mutated (Fig 5E, HR = 5.6, 95% CI 247 

: 1.7 – 18.2, P value = 0.005) in keeping with the biology of the TGF pathway where non-SMAD 248 

TGF signalling is known to be oncogenic35. 249 
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In additional to survival analyses we also assessed driver gene events for correlation with 250 

various other clinical factors including differentiation status, sex, age and treatment response. We 251 

found Wnt pathway mutations had a strong association with well differentiated tumours (p=0.001, 252 

OR = 2.9, fisher’s test, see methods, Fig 5F). We noted interesting differences between female 253 

(n=81) and male (n=470) cases. Female cases were enriched for KRAS mutation (p = 0.001, fisher’s 254 

exact test) and TP53 wildtype status (p = 0.006, fisher’s exact test) (Fig 5G). This is of particular 255 

interest given the male predominance of EAC3.  256 

 257 

Targeted therapeutics using EAC driver events. 258 

The biological distinctions between normal and cancer cells provided by driver events can be used to 259 

derive clinical strategies for selective cancer cell killing.  To investigate whether the driver events in 260 

particular genes and/or pathways might sensitise EAC cells to certain targeted therapeutic agents 261 

we used the Cancer Biomarkers database36. We calculated the percentage of our cases which 262 

contain EAC-driver biomarkers of response to each drug class in the database (summary shown Fig 263 

6A, and full data supplementary table 5). Aside from TP53, which has been problematic to target 264 

clinically so far, we found a number of drugs with predicted sensitivity in >10% of EACs including 265 

EZH2 inhibitors for SWI/SNF mutant cancers (23% and 33% including other SWI/SNF EAC 266 

drivers), and BET inhibitors which target KRAS activated and MYC amplified cases (25%). However, 267 

by far the most significantly effective drug was predicted to be CDK4/6 inhibitors where >50% of 268 

cases harboured sensitivity causing events in the receptor tyrosine kinase (RTK) and core cell cycle 269 

pathways (eg in CCND1, CCND3 and KRAS).  270 

 To verify that these driver events would also sensitise EAC tumours to such inhibitors we 271 

used a panel of eight EAC cell lines which have undergone whole genome sequencing37 and assessed 272 

them for presence of EAC driver events (Figure 6B). The mutational landscape of these lines was 273 

broadly representative of EAC tumours. We found that the presence of cell cycle and or RTK 274 
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activating driver events was highly correlated with response to two FDA approved CDK4/6 inhibitors, 275 

Ribociclib and Palbociclib and several cell lines were sensitive below maximum tolerated blood 276 

concentrations in humans (Figure 6B, supplementary table 6, Supplementary Figure 8)38. Such EAC 277 

cell lines had comparable sensitivity to T47D which is derived from an ER +ve breast cancer where 278 

CDK4/6is have been FDA approved.  We noted three cell lines without sensitising events which were 279 

highly resistant, with little drug effect even at 4000nM concentrations, similar to a known Rb mutant 280 

resistant line breast cancer cell line (MDA-MB-468). Two of these three cell lines harbour 281 

amplification of CCNE1 which is known to drive resistance to CDK4/6i by bypassing CDK4/6 and 282 

causing Rb phosphorylation via CDK2 activation39.  283 

 284 

Discussion 285 

We present here a detailed catalogue of events that have been selected for during the evolution of 286 

esophageal adenocarcinoma. These events have been characterised in terms of their relative impact, 287 

related functions, mutual exclusivity and co-occurrence and expression in comparison to normal 288 

tissues, producing insights into EAC biology. We have used this set of biologically important gene 289 

alterations to identify prognostic biomarkers and actionable genomic events for personalised 290 

medicine.  291 

While clinical annotation and matched RNA data is a strength of this study, in some cases we 292 

may have been unable to assess selected variants for survival associations or expression changes 293 

which were detected in the full 551 cohort, due to lack of representation in clinically annotated or 294 

RNA matched sub cohorts.  Despite rigorous analyses to detect selected events, assessment of the 295 

global excess of mutations by dNdScv suggests we are unable to detect all events selected in EAC, 296 

similar to many other cancer types21. All driver gene detection methods which we have used rely on 297 

driver mutation re-occurrence in a gene to some degree. Many of these undetected driver 298 
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mutations are hence likely to be spread across a large number of genes whereby each is mutated at 299 

low frequency across EAC patients. This tendency for low frequency EAC drivers may be responsible 300 

for the low yield of MutsigCV in previous cohorts and may suggests that C-type cancers such as EAC, 301 

are not less ‘mutation-driven’ than M-type cancers but rather that their mutational drivers are 302 

spread across a larger number of genes5. The identification of these very low frequency mutations 303 

will require substantially different detection techniques to those which are currently in wide spread 304 

use and such methods are in development40 although they require validation. Undoubtedly many 305 

copy drivers are also left undiscovered and validation of candidates identified here is an important 306 

avenue of future work. 307 

While a number of previous reports have attempted to detect EAC drivers, they have had a 308 

limited yield per case for a variety of reasons. The first such study19 used methods which, despite 309 

being well regarded at the time, were subsequently discredited9. Hence a number of known false 310 

positive genes (EYS, SYNE1 and CNTTAP5) were erroneously reported as drivers, along with an 311 

additional unknown number of genes. Since then a number of reports, including our own, on 312 

medium and large cohort sizes using MutsigCV10,11,17 were only able to detect a small number of 313 

mutational driver genes (7, 5 and 15 in each study). By using both a large cohort and more 314 

comprehensive methodologies we have significantly increased this figure to 52 mutational driver 315 

genes (excluding CN drivers). Detection of driver CNAs has previously relied on GISTIC to detect 316 

recurrently mutated regions10,14-17 but no analyses have been performed to evidence which genes in 317 

these large regions are true drivers. Many of the genes annotated by such papers are unlikely to be 318 

CN drivers from this analysis due to their lack of expression modulation with CNAs (eg YEATS4 and 319 

MCL1), the role of recurrent heterozygous losses to drive LOH in some mutational drivers (ARID1A 320 

and CDH11) or their association with fragile sites (PDE4D, WWOX, FHIT). Conversely, we have been 321 

able to identify novel EAC copy number drivers (eg CCND3, AXIN1 and APC).  322 
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A number of discoveries made in this work require further investigation. Functional 323 

characterisation of many of the driver genes described is needed to understand why they are 324 

advantageous to EAC tumours and how they modify EAC biology. Particularly interesting are the GI 325 

specific genes GATA4/6 and MUC6 which modulate prognosis and have expression loss during the 326 

transition from normal to tumour tissue. Biological pathways and processes that are selectively 327 

dysregulated deserve particular attention in this regard as do the gene pairs or groups with mutually 328 

exclusive or co-occurring relationships such as MYC and TP53 or SWI/SNF factors, suggestive of 329 

particular functional relationships. Prospective clinical work to verify and implement SMAD4 and 330 

GATA4 biomarkers in this study would be worthwhile. While whole genome or whole exome 331 

sequencing may be impractical for use in the clinic, targeted NGS panels to detect mutations and 332 

copy number alterations have been implemented to detect genomic biomarkers in a cost effective 333 

and sensitive manner for some cancer types41. In EAC development of a customised panel is likely to 334 

be required on the basis of this analysis. A number of targeted therapeutics may provide clinic 335 

benefit to EAC cases based on their individual genomic profile. In particular CDK4/6 inhibitors 336 

deserve considerable attention as an option for EAC treatment as they are, by a significant margin, 337 

the treatment to which the most EACs harbour sensitivity-causing driver events, excluding TP53 as 338 

an unlikely therapeutic biomarker. The in vitro validation of these biomarkers for CDK4/6 inhibitors 339 

in EAC is also persuasive of possible clinical benefit using a targeted approach. 340 

In summary this work provides a detailed compendium of mutations and copy number 341 

alterations undergoing selection in EAC which have functional and clinical impact on tumour 342 

behaviour. This comprehensive study provides us with useful insights into the nature of EAC tumours 343 

and should pave the way for evidence based clinical trials in this poor prognosis disease. 344 

 345 

 346 
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Figure Legends: 420 

Figure 1 Detection of EAC driver Genes. a. Types of driver-associated features used to detect 421 

positive selection in mutations and copy number events with examples of genes containing such 422 

features b. Driver genes identified and their driver-associated features. 423 

 424 

Figure 2. Copy number variation under positive selection. a. Recurrent copy number changes across 425 

the genome identified by GISTIC. Frequency of different CNV types are indicated as well as the position 426 

of CNV high confidence driver genes and candidate driver genes. The q value for expression correlation 427 

with amplification and homozygous deletion is shown for each gene within each amplification and 428 

deletion peaks respectively and occasions of significant association between LOH and mutation are 429 

indicated in green. Purple deletion peaks indicate fragile sites. b. Examples of Extrachromosomal-like 430 

amplifications suggested by very high read support SVs at the boundaries of highly amplified regions 431 

produced from a single copy number step. In the first example (bi) two populations of 432 

extrachromosomal DNA are apparent (biii), one amplifying only MYC and the second also 433 

incorporating ERBB2 from a different chromosome. In the second example (bii) an inversion has 434 

occurred before circularization and amplification around KRAS (biv). c. Relationship between copy 435 

number and expression in CN driver genes. 436 

 437 

Figure 3. The driver gene landscape of Esophageal Adenocarcinoma. a. Driver mutations or CNVs are 438 

shown for each patient. Amplification is defined as >2 Copy number adjusted ploidy (2 x ploidy) of that 439 

case and extrachromosomal amplification as >10Copy number adjusted ploidy (10 x ploidy) for that 440 

case. Driver associated features for each driver gene are displayed to the left. On the right the 441 

percentages of different mutation and copy number changes are displayed, differentiating between 442 

driver and passenger mutations using dNdScv, and the % of predicted drivers by mutation type is 443 

shown. Above the plot are the number of driver mutations per sample with an indication of the mean 444 
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(red line). b. Assessment of driver event types per case and comparison to exome-wide excess of 445 

mutations generated by dNdScv. c. Expression changes in EAC driver genes in comparison to normal 446 

intestinal tissues. Genes with expression changes of note are shown. 447 

 448 

Figure 4. Biological pathways undergoing selective dysregulation in EAC. a. Biological Pathways 449 

dysregulated by driver gene mutation and/or CNVs. WT cases for a pathway are not shown. Inter 450 

and intra-pathway interactions are described and mutual exclusivities and/or associations between 451 

genes in a pathway are annotated.  GATA4/6 amplifications have a mutually exclusive relationship 452 

although this does not reach statistical significance (fisher’s exact test p=0.07 OR =0.52). b. Pairwise 453 

assessment of mutual exclusivity and association in EAC driver genes and pathways.  454 

 455 

Figure 5. Clinical significance of Driver events in EAC. a. Hazard rations and 95% confidence 456 

intervals for Cox regression analysis across all drivers genes with at least a 5% frequency of driver 457 

alterations * = q < 0.05 after BH adjustment. b. Kaplan-Meier curves for EACs with different status of 458 

significant prognostic indicators (GATA4 and SMAD4). c. Kaplan-Meier curves for different 459 

alterations in the TGFbeta pathway. d. Kaplan-Meier curves showing verification GATA4 prognostic 460 

value in GI cancers using a pancreatic TCGA cohort. e. Kaplan-Meier curves showing verification 461 

SMAD4 prognostic value in Gastroesophageal cancers using a gastroesophageal TCGA cohort. f. 462 

Differentiation bias in tumours containing events in Wnt pathway driver genes. g. Relative frequency 463 

of KRAS mutations and TP53 mutations driver gene events in females vs males (fishers exact test). 464 

 465 

Figure 6. CDK4/6 inhibitors utility in EAC. a. Drug classes for which sensitivity is indicated by EAC 466 

driver genes with data from the Cancer Biomarkers database36. b. Area under the curve (AUC) of 467 

sensitivity is shown in a panel of 8 EAC cell lines with associated WGS and driver event, based in 468 

tumour analysis, in these cell lines indicated. Also AUC is shown for two control lines T47D, an ER 469 
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+ve breast cancer line (+ve control) and MDA-MB-468 a Rb negative breast cancer (-ve control). 470 

*CCNE1 is a known marker of resistance to CDK4/6is due to its regulation of Rb downstream of 471 

CDK4/6 hence bypassing the need for CDK4/6 activity (see figure 5). 472 

 473 

Supplementary figure legends 474 

Supplementary figure 1. Distribution of small scale mutations (SNVs and Indels) across the 551 EAC 475 

cohort. Red line indicates the median mutations per case (6.4) 476 

 477 

Supplementary Figure 2. Concordance between driver gene detection methods. A. Hierarchical 478 

clustering between tools based on gene identified. B Genes identified by each tool. 479 

 480 

Supplementary Figure 3. Frequency of Extrachromosomal like events (CN adjusted Ploidy >10) 481 

in GISTIC amplification peaks and presence of high confidence drivers in those peaks indicated. 482 

 483 

Supplementary Figure 4. A scheme demonstrating how to use mutational clustering along with dnds 484 

ratios to estimate the probability of a particular mutation being a driver. In this case the dnds ratio 485 

suggests 2/3 of missense mutations are drivers hence 10/15. 7 missense mutation lie in a mutational 486 

cluster, in this case of known significance in the N-terminal of B-Catenin, making it likely that these 487 

are drivers and a most (5/7) other mutations are passengers. Similarly, mutations on amino acids 488 

known to be hyper mutated in other cancer types (see Supplementary table 3, for instance if we 489 

found a single KRAS G12 mutation) can be considered likely drivers.  490 

 491 
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Supplementary Figure 5. A detailed breakdown of mutation and copy number types per case and a 492 

breakdown of exome wide dnds excess for different mutation types (note that exome wide indel 493 

cannot be calculated excess as they have no synonymous mutation equivalent, although a null 494 

model is used in the per gene dnds method to use them to detect driver genes).  495 

 496 

Supplementary Figure 6. TP53 expression in different TP53 mutation types in comparison to TP53 497 

WT tumours and normal duodenum and gastric cardia tissues.  498 

 499 

Supplementary Figure 7. Expression of all EAC driver genes across different genomic states for the 500 

gene in question in 119 EAC tumours, and in comparison to duodenum and gastric cardia tissues. 501 

 502 

Supplementary Figure 8. Growth inhibition responses of EAC cell lines and control lines to CDK4/6 503 

inhibitors Palbociclib and Ribociclib.  504 

 505 

Methods 506 

Cohort, sequencing and calling of genomic events 507 

380 cases (69%) of our EAC cohort were derived from the esophageal adenocarcinoma WGS ICGC 508 

study, for which samples are collected through the UK wide OCCAMS (Oesophageal Cancer 509 

Classification and Molecular Stratification) consortium. The procedures for obtaining the samples, 510 

quality control processes, extractions and whole genome sequencing are as previously described17. 511 

Strict pathology consensus review was observed for these samples with a 70% cellularity 512 

requirement before inclusion. Comprehensive clinical information was available for the ICGC-513 
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OCCAMS cases. In addition, previously published samples were included in the analysis from Dulak 514 

et al 201319 – 139 WES and 10 WGS (total 27%) and Nones et al 201420 with 22 WGS samples (4%) to 515 

total 551 genome characterised EACs. RNA-seq data was available from our ICGC WGS samples 516 

(119/380). BAM files for all samples (include those from Dulak et al 2013 and Nones et al 2014) were 517 

run through our alignment (BWA-MEM), mutation (Strelka) and copy number (ASCAT) and structural 518 

variant (Manta) calling pipelines, as previously described17. Our methods were benchmarked against 519 

various other available methods and have among the best sensitivity and specificity for variant 520 

calling (ICGC benchmarking excerise42). Mutation and copy number calling on cell lines was 521 

performed as previously described37.  522 

Total RNA was extracted using All Prep DNA/RNA kit from Qiagen and the quality was checked on 523 

Agilent 2100 Bioanalyzer using RNA 6000 nano kit (Agilent). Qubit High sensitivity RNA assay kit from 524 

thermo fisher was used for quantification. Libraries were prepared from 250ng RNA, using TruSeq 525 

Stranded Total RNA Library Prep Gold (Ribo-zero) kit and ribosomal RNA (nuclear, cytoplasmic and 526 

mitochondrial rRNA) was depleted, whereby biotinylated probes selectively bind to ribosomal RNA 527 

molecules forming probe-rRNA hybrids. These hybrids were pulled down using magnetic beads and 528 

rRNA depleted total RNA was reverse transcribed. The libraries were prepared according to Illumina 529 

protocol43. Paired end 75bp sequencing on HiSeq4000 generated the paired end reads. 530 

 531 

Analysing EAC mutations for selection 532 

To detect positively selected mutations in our EAC cohort, a multi-tool approach across various 533 

selection related ‘Features’ (Recurrance, Functional impact, Clustering) was implemented in order to 534 

provide a comprehensive analysis. This is broadly similar to several previous approaches8,44. 535 

dNdScv21, MutsigCV9, e-Driver24 and e-Driver3D25 were run using the default parameters. To run 536 

OncodriverFM22, Polyphen45 and SIFT46 were used to score the functional impact of each missense 537 

non-synonomous mutation (from 0, non-impactful to 1 highly impactful), synonymous mutation 538 
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were given a score of 0 impact and truncating mutations (Non-sense and frameshift mutations) were 539 

given a score of 1. Any gene with less than 7 mutations, unlikely to contain detectable drivers using 540 

this method, was not considered to decrease the false discovery rate. OncodriveClust was run using 541 

a minimum cluster distance of 3, minimum number of mutations for a gene to be considered of 7 542 

and with a stringent probability cut off to find cluster seeds of p = Ex10-13  to prevent infiltration of 543 

large numbers of, likely, false positive genes. For all tool outputs we undertook quality control 544 

including Q-Q plots to ensure no tool produces inflated q-values and each tool produced at least 545 

30% known cancer genes. Two tools were removed from the analysis due to failure for both of these 546 

parameters at quality control (Activedriver47 and Hotspot28). For three of the QC-approved tools 547 

(dNdScv, OncodriveFM, MutsigCV) where this was possible we also undertook an additional fdr 548 

reducing analysis by re-calculating q values based on analysis of known cancer genes only21,26,27 as 549 

has been previously implemented21,48. Tool outputs were then put through various filters to remove 550 

any further possible false positive genes. Specifically, genes where <50% of EAC cases had no 551 

expression (TPM<0.1) in our matched RNA-seq cohort were removed and, using dNdScv, genes with 552 

no significant mutation excess (observed: expected ratio > 2:1) of any single mutation type were also 553 

removed (8 genes). We also removed two (MT-MD2, MT-MD4) mitochondrial genes which were 554 

highly enriched for truncating mutations and were frequently called in OncodriveFM as well as other 555 

tools. This is may be due to the different mutational dynamics, caused by ROS from the 556 

mitochondrial electron transport chain, and the high number of mitochondrial genomes per cell 557 

which enables significantly more heterogeneity. These factors prevent the tools used from 558 

calculating an accurate null model for these genes however they may be worthy of functional 559 

investigation.  560 

 561 

 562 

 563 
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Detecting selection in CNVs 564 

ASCAT raw CN values were used to detected frequently deleted or amplified regions of the genome 565 

using GISTIC2.014. To determine which genes in these regions confer a selective advantage, CNVs 566 

from each gene within a GISTIC identified loci were correlated with FPKM from matched RNA-seq in 567 

a sub-cohort of 119 samples and with mutations across all 551 samples. To call copy number in 568 

genes which spanned multiple copy number segments in ASCAT we considered the total number of 569 

full copies of the gene (ie the lowest total copy number). Occasionally ASCAT is unable to confidently 570 

call the copy number in a highly aberrant genomic regions. We found that the expression of genes in 571 

such regions matched well what we would expect given the surrounding copy number and hence we 572 

used the mean of the two adjacent copy number fragments to call copy number in the gene in 573 

question. We found amplification peak regions identified by GISTIC2.0 varied significantly in precise 574 

location both in analysis of different sub-cohorts and when comparing to published GISTIC data from 575 

EACs10,15,16. A peak would often sit next to but not overlapping a well characterised oncogene or 576 

tumour suppressor. To account for this, we widened the amplification peak sizes upstream and 577 

downstream by twice the size of each peak to ensure we captured all possible drivers. Our 578 

expression analysis allows us to then remove false positives from this wider region and called drivers 579 

were still highly enriched for genes closer to the centre of GISTIC peak regions. 580 

 To detect genes in which amplification correlated with increased expression we compared 581 

expression of samples with a high CN for that gene (top 25% percentile of CN) with those which have 582 

a normal CN (median +/- 1) using the Wilcox rank-sum test and using the specific alternative 583 

hypothesis that high CN would lead to increased expression. Q-values were then generated based on 584 

Benjamini & Hochberg method, not considering genes without significant expression in amplified 585 

samples (at least 80% amplified samples with FPKM > 1) and considering q<0.001 as significant. We 586 

also included an additional known driver gene only FDR reduction analysis as previously described 587 

for mutational drivers with q<0.05 considered as significant given the additional evidence for these 588 
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genes in other cancer types. We took the same approach to detect genes in which homozygous 589 

deletion correlated with expression loss. Expression modulation was a highly specific marker for 590 

known CN driver genes and was not a widespread feature in most recurrently copy number variant 591 

genes. However, while expression modulation is a requirement for selection of CNV only drivers, it is 592 

not sufficient evidence alone and hence we grouped such genes into those which have been 593 

characterised as drivers previously in other cancer types (high confidence EAC CN drivers) and other 594 

genes (Candidate EAC CN drivers) which await functional validation. We used fragile site regions 595 

detected in Wala et al 201749. We also defined regions which may be recurrently heterozygous 596 

deleted, without any significant expression modulations, to allow LOH of tumour suppressor gene 597 

mutations. To do this we analyses genes with at least 5 mutations in the matched RNA cohort for 598 

association between LOH (ASCAT minor allele = 0) and mutation using fisher’s exact test and 599 

generated q values using the Benjamini & Hochberg method. The analysis was repeated on known 600 

cancer genes only for reduced FDR and q < 0.05 considered significant for both analyses. For those 601 

high confidence drivers we chose to define amplification as CN/ploidy (referred to as Ploidy adjusted 602 

copy number) this produces superior correlation with expression. We chose a cut off for 603 

amplification at CN/ploidy = 2 as has been previously used, and as causes a highly significant 604 

increase in expression in our CN-driver genes.  605 

 606 

Pathways and relative distributions of genomic events 607 

The relative distribution of driver events in each pathway was analysed using a fisher’s exact test in 608 

the case of pair-wise comparisons including WT cases. In the case of multi-gene comparisons such as 609 

the Cyclins we calculate the p value and odds ratio for each pair in the group by fisher’s exact test 610 

and combine p values using the Fisher method, Genes without comparable Odds ratios to the rest of 611 

the genes in question were removed. For this analysis we also remove highly mutated cases (>500 612 

exonic mutations, 41/551) as they bias distribution of genes towards co-occurrence. We repeated 613 
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this analyses across all pairs of driver genes using BH multiple hypothesis correction. We validated 614 

these relationships in independent TGCA cohorts of other GI cancers where we could find cohorts 615 

with reasonable numbers of the genomic events in question (not possible for GATA4/6 for instance) 616 

using the cBioportal web interface tool50.  617 

 618 

Correlating genomics with the clinical phenotype 619 

To find genomic markers for prognosis we undertook univariate Cox regression for those driver 620 

genes present in >5% of cases (16) along with Benjamini & Hochberg false discovery correction. We 621 

considered only these genes to reduce our false discover rate and because other genes were unlikely 622 

to impact on clinical practise given their low frequency in EAC. We validated SMAD4, in the TCGA 623 

gastroesophageal cohort which had a comparable frequency of these events, but notably is 624 

composed mainly of gastric cancers, and GATA4 in the TCGA pancreatic cohort using the cBioportal 625 

web interface tool. We also validated these markers as independent predictors of survival both in 626 

respect of each other and stage using a multivariate Cox regression in our 551 case cohort. When 627 

assessing for genomic correlates with differentiation phenotypes we found only very few cases with 628 

well differentiated phenotypes (<5% cases) and hence for statistical analyses we collapse these cases 629 

with moderate differentiation to allow a binary fisher’s exact test to compare poorly differentiated 630 

with well-moderate differentiated phenotypes.  631 

 632 

Therapeutics 633 

The cancer biomarker database was filtered for drugs linked to biomarkers found in EAC drivers and 634 

supplementary table 6 constructed using the cohort frequencies of EAC biomarkers. 8 EAC cell lines 635 

with WGS data37 were used in proliferation assays to determine drug sensitivity to CDK4/6 inhibitors, 636 

Palbociclib (Biovision) and Ribociclib (Selleckchem). Cell lines were grown in their normal growth 637 
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media (methods table 1). Proliferation was measured using the Incucyte live cell analysis system 638 

(Incucyte ZOOM Essen biosciences). Each cell line was plated at a starting confluency of 10% and 639 

growth rate measured across 4-7 days depending on basal proliferation rate. For each cell-line drug 640 

combination concentrations of 16, 64, 250, 1000 and 4000nM were used each in 0.3% DMSO and 641 

compared to 0.3% DMSO only. Each condition was performed in at least triplicate. The time period 642 

of the exponential growth phase in the untreated (0.3% DMSO) condition was used to calculate GI50 643 

and AUC. Accurate GI50s could not be calculated in cases where a cell line had >50% proliferation 644 

inhibition even with the highest drug concentration and hence AUC was used to compare cell line 645 

sensitivity. T47D had a highly similar GI50 for Palbociclib to that previously calculated in other 646 

studies (112 nM vs 127 nM)51. 647 

 648 
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Figure 2. Copy number variation under positive selection. 
a. Recurrent copy number changes across the genome 
identified by GISTIC. Frequency of different CNV types 
are indicated as well as the position of CNV high 
confidence driver genes and candidate driver genes. The 
q value for expression correlation with amplification and 
homozygous deletion is shown for each gene within each 
amplification and deletion peaks respectively and 
occasions of significant association between LOH and 
mutation are indicated in green. Purple deletion peaks 
indicate fragile sites. b. Examples of Extrachromosomal-like 
amplifications suggested by very high read support SVs at 
the boundaries of highly amplified regions produced from 
a single copy number step. In the first example (bi) two 
populations of extrachromosomal DNA are apparent 
(biii), one amplifying only MYC and the second also 
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c. Relationship between copy number and expression in 
CN driver genes. 
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Figure 3. The driver gene landscape of Esophageal Adenocarcinoma. a Driver mutations or CNVs are shown for each patient. 
Amplification is defined as >2 Copy number adjusted ploidy (2 x ploidy of that case) and extrachromosomal amplification as >10
Copy number adjusted ploidy (10 x ploidy for that case). Driver associated features for each driver gene are displayed to the left. 
On the right the percentages of different mutation and copy number changes are displayed, differentiating between driver and 
passenger mutations using dNdScv, and the % of predicted drivers by mutation type is shown. Above the plot are the number of 
driver mutations per sample with an indication of the median (red line = 4). b. Assessment of driver event types per case and 
comparison to exome-wide excess of mutations generated by dNdScv. c. Expression changes in EAC driver genes in comparison 
to normal intestinal tissues. Only genes with signifcant expression changes of note are shown. 
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Figure 4. Biological pathways undergoing selective dysregulation 
in EAC. a. Biological Pathways dysregulated by driver gene mutation 
and/or CNVs. WT cases for a pathway are not shown.  Mutual 
exclusivities and/or associations between genes in a pathway are 
annotated.  GATA4/6 amplifications have a mutually exclusive 
relationship (ie GATA4 ampification is more common in GATA6 WT 
cases) although this does not reach statistical significance (fisher’s 
exact test p=0.07 OR =0.52). b. Pairwise assessment of mutual 
exclusivity and association in EAC driver genes and pathways. 
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Figure 5. Clinical significance of Driver events in EAC. a. Hazard rations and 95% confidence intervals for Cox regression analysis 
across all drivers genes with at least a 5% frequency of driver alterations. P values are generated from the wald test and q values 
generated using BH correction. b. Kaplan-Meier curves for EACs with different status of significant prognostic indicators (GATA4 
and SMAD4). c. Kaplan-Meier curves for different alterations in the TGFbeta pathway. d. Kaplan-Meier curves showing verification 
GATA4 prognostic value in GI cancers using a pancreatic TCGA cohort. e. Kaplan-Meier curves showing verification SMAD4 
prognostic value in Gastroesophageal cancers using a gastroesophageal TCGA cohort. f. Differentiation bias in tumours containing 
events in Wnt pathway driver genes. g.  Relative frequency of KRAS mutations and TP53 mutations driver gene events in females vs 
males (fishers exact test).
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Figure 6. CDK4/6 inhibitors utility in EAC. a. Drug classes for which sensitivity is 
indicated by EAC driver genes with data from the Cancer Biomarkers database36. 
b. Area under the curve (AUC) of sensitivity is shown in a panel of 8 EAC cell lines 
with associated WGS and driver event, based in tumour analysis, in these cell lines 
indicated. Also AUC is shown for two control lines T47D, an ER +ve breast cancer line 
(+ve control) and MDA-MB-468 a Rb negative breast cancer (-ve control). *CCNE1 
is a known marker of resistance to CDK4/6is due to its regulation of Rb downstream 
of CDK4/6 hence bypassing the need for CDK4/6 activity (see figure 4). 
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